Research Article
Sep 1971

Breakout Resistance of Objects Embedded in Ocean Bottom

Publication: Journal of the Soil Mechanics and Foundations Division
Volume 97, Issue 9

Abstract

Soil resistance to withdrawal is found to be greatly affected by failure patterns. For relatively shallow anchors in undisturbed dense and stiff soils general shear along a convex, torical slip surface is observed. For remolded, compressible and semiliquid soils this pattern degenerates into a cylindrical surface. For deeply embedded objects punching shear failure is observed. In semiliquid soils this is accompanied by flow of soil into the vacuum created by withdrawal of the object. Theoretical analysis considering soil to be rigid-plastic near the surface and elastic-plastic at greater depth appears to give reasonable estimates in soft and loose soils; it underestimates the breakout resistance in stiff and dense soils. The least understood components of breakout force are those attributed to soil suction and adhesion between the object and surrounding soil. It appears that the problem of soil suction can be handled as a problem of pore-pressure difference on two sides of the pulled object.

Get full access to this article

View all available purchase options and get full access to this article.

Information & Authors

Information

Published In

Journal of the Soil Mechanics and Foundations Division
Volume 97Issue 9September 1971
Pages: 1183 - 1205

History

Published in print: Sep 1971
Published online: Feb 12, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Aleksandar S. Vesić, F.ASCE
J. A. Jones Prof. and Chmn., Dept. of Civ. Engrg., Duke Univ., Durham, N.C.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share