Technical Papers
May 22, 2024

Internal Reliability of Planar Coordinate Transformations

Publication: Journal of Surveying Engineering
Volume 150, Issue 3

Abstract

Coordinate transformations are essential in geodesy, surveying engineering, and many other disciplines working with coordinate systems. The task is to estimate transformation parameters from given coordinates of control points by least-squares adjustment. We focus on the internal reliability of the underlying adjustment model. It measures the ability of an adjustment model to detect discrepancies (biases) in the control points. The best established metric for the internal reliability is the minimum detectable bias (MDB). We derive explicit formulas for the MDB of the most important planar coordinate transformations: the planar similarity transformation and the planar rototranslation transformation. They are worked out for a bias in one coordinate, in both coordinates of a control point, and in all four coordinates of two control points of the target system. We investigate situations, where the MDB is infinite, such that biases are undetectable. The results are formulated in nine theorems.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

References

Baarda, W. 1967. Vol. 2 of Statistical concepts in geodesy: Netherlands Geodesie Commission new series. Delft, Netherlands: Netherlands Geodetic Commission.
Chang, G., T. Xu, Q. Wang, S. Zhang, and G. Chen. 2017. “A generalization of the analytical least-squares solution to the 3D symmetric Helmert coordinate transformation problem with an approximate error analysis.” Adv. Space Res. 59 (10): 2600–2610. https://doi.org/10.1016/j.asr.2017.02.034.
Förstner, W. 1983. “Reliability and discernability of extended Gauss-Markov models.” In Proc., Seminar on Mathematical Models of Geodetic Photogrammetric Point Determination with Regard to Outliers and Systematic Errors, edited by F. E. Ackermann, 79–104. Munich, Germany: German Geodetic Committee.
Förstner, W. 1985. “The reliability of block triangulation.” Photogramm. Eng. Remote Sens. 51 (8): 1137–1149.
Förstner, W. 1987. “Reliability analysis of parameter estimation in linear models with applications to mensuration problems in computer vision.” Comput. Vision Graphics Image Process. 40 (3): 273–310. https://doi.org/10.1016/S0734-189X(87)80144-5.
Heck, B. 1985. “Ein- und zweidimensionale Ausreißertests bei der ebenen Helmert-Transformation.” Z. Vermessungswesen 110 (10): 461–471.
Imparato, D., P. J. G. Teunissen, and C. H. Tiberius. 2018. “Minimal detectable and identifiable biases for quality control.” Surv. Rev. 51 (367): 289–299. https://doi.org/10.1080/00396265.2018.1437947.
Kavouras, M. 1982. On the detection of outliers and the determination of reliability in geodetic networks. Fredericton, NB, Canada: Univ. of New Brunswick.
Knight, N. L., J. Wang, and C. Rizos. 2010. “Generalised measures of reliability for multiple outliers.” J. Geod. 84 (10): 625–635. https://doi.org/10.1007/s00190-010-0392-4.
Koch, K. R. 1999. Parameter estimation and hypothesis testing in linear models. Berlin: Springer. https://doi.org/10.1007/978-3-662-03976-2.
Koch, K. R. 2015. “Minimal detectable outliers as measures of reliability.” J. Geod. 89 (5): 483–490. https://doi.org/10.1007/s00190-015-0793-5.
Lehmann, R. 2014. “Transformation model selection by multiple hypotheses testing.” J. Geod. 88 (12): 1117–1130. https://doi.org/10.1007/s00190-014-0747-3.
Lehmann, R. 2023. Geodätische und statistische Berechnungen. Berlin: Springer. https://doi.org/10.1007/978-3-662-66464-3.
Lehmann, R., and M. Lösler. 2016. “Multiple outlier detection: Hypothesis tests versus model selection by information criteria.” J. Surv. Eng. 142 (4): 04016017. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000189.
Lehmann, R., and M. Lösler. 2018. “Hypothesis testing in non-linear models exemplified by the planar coordinate transformations.” J. Geodetic Sci. 8 (1): 98–114. https://doi.org/10.1515/jogs-2018-0009.
Lehmann, R., M. Lösler, and F. Neitzel. 2021. “Mean shift versus variance inflation approach for outlier detection—A comparative study.” Mathematics 8 (6): 991. https://doi.org/10.3390/math8060991.
Lehmann, R., and A. Voß-Böhme. 2017. “On the statistical power of Baarda’s outlier test and some alternative.” J. Geodetic Sci. 7 (1): 68–78. https://doi.org/10.1515/jogs-2017-0008.
Lenzmann, L. 1984. “Zur Aufdeckung von Ausreißern bei überbestimmten Koordinatentransformationen.” Z. Vermessungswesen 109 (9): 474–479.
Lieb, E. H., and M. Loss. 2001. Analysis. 2nd ed. Providence, RI: American Mathematical Society.
Lösler, M., R. Lehmann, F. Neitzel, and C. Eschelbach. 2020. “Bias in least-squares adjustment of implicit functional models.” Surv. Rev. 53 (378): 223–234. https://doi.org/10.1080/00396265.2020.1715680.
Pelzer, H. 1980. “Some criteria for the reliability of networks.” In Beiträge aus der Bundesrepublik Deutschland zur Vorlage bei der XVII. Munich, Germany: German Geodetic Committee.
Prószyński, W. 2010. “Another approach to reliability measures for systems with correlated observations.” J. Geod. 84 (9): 547–556. https://doi.org/10.1007/s00190-010-0394-2.
Prószyński, W. 2015. “Revisiting Baarda’s concept of minimal detectable bias with regard to outlier identifiability.” J. Geod. 89 (10): 993–1003. https://doi.org/10.1007/s00190-015-0828-y.
Rofatto, V. F., M. T. Matsuoka, I. Klein, M. R. Veronez, M. L. Bonimani, and R. Lehmann. 2018. “A half-century of Baarda’s concept of reliability: A review, new perspectives, and applications.” Surv. Rev. 52 (372): 261–277. https://doi.org/10.1080/00396265.2018.1548118.
Sanso, F. 1973. “An exact solution of the roto-translation problem.” Photogrammetria 29 (6): 203–216. https://doi.org/10.1016/0031-8663(73)90002-1.
Schaffrin, B. 1997. “Reliability measures for correlated observations.” J. Surv. Eng. 123 (3): 126–137. https://doi.org/10.1061/(ASCE)0733-9453(1997)123:3(126).
Schaffrin, B., and S. Uzun. 2012. “On the reliability of errors-in-variables models.” Acta Commentationes Universitatis Tartuensis Math. 16 (1): 69–81. https://doi.org/10.12697/ACUTM.2012.16.05.
Shen, Y. Z., Y. Chen, and D. H. Zheng. 2006. “A quaternion-based geodetic datum transformation algorithm.” J. Geod. 80 (5): 233–239. https://doi.org/10.1007/s00190-006-0054-8.
Sherman, J., and W. J. Morrison. 1949. “Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix.” Ann. Math. Stat. 20 (Sep): 621. https://doi.org/10.1214/aoms/1177729959.
Sjöberg, L. E. 2013. “Closed-form and iterative weighted least squares solutions of Helmert transformation parameters.” J. Geodetic Sci. 3 (1): 7–11. https://doi.org/10.2478/jogs-2013-0002.
Teunissen, P. J. G. 2006a. “Network quality control.”. In Series of mathematical geodesy and positioning. Delft, Netherlands: Delft Academic Press, Vereniging voor Studie-en Studentenbelangen te Delft.
Teunissen, P. J. G. 2006b. “Testing theory: An introduction.” In Vol. 30 of Series of mathematical geodesy and positioning. 2nd ed. Delft, Netherlands: Delft Academic Press, Vereniging voor Studie-en Studentenbelangen te Delft.
Zaminpardaz, S., and P. J. G. Teunissen. 2019. “DIA-datasnooping and identifiability.” J. Geod. 93 (1): 85–101. https://doi.org/10.1007/s00190-018-1141-3.
Zaminpardaz, S., and P. J. G. Teunissen. 2023a. “Detection-only versus detection and identification of model misspecifications.” J. Geod. 97 (6): 55. https://doi.org/10.1007/s00190-023-01740-2.
Zaminpardaz, S., and P. J. G. Teunissen. 2023b. “MDBs versus MIBs in case of multiple hypotheses: A study in context of deformation analysis.” In Proc., Int. Association of Geodesy Symp. Berlin: Springer. https://doi.org/10.1007/1345_2023_208.

Information & Authors

Information

Published In

Go to Journal of Surveying Engineering
Journal of Surveying Engineering
Volume 150Issue 3August 2024

History

Received: Oct 25, 2023
Accepted: Feb 17, 2024
Published online: May 22, 2024
Published in print: Aug 1, 2024
Discussion open until: Oct 22, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Professor, Faculty of Spatial Information, Univ. of Applied Sciences Dresden, Friedrich-List-Platz 1, Dresden D-01069, Germany (corresponding author). ORCID: https://orcid.org/0000-0001-5088-2513. Email: [email protected]
Architecture, Civil Engineering, Geomatics, Laboratory for Industrial Metrology, Frankfurt Univ. of Applied Sciences, Nibelungenplatz 1, Frankfurt am Main 60318, Germany. ORCID: https://orcid.org/0000-0002-1979-263X

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share