Brief Report
Sep 1975

Finite Element for Buckling of Curved Beams and Shells with Shear

Publication: Journal of the Structural Division
Volume 101, Issue 9

Abstract

Inclusion of shear deformations allows the bending theory to be extended to relatively thick beams and shells and, at the same time, simplifies the finite element formulation for both thick and thin beams because monotonic convergence may be achieved without ensuring continuity of displacement derivatives between adjacent elements. Consequently, on may use low order interpolation polynomials, including linear ones. This is particularly useful in the case of curved beams because with higher order interpolation polynomials it is very difficult to satisfy exactly the conditions of no self-staining at rigid body rotations and of availability of all constant strain states, while with linear displacement interpolation polynomials and a straight shape of the element these requirements are easily met.

Get full access to this article

View all available purchase options and get full access to this article.

Information & Authors

Information

Published In

Journal of the Structural Division
Volume 101Issue 9September 1975
Pages: 1997 - 2004

History

Published in print: Sep 1975
Published online: Feb 1, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Zdeněk P. Bažant, M.ASCE
Prof. of Civ. Engrg., Northwestern Univ., Evanston, Ill.
Mahjoub El Nimeiri
Struct. Analyst, Joslyn Manufacturing & Supply Co., Woodstock, Ill.; formerly, Grad. Student, Northwestern Univ., Evanston, Ill.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share