Research Article
May 1978

Finite Element Modeling of Nearshore Currents

This article has a reply.
VIEW THE REPLY
Publication: Journal of the Waterway, Port, Coastal and Ocean Division
Volume 104, Issue 2

Abstract

A finite element model is developed to compute the nearshore currents induced by breaking waves in the surf zone. The normal incident wave system is employed so as to study the effects of beach topography on the current circulation patterns. The beach topography considered here is of linear plane beach shape with minor undulations in the longshore direction. Ignoring the lateral turbulent diffusion, the finite element representation of the governing equations of mean currents is obtained by the method of weighted residuals. It is shown that, due to the flexible grid discretization, this model can be used to study problems containing more complex beach topography within a large area of interest. Two types of alongshore beach undulations are investigated: rhythmic topography and localized irregular topography. The locations of rip currents depend on the surf zone width and the on-offshore variation of beach profile.

Get full access to this article

View all available purchase options and get full access to this article.

Information & Authors

Information

Published In

Journal of the Waterway, Port, Coastal and Ocean Division
Volume 104Issue 2May 1978
Pages: 175 - 189

History

Published in print: May 1978
Published online: Feb 12, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Philip Li-Fan Liu, AM.ASCE
Asst. Prof., School of Civ. and Environmental Engrg., Cornell Univ., Ithaca, N.Y.
Gerard P. Lennon, AM.ASCE
Grad. Student, School of Civ. and Environmental Engrg., Cornell Univ., Ithaca, N.Y.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share