Case Studies
Nov 25, 2022

Improved Two-Layer Stacking Model for Prediction of the Level of Delay Caused by Crashes: An Empirical Analysis of Texas

Publication: Journal of Transportation Engineering, Part A: Systems
Volume 149, Issue 2

Abstract

Road crashes cause significant traffic delay, which can bring unnecessary financial losses. The objective of this study is to predict the level of delay caused by crashes (LDC) and discuss significant risk factors. To ensure the efficiency and accuracy of prediction, an improved stacking model was developed using Texas crash data of 2020. The first layer integrates seven base classifiers and the second layer tests three classifiers with different advantages. To improve and simplify the stacking model, three state-of-the-art methods—Bayesian hyperparameter optimization (BO), multiobjective feature selection (FS), and ensemble selection (ES)—were used. First, the hyperparameters and the least and most effective features were selected for each base classifier by BO and FS, respectively. Then ES, considering diversity and performance, selects the least base classifiers to reduce the input of the second layer. Finally, permutation feature importance was used to interpret the best stacking model. The results indicate that the stacking model achieves superior performance on four indicators: recall, G mean, F1 score, and area under the receiver operating characteristic (ROC) curve (AUC-ROC). FS significantly improves the efficiency of the stacking model and ES obtains a simplified stacking model without significantly reducing performance. In addition, the combination of the two methods (FS and ES) tends to achieve the best performance, and six risk factors have the greatest contributions in prediction using permutation feature importance. The prediction of LDC and the analysis of the main contributing factors help road managers respond to the rescue strategies to mitigate traffic congestion caused by crashes in a timely manner, thus minimizing economic losses.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

We thank Katrina Wang from University College London for proofreading. This work was supported by the National Natural Science Foundation of China (52172301) and Beijing Philosophy and Social Science Project (21GLA010).

References

Abou Elassad, Z. E., H. Mousannif, and H. Al Moatassime. 2020a. “Class-imbalanced crash prediction based on real-time traffic and weather data: A driving simulator study.” Traffic Inj. Prev. 21 (3): 201–208. https://doi.org/10.1080/15389588.2020.1723794.
Abou Elassad, Z. E., H. Mousannif, and H. Al Moatassime. 2020b. “A real-time crash prediction fusion framework: An imbalance-aware strategy for collision avoidance systems.” Transp. Res. Part C Emerging Technol. 118 (Sep): 102708. https://doi.org/10.1016/j.trc.2020.102708.
Aguilar, C., B. J. Russo, A. Mohebbi, and S. Akbariyeh. 2022. “Analysis of factors affecting the frequency of crashes on interstate freeways by vehicle type considering multiple weather variables.” J. Transp. Saf. Secur. 14 (6): 973–1001. https://doi.org/10.1080/19439962.2020.1869875.
Albrecht, A. A. 2006. “Stochastic local search for the feature set problem, with applications to microarray data.” Appl. Math. Comput. 183 (2): 1148–1164. https://doi.org/10.1016/j.amc.2006.05.128.
Al-Rukaibi, F., S. AlKheder, N. AlOtaibi, and M. Almutairi. 2020. “Traffic crashes cost estimation in Kuwait.” Int. J. Crashworthiness 25 (2): 203–212. https://doi.org/10.1080/13588265.2019.1567966.
Amiri, A. M., A. Sadri, N. Nadimi, and M. Shams. 2020. “A comparison between artificial neural network and hybrid intelligent genetic algorithm in predicting the severity of fixed object crashes among elderly drivers.” Accid. Anal. Prev. 138 (Apr): 105468. https://doi.org/10.1016/j.aap.2020.105468.
Bing Map Traffic API. 2019. “Traffic API.” Accessed May 5, 2019. https://learn.microsoft.com/en-us/bingmaps/rest-services/traffic/.
Breiman, L. 1996. “Bagging predictors.” Mach. Learn. 24 (2): 123–140. https://doi.org/10.1023/A:1018054314350.
Breiman, L. 2001. “Random forests.” Mach. Learn. 45 (1): 5–32. https://doi.org/10.1023/A:1010933404324.
Britto, A. S., R. Sabourin, and L. E. S. Oliveira. 2014. “Dynamic selection of classifiers—A comprehensive review.” Pattern Recognit. 47 (11): 3665–3680. https://doi.org/10.1016/j.patcog.2014.05.003.
Chandrashekar, G., and F. Sahin. 2014. “A survey on feature selection methods.” Comput. Electr. Eng. 40 (1): 16–28. https://doi.org/10.1016/j.compeleceng.2013.11.024.
Chen, T., and C. Guestrin. 2016. “XGBoost: A scalable tree boosting system.” In Proc., 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining. New York: Special Interest Group on Management of Data and Special Interest Group on Knowledge Discovery and Data Mining.
Cohen, J. 1960. “A coefficient of agreement for nominal scales.” Educ. Psychol. Meas. 20 (1): 37–46. https://doi.org/10.1177/001316446002000104.
Cover, T., and P. Hart. 1967. “Nearest neighbor pattern classification.” IEEE Trans. Inf. Theory 13 (1): 21–27. https://doi.org/10.1109/TIT.1967.1053964.
Cruz, R. M. O., R. Sabourin, and G. D. C. Cavalcanti. 2018. “Dynamic classifier selection: Recent advances and perspectives.” Inf. Fusion 41 (May): 195–216. https://doi.org/10.1016/j.inffus.2017.09.010.
Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. 2002. “A fast and elitist multiobjective genetic algorithm: NSGA-II.” IEEE Trans. Evol. Comput. 6 (2): 182–197. https://doi.org/10.1109/4235.996017.
DeCastro-García, N., Á. L. Muñoz Castañeda, D. Escudero García, and M. V. Carriegos. 2019. “Effect of the sampling of a dataset in the hyperparameter optimization phase over the efficiency of a machine learning algorithm.” Complexity 2019: 1–16. https://doi.org/10.1155/2019/6278908.
Deniz, A., H. E. Kiziloz, T. Dokeroglu, and A. Cosar. 2017. “Robust multi-objective evolutionary feature subset selection algorithm for binary classification using machine learning techniques.” Neurocomputing 241 (Jun): 128–146. https://doi.org/10.1016/j.neucom.2017.02.033.
Dong, N., H. Huang, and L. Zheng. 2015. “Support vector machine in crash prediction at the level of traffic analysis zones: Assessing the spatial proximity effects.” Accid. Anal. Prev. 82 (Sep): 192–198. https://doi.org/10.1016/j.aap.2015.05.018.
Duin, R. P. W. 2002. “The combining classifier: To train or not to train?” In Vol. 2 of Proc., 16th Int. Conf. on Pattern Recognition, 765–770. New York: IEEE.
Džeroski, S., and B. Ženko. 2004. “Is combining classifiers with stacking better than selecting the best one?” Mach. Learn. 54 (3): 255–273. https://doi.org/10.1023/B:MACH.0000015881.36452.6e.
Eggensperger, K., F. Hutter, H. H. Hoos, and K. Leytonbrown. 2015. “Efficient benchmarking of hyperparameter optimizers via surrogates.” Artif. Intell. 29 (1): 1114–1120. https://doi.org/10.1609/aaai.v29i1.9375.
Evans, J., B. Waterson, and A. Hamilton. 2020. “Evolution and future of urban road incident detection algorithms.” J. Transp. Eng. Part A Syst. 146 (6): 03120001. https://doi.org/10.1061/JTEPBS.0000362.
Farid, A., and K. Ksaibati. 2020. “Modeling two-lane highway passing-related crashes using mixed ordinal probit regression.” J. Transp. Eng. Part A Syst. 146 (9): 04020092. https://doi.org/10.1061/JTEPBS.0000428.
FHWA (Federal Highway Administration). 2005. “Traffic congestion and reliability: Trends and advanced strategies for congestion mitigation.” Accessed September 1, 2005. https://ops.fhwa.dot.gov/congestion_report/congestion_report_05.pdf.
Freund, Y., and R. E. Schapire. 1996. “Experiments with a new boosting algorithm.” In Proc., 13th Int. Conf. on Machine Learning, 148–156. San Francisco: Morgan Kaufmann.
Friedman, J. H. 2001. “Greedy function approximation: A gradient boosting machine.” Ann. Stat. 29 (5): 1189–1232. https://doi.org/10.1214/aos/1013203451.
Geurts, P., D. Ernst, and L. Wehenkel. 2006. “Extremely randomized trees.” Mach. Learn. 63 (1): 3–42. https://doi.org/10.1007/s10994-006-6226-1.
Grigorev, A., A. S. Mihaita, S. H. Y. Lee, and F. Chen. 2022. “Incident duration prediction using a bi-level machine learning framework with outlier removal and intra-extra joint optimisation.” Transp. Res. Part C Emerging Technol. 141: 103721. https://doi.org/10.1016/j.trc.2022.103721.
Guyon, I., and A. Elisseeff. 2003. “An introduction to variable and feature selection.” J. Mach. Learn. Res. 3 (Mar): 1157–1182. https://doi.org/10.1162/153244303322753616.
Han, D., Q. Liu, and W. Fan. 2018. “A new image classification method using CNN transfer learning and web data augmentation.” Expert Syst. Appl. 95 (Apr): 43–56. https://doi.org/10.1016/j.eswa.2017.11.028.
Haule, H. J., P. Alluri, T. Sando, and M. A. Raihan. 2020. “Investigating the impact of rain on crash-clearance duration.” J. Transp. Eng. Part A Syst. 146 (11): 04020130. https://doi.org/10.1061/JTEPBS.0000458.
Haule, H. J., T. Sando, R. Lentz, C.-H. Chuan, and P. Alluri. 2018. “Evaluating the impact and clearance duration of freeway incidents.” Int. J. Transp. Sci. Technol. 8 (1): 13–24. https://doi.org/10.1016/j.ijtst.2018.06.005.
Hornik, K., M. Stinchcombe, and H. White. 1989. “Multilayer feedforward networks are universal approximators.” Neural Netw. 2 (5): 359–366. https://doi.org/10.1016/0893-6080(89)90020-8.
Hosseini, S., and B. M. H. Zade. 2020. “New hybrid method for attack detection using combination of evolutionary algorithms, SVM, and ANN.” Comput. Netw. 173 (May): 107168. https://doi.org/10.1016/j.comnet.2020.107168.
Hu, J., M.-C. Huang, and X. Yu. 2020. “Efficient mapping of crash risk at intersections with connected vehicle data and deep learning models.” Accid. Anal. Prev. 144: 105665. https://doi.org/10.1016/j.aap.2020.105665.
Hutter, F., L. Kotthoff, and J. Vanschoren. 2019. Automatic machine learning: Methods, systems, challenges. Cham, Switzerland: Springer.
Ijaz, M., L. Lan, M. Zahid, and A. Jamal. 2021. “A comparative study of machine learning classifiers for injury severity prediction of crashes involving three-wheeled motorized rickshaw.” Accid. Anal. Prev. 154: 106094. https://doi.org/10.1016/j.aap.2021.106094.
Iranitalab, A., and A. Khattak. 2017. “Comparison of four statistical and machine learning methods for crash severity prediction.” Accid. Anal. Prev. 108 (Nov): 27–36. https://doi.org/10.1016/j.aap.2017.08.008.
Jeong, H., Y. Jang, P. J. Bowman, and N. Masoud. 2018. “Classification of motor vehicle crash injury severity: A hybrid approach for imbalanced data.” Accid. Anal. Prev. 120 (Nov): 250–261. https://doi.org/10.1016/j.aap.2018.08.025.
Katrakazas, C., M. Quddus, and W. H. Chen. 2018. “A simulation study of predicting real-time conflict-prone traffic conditions.” IEEE Trans. Intell. Transp. Syst. 19 (10): 3196–3207. https://doi.org/10.1109/TITS.2017.2769158.
Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. 2017. “LightGBM: A highly efficient gradient boosting decision tree.” In Vol. 30 of Advances in neural information processing systems, edited by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. New York: Curran Associates.
Khattak, A., X. Wang, and H. Zhang. 2012. “Incident management integration tool: Dynamically predicting incident durations, secondary incident occurrence and incident delays.” IET Intel. Transp. Syst. 6 (2): 204–214. https://doi.org/10.1049/iet-its.2011.0013.
Kiziloz, H. E. 2021. “Classifier ensemble methods in feature selection.” Neurocomputing 419 (Jan): 97–107. https://doi.org/10.1016/j.neucom.2020.07.113.
Kohavi, R., and G. John. 1997. “Wrappers for feature subset selection.” Artif. Intell. 97 (1–2): 273–324. https://doi.org/10.1016/S0004-3702(97)00043-X.
Landis, J. R., and G. G. Koch. 1977. “The measurement of observer agreement for categorical data.” Int. Biometric Soc. 33 (1): 159–174. https://doi.org/10.2307/2529310.
Le Cessie, S., and J. C. Van Houwelingen. 1992. “Ridge estimators in logistic regression.” J. R. Stat. Soc. 41 (1): 191–201. https://doi.org/10.2307/2347628.
Li, G. F., W. J. Lai, X. X. Sui, X. H. Li, X. D. Qu, T. R. Zhang, and Y. Z. Li. 2020. “Influence of traffic congestion on driver behavior in post-congestion driving.” Accid. Anal. Prev. 141: 105508. https://doi.org/10.1016/j.aap.2020.105508.
Lin, Y., and R. Li. 2020. “Real-time traffic accidents post-impact prediction: Based on crowdsourcing data.” Accid. Anal. Prev. 145 (Sep): 105696. https://doi.org/10.1016/j.aap.2020.105696.
Liu, Y., D. Gong, J. Sun, and Y. Jin. 2017. “A many-objective evolutionary algorithm using a one-by-one selection strategy.” IEEE Trans. Cybern. 47 (9): 2689–2702. https://doi.org/10.1109/TCYB.2016.2638902.
Luo, G. 2016. “A review of automatic selection methods for machine learning algorithms and hyper-parameter values.” Network Model. Anal. Health Inf. Bioinf. 5 (1): 1–16. https://doi.org/10.1007/s13721-016-0125-6.
Ma, X., C. Ding, S. Luan, Y. Wang, and Y. Wang. 2017. “Prioritizing influential factors for freeway incident clearance time prediction using the gradient boosting decision trees method.” IEEE Trans. Intell. Transp. Syst. 18 (9): 2303–2310. https://doi.org/10.1109/TITS.2016.2635719.
Ma, Z., G. Mei, and S. Cuomo. 2021. “An analytic framework using deep learning for prediction of traffic accident injury severity based on contributing factors.” Accid. Anal. Prev. 160 (Sep): 106322. https://doi.org/10.1016/j.aap.2021.106322.
Mafarja, M. M., and S. Mirjalili. 2017. “Hybrid whale optimization algorithm with simulated annealing for feature selection.” Neurocomputing 260 (Oct): 302–312. https://doi.org/10.1016/j.neucom.2017.04.053.
Mansoor, U., N. T. Ratrout, S. M. Rahman, and K. Assi. 2020. “Crash severity prediction using two-layer ensemble machine learning model for proactive emergency management.” IEEE Access 8: 210750–210762. https://doi.org/10.1109/ACCESS.2020.3040165.
MapQuest Traffic API. 2019. “Traffic service providers.” Accessed May 5, 2019. http://business.mapquest.com/products/traffic-api.
Margineantu, D., and T. G. Dietterich. 1997. “Pruning adaptive boosting.” In Proc., 14th Int. Conf. on Machine Learning, 211–218. San Francisco: Morgan Kaufmann.
Moosavi, S. 2019. “US accidents.” Accessed January 1, 2021. https://www.kaggle.com/datasets/sobhanmoosavi/us-accidents.
Moosavi, S. 2020. “Correlation between severity level and traffic delay.” Accessed May 19, 2020. https://www.kaggle.com/sobhanmoosavi/us-accidents/discussion/152370.
Moosavi, S., M. H. Samavatian, A. Nandi, S. Parthasarathy, and R. Ramnath. 2019a. “Short and long-term pattern discovery over large-scale geo-spatiotemporal data.” In Proc., 25th ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining. New York: Association for Computing Machinery.
Moosavi, S., M. H. Samavatian, S. Parthasarathy, and R. Ramnath. 2019b. “A countrywide traffic accident dataset.” Preprint, submitted July 12, 2019. http://arxiv.org/abs/1906.05409.
Moosavi, S., M. H. Samavatian, S. Parthasarathy, R. Teodorescu, and R. Ramnath. 2019c. “Accident risk prediction based on heterogeneous sparse data: New dataset and insights.” In Proc., 27th ACM SIGSPATIAL Int. Conf. on Advances in Geographic Information Systems. New York: Association for Computing Machinery.
Morris, C., and J. J. Yang. 2021. “Effectiveness of resampling methods in coping with imbalanced crash data: Crash type analysis and predictive modeling.” Accid. Anal. Prev. 159 (Sep): 106240. https://doi.org/10.1016/j.aap.2021.106240.
Nam, D., and F. Mannering. 2000. “An exploratory hazard-based analysis of highway incident duration.” Transp. Res. Part A Policy Pract. 34 (2): 85–102. https://doi.org/10.1016/S0965-8564(98)00065-2.
Nguyen, B. H., B. Xue, and M. Zhang. 2020. “A survey on swarm intelligence approaches to feature selection in data mining.” Swarm Evol. Comput. 54 (May): 100663. https://doi.org/10.1016/j.swevo.2020.100663.
Omranian, E., H. Sharif, S. Dessouky, and J. Weissmann. 2018. “Exploring rainfall impacts on the crash risk on Texas roadways: A crash-based matched-pairs analysis approach.” Accid. Anal. Prev. 117 (Aug): 10–20. https://doi.org/10.1016/j.aap.2018.03.030.
Park, H., A. Haghani, S. Samuel, and M. A. Knodler. 2018. “Real-time prediction and avoidance of secondary crashes under unexpected traffic congestion.” Accid. Anal. Prev. 112: 39–49. https://doi.org/10.1016/j.aap.2017.11.025.
Parsa, A. B., A. Movahedi, H. Taghipour, S. Derrible, and A. Mohammadian. 2020. “Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis.” Accid. Anal. Prev. 136: 105405. https://doi.org/10.1016/j.aap.2019.105405.
Polikar, R. 2006. “Ensemble based systems in decision making.” IEEE Circuits Syst. Mag. 6 (3): 21–45. https://doi.org/10.1109/MCAS.2006.1688199.
Prokhorenkova, L., G. Gusev, A. Vorobev, A. Dorogush, and A. Gulin. 2018. “Catboost: Unbiased boosting with categorical features.” Adv. Neural Inf. Process. Syst. 31: 6638–6648. https://doi.org/10.48550/arXiv.1706.09516.
Puranik, T. G., N. Rodriguez, and D. N. Mavris. 2020. “Towards online prediction of safety-critical landing metrics in aviation using supervised machine learning.” Transp. Res. Part C Emerging Technol. 120: 102819. https://doi.org/10.1016/j.trc.2020.102819.
Qi, Y. G., H. H. Teng, and D. R. Martinelli. 2007. “An investigation of incident frequency, duration and lanes blockage for determining traffic delay.” J. Adv. Transp. 43 (3): 275–299. https://doi.org/10.1002/atr.5670430303.
Rahman, R., S. Hasan, and M. H. Zaki. 2021. “Towards reducing the number of crashes during hurricane evacuation: Assessing the potential safety impact of adaptive cruise control systems.” Transp. Res. Part C Emerging Technol. 128 (Jul): 103188. https://doi.org/10.1016/j.trc.2021.103188.
Rumelhart, D. E., G. E. Hinron, and R. J. Williams. 1986. “Learning representations by back-propagating errors.” Nature 323 (6088): 533–536. https://doi.org/10.1038/323533a0.
Sarker, A. A., R. Paleti, S. Mishra, M. M. Golias, and P. B. Freeze. 2017. “Prediction of secondary crash frequency on highway networks.” Accid. Anal. Prev. 98 (Jun): 108–117. https://doi.org/10.1016/j.aap.2016.09.019.
Schapire, R. E. 1990. “The strength of weak learnability.” Mach. Learn. 5 (2): 197–227. https://doi.org/10.1007/BF00116037.
Shi, X. P., Y. D. Wong, M. Z. F. Li, C. Palanisamy, and C. Chai. 2019. “A feature learning approach based on XGBoost for driving assessment and risk prediction.” Accid. Anal. Prev. 129 (Aug): 170–179. https://doi.org/10.1016/j.aap.2019.05.005.
Siedlecki, W., and J. Sklansky. 1989. “A note on genetic algorithms for large-scale feature selection.” Pattern Recognit. Lett. 10 (5): 335–347. https://doi.org/10.1016/0167-8655(89)90037-8.
Snoek, J., H. Larochelle, and R. P. Adams. 2012. “Practical Bayesian optimization of machine learning algorithms.” Adv. Neural Inf. Process. Syst. 4: 2951–2959. https://doi.org/10.48550/arXiv.1206.2944.
Steadman, R. G. 1984. “A universal scale of apparent.” J. Climatol. Appl. Meteorol. 23 (12): 1674–1687. https://doi.org/10.1175/1520-0450(1984)023%3C1674:AUSOAT%3E2.0.CO;2.
Sun, Z., Y. Xing, J. Wang, X. Gu, H. Lu, and Y. Chen. 2021. “Exploring injury severity of bicycle-motor vehicle crashes: A two-stage approach integrating latent class analysis and random parameter logit model.” J. Transp. Saf. Secur. 1838–1864. https://doi.org/10.1080/19439962.2021.1971814.
Tang, J., L. Zheng, C. Han, W. Yin, Y. Zhang, Y. Zou, and H. Huang. 2020. “Statistical and machine-learning methods for clearance time prediction of road incidents: A methodology review.” Anal. Methods Accid. Res. 27 (Dec): 100123. https://doi.org/10.1016/j.amar.2020.100123.
Tanga, J., J. Lianga, C. Hana, Z. Lib, and H. Huang. 2019. “Crash injury severity analysis using a two-layer Stacking framework.” Accid. Anal. Prev. 122 (Jan): 226–238. https://doi.org/10.1016/j.aap.2018.10.016.
Tavassoli Hojati, A., L. Ferreira, S. Washington, and P. Charles. 2013. “Hazard based models for freeway traffic incident duration.” Accid. Anal. Prev. 52 (Mar): 171–181. https://doi.org/10.1016/j.aap.2012.12.037.
Tsymbal, A., M. Pechenizkiy, and P. Cunningham. 2005. “Diversity in search strategies for ensemble feature selection.” Inf. Fusion 6 (1): 83–98. https://doi.org/10.1016/j.inffus.2004.04.003.
Vingilis, E., et al. 2020. “Coronavirus disease 2019: What could be the effects on road safety?” Accid. Anal. Prev. 144: 105687. https://doi.org/10.1016/j.aap.2020.105687.
Wang, J. H., T. Y. Luo, and T. Fu. 2019a. “Crash prediction based on traffic platoon characteristics using floating car trajectory data and the machine learning approach.” Accid. Anal. Prev. 133: 105320. https://doi.org/10.1016/j.aap.2019.105320.
Wang, L., M. Abdel-Aty, J. Lee, and Q. Shi. 2019b. “Analysis of real-time crash risk for expressway ramps using traffic, geometric, trip generation, and socio-demographic predictors.” Accid. Anal. Prev. 122 (Jan): 378–384. https://doi.org/10.1016/j.aap.2017.06.003.
Wei, W., S. Visweswaran, and G. F. Cooper. 2011. “The application of naive Bayes model averaging to predict Alzheimer’s disease from genome-wide data.” J. Am. Med. Inf. Assoc. 18 (4): 370–375. https://doi.org/10.1136/amiajnl-2011-000101.
Wen, X., Y. Xie, L. Wu, and L. Jiang. 2021. “Quantifying and comparing the effects of key risk factors on various types of roadway segment crashes with LightGBM and SHAP.” Accid. Anal. Prev. 159 (Sep): 106261. https://doi.org/10.1016/j.aap.2021.106261.
Wolpert, D. H. 1992. “Stacked generalization.” Neural Netw. 5 (2): 241–259. https://doi.org/10.1016/S0893-6080(05)80023-1.
Wu, P., X. Meng, and L. Song. 2019. “A novel ensemble learning method for crash prediction using road geometric alignments and traffic data.” J. Transp. Saf. Secur. 12 (9): 1128–1146. https://doi.org/10.1080/19439962.2019.1579288.
Xia, Y., C. Liu, Y. Li, and N. Liu. 2017. “A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring.” Expert Syst. Appl. 78 (Jul): 225–241. https://doi.org/10.1016/j.eswa.2017.02.017.
Xie, K., K. Ozbay, and H. Yang. 2015. “Spatial analysis of highway incident durations in the context of hurricane sandy.” Accid. Anal. Prev. 74 (Jan): 77–86. https://doi.org/10.1016/j.aap.2014.10.015.
Xie, Y., Y. Zhang, and F. Liang. 2009. “Crash injury severity analysis using Bayesian ordered probit models.” J. Transp. Eng. 135 (1): 18–25. https://doi.org/10.1061/(ASCE)0733-947X(2009)135:1(18).
Xing, F., H. L. Huang, Z. Y. Zhan, X. Q. Zhai, C. Q. Ou, N. N. Sze, and K. K. Hon. 2019. “Hourly associations between weather factors and traffic crashes: Non-linear and lag effects.” Anal. Methods Accid. Res. 24 (Dec): 100109. https://doi.org/10.1016/j.amar.2019.100109.
Xue, B., M. Zhang, W. N. Browne, and X. Yao. 2016. “A survey on evolutionary computation approaches to feature selection.” IEEE Trans. Evol. Comput. 20 (4): 606–626. https://doi.org/10.1109/TEVC.2015.2504420.
Yang, C., M. Chen, and Q. Yuan. 2021. “The application of XGBoost and SHAP to examining the factors in freight truck-related crashes: An exploratory analysis.” Accid. Anal. Prev. 158 (Aug): 106153. https://doi.org/10.1016/j.aap.2021.106153.
Yang, L., and A. Shami. 2020. “On hyperparameter optimization of machine learning algorithms: Theory and practice.” Neurocomputing 415 (Nov): 295–316. https://doi.org/10.1016/j.neucom.2020.07.061.
Yasmin, S., N. Eluru, L. Wang, and M. A. Abdel-Aty. 2018. “A joint framework for static and real-time crash risk analysis.” Anal. Methods Accid. Res. 18 (Jun): 45–56. https://doi.org/10.1016/j.amar.2018.04.001.
Yu, B., Y. Chen, and S. Bao. 2019. “Quantifying visual road environment to establish a speeding prediction model: An examination using naturalistic driving data.” Accid. Anal. Prev. 129 (Aug): 289–298. https://doi.org/10.1016/j.aap.2019.05.011.
Yu, R. J., and M. Abdel-Aty. 2014. “Analyzing crash injury severity for a mountainous freeway incorporating real-time traffic and weather data.” Saf. Sci. 63 (Mar): 50–56. https://doi.org/10.1016/j.ssci.2013.10.012.
Yu, R. J., M. A. Abdel-Aty, M. M. Ahmed, and X. S. Wang. 2014. “Utilizing microscopic traffic and weather data to analyze real-time crash patterns in the context of active traffic management.” IEEE Trans. Intell. Transp. Syst. 15 (1): 205–213. https://doi.org/10.1109/TITS.2013.2276089.
Zhai, X. Q., H. L. Huang, N. N. Sze, Z. Q. Song, and K. K. Hon. 2019. “Diagnostic analysis of the effects of weather condition on pedestrian crash severity.” Accid. Anal. Prev. 122 (Jan): 318–324. https://doi.org/10.1016/j.aap.2018.10.017.
Zhang, H., M. Cetin, and A. Khattak. 2015. “Joint analysis of queuing delays associated with secondary incidents.” J. Intell. Transp. Syst. 19 (2): 192–204. https://doi.org/10.1080/15472450.2014.977049.
Zhang, X., H. Y. Wen, T. Yamamoto, and Q. Zeng. 2021. “Investigating hazardous factors affecting freeway crash injury severity incorporating real-time weather data: Using a Bayesian multinomial logit model with conditional autoregressive priors.” J. Saf. Res. 76 (Feb): 248–255. https://doi.org/10.1016/j.jsr.2020.12.014.
Zhao, H., W. Gunardi, Y. Liu, C. Kiew, T. H. Teng, and X. B. Yang. 2022. “Prediction of traffic incident duration using clustering-based ensemble learning method.” J. Transp. Eng. Part A Syst. 148 (7): 04022044. https://doi.org/10.1061/JTEPBS.0000688.
Zhao, H., A. P. Sinha, and W. Ge. 2009. “Effects of feature construction on classification performance: An empirical study in bank failure prediction.” Expert Syst. Appl. 36 (2): 2633–2644. https://doi.org/10.1016/j.eswa.2008.01.053.
Zheng, Z., Z. Wang, L. Zhu, and H. Jiang. 2020. “Determinants of the congestion caused by a traffic accident in urban road networks.” Accid. Anal. Prev. 136 (Mar): 105327. https://doi.org/10.1016/j.aap.2019.105327.

Information & Authors

Information

Published In

Go to Journal of Transportation Engineering, Part A: Systems
Journal of Transportation Engineering, Part A: Systems
Volume 149Issue 2February 2023

History

Received: Jun 15, 2022
Accepted: Sep 20, 2022
Published online: Nov 25, 2022
Published in print: Feb 1, 2023
Discussion open until: Apr 25, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Master’s Candidate, Beijing Key Laboratory of General Aviation Technology, Beijing Univ. of Civil Engineering and Architecture, 15 Yongyuan Rd., Beijing 100044, China. Email: [email protected]
Pengpeng Jiao [email protected]
Professor, Beijing Key Laboratory of General Aviation Technology, Beijing Univ. of Civil Engineering and Architecture, 15 Yongyuan Rd., Beijing 100044, China (corresponding author). Email: [email protected]
Jianyu Wang [email protected]
Lecturer, Beijing Key Laboratory of General Aviation Technology, Beijing Univ. of Civil Engineering and Architecture, 15 Yongyuan Rd., Beijing 100044, China. Email: [email protected]
Lecturer, Beijing Key Laboratory of General Aviation Technology, Beijing Univ. of Civil Engineering and Architecture, 15 Yongyuan Rd., Beijing 100044, China. Email: [email protected]
Professor, Institute of Transportation Engineering and Geomatics, Tsinghua Univ., 30 Shuangqing Rd., Beijing 100084, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Traffic Delay Analysis for Intelligent Transportation System using Deep Learning, 2023 IEEE 2nd International Conference on Industrial Electronics: Developments & Applications (ICIDeA), 10.1109/ICIDeA59866.2023.10295168, (312-315), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share