Technical Papers
Jan 2, 2023

Performance of Hot-Mix Asphalt and Modified Binders Containing Polyethylene

Publication: Journal of Transportation Engineering, Part B: Pavements
Volume 149, Issue 1

Abstract

The demand for high-performance asphalt pavements has been increasing in recent years due to increased traffic volume, automobile size and weight, and rising temperatures due to climate change. It is necessary to modify the bitumen to achieve long-life high-performance pavements in many cases. Consequently, polymers obtained from plastic wastes emerged as a modifier to enhance the bitumen properties. Polymers offer a number of advantages. Polymers such as polyethylene (PE) or polypropylene (PP) offer a number of advantages when used as binder modifier. Using PE or PP in infrastructure projects can be an innovative method to reduce the environmental damage of these nonbiodegradable wastes and the high cost of recycling these wastes. Therefore, this paper extensively investigates the experimental studies carried out by many researchers to evaluate polymer-modified binders’ properties as an alternative for pure bitumen in asphalt mixtures under different percentages and production processes. The main goal is to establish a better understanding of the engineering properties of polyethylene-modified asphalt mixtures and ultimately argue that waste polyethylene has a viable use as a modifier for asphalt binders.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Abdullah, M. E., N. A. Ahmad, R. P. Jaya, and M. R. Hainin. 2017. “Effects of waste plastic on the physical and rheological properties of bitumen.” In Vol. 204 of IOP Conf. Series Materials Science and Engineering, 012016. Bristol, UK: IOP Publishing. https://doi.org/10.1088/1757-899X/204/1/012016.
Ahmad, M., and M. B. Ayob. 2015. “Improvement of asphaltic concrete by using waste polyethylen terephthalate (PET).” Int. J. Innovative Res. Sci. Eng. Technol. 4 (8).
Ahmadinia, E., M. Zargar, M. R. Karim, and M. Abdelaziz. 2012. “Performance evaluation of utilisation of waste polyethylene terephthalate (PET) in stone mastic asphalt.” Constr. Build. Mater. 36 (Nov): 984–989. https://doi.org/10.1016/j.conbuildmat.2012.06.015.
Al-Abdul-Wahhab, H., and G. Al-Amri. 1991. “Laboratory evaluation of reclaimed rubber asphaltic concrete mixes.” J. Mater. Civ. Eng. 3 (3): 189–203. https://doi.org/10.1061/(ASCE)0899-1561(1991)3:3(189).
Asphalt Institute. 2007. Best practice to minimise moisture sensitivity in asphalt mixture, MS-24. Lexington, KY: Asphalt Institute.
Asphalt Institute. 2008. Asphalt binder testing MS-25. 2nd ed. Lexington, KY: Asphalt Institute.
Asphalt Institute. 2011. The asphalt binder handbook, MS-26. Lexington, KY: Asphalt Institute.
ASTM. 2017. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM D790-17. West Conshohocken, PA: ASTM.
ASTM. 2018. Standard test method for deflection temperature of plastics under flexural load in the edgewise position. ASTM D648-18. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard test methods for density and specific gravity (relative density) of plastics by displacement. ASTM D792-20. West Conshohocken, PA: ASTM.
ASTM. 2021. Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry. ASTM D3418-21. West Conshohocken, PA: ASTM.
ASTM. 2022a. Standard test method for water absorption of plastics. ASTM D570-22. West Conshohocken, PA: ASTM.
ASTM. 2022b. Standard test method for tensile properties of plastics. ASTM D638-14. West Conshohocken, PA: ASTM.
Awwad, M. T., and L. Shbeeb. 2007. “The use of polyethylene in hot asphalt mixtures.” Am. J. Appl. Sci. 4 (6): 390–396. https://doi.org/10.3844/ajassp.2007.390.396.
Bahia, H. U., W. P. Hislop, H. Zhai, and A. Rangel. 2001. Characterisation of modified asphalt binders in superpave mix design. Prepared for the national cooperative highway research program. Washington, DC: Transportation Research Board.
Behnood, A., and M. M. Gharehveran. 2019. “Morphology, rheology, and physical properties of polymer-modified asphalt binders.” Eur. Polym. J. 112 (Mar): 766–791. https://doi.org/10.1016/j.eurpolymj.2018.10.049.
Bindu, C. S., and K. S. Beena. 2010. “Waste plastic as a stabilising additive in SMA.” Int. J. Eng. Technol. 2 (6): 547–557. https://doi.org/10.7763/IJET.2010.V2.180.
Bondre, R. A., P. S. Kamble, and S. L. Chauhan. 2015. “Use of plastic waste material in flexible pavements.” Int. J. Emerging Technol. 6 (1): 172–178.
Bose, S., and P. K. Jain. 1989. “Laboratory studies on the use of organic polymers in improvements of bituminous road surfacings.” Highway Res. Bull. (New Delhi) 38.
Brasileiro, L., F. Moreno-Navarro, R. Tauste-Martínez, J. Matos, and Md. C. Rubio-Gámez. 2019. “Reclaimed polymers as asphalt binder modifiers for more sustainable roads: A review.” Sustainability 11: 646. https://doi.org/10.3390/su11030646.
Brożyna, D., and K. Kowalski. 2016. “Assessment of polyethylen-modified bitumen adhesion using computer image analysis.” Arch. Civ. Eng. 62 (4): 3–18. https://doi.org/10.1515/ace-2015-0106.
Brule, B., Y. Brion, and T. Tanguy. 1988. “Paving asphalt polymer blends: Relationships between composition, structure and properties.” J. Assoc. Paving Technol. 57: 41–64.
Caro, S., E. Masad, A. Bhasin, and D. N. Little. 2008. “Moisture susceptibility of asphalt mixtures. Part 1: Mechanisms.” Int. J. Pavement Eng. 9 (2): 81–98. https://doi.org/10.1080/10298430701792128.
Casey, D., C. McNally, A. Gibney, and M. D. Gilchrist. 2008. “Development of a recycled polymer modified binder for use in stone mastic asphalt.” Resour. Conserv. Recycl. 52 (10): 1167–1174. https://doi.org/10.1016/j.resconrec.2008.06.002.
Catt, O. V. 2004. “Investigation of polymer modified asphalt by shear and tensile compliances. Material characterization for inputs into AASHTO 2002.” In Proc., Guide Session of the 2004 Annual Conf. of Transportation Association, 145-213. Newark, DE: Science and Education.
Chandh, K. A., and S. Akhila. 2016. “A laboratory study on effect of plastic on bitumen.” Int. J. Sci. Res. 5 (10): 1406–1409.
Chavan, A. J. 2013. “Use of plastic waste in flexible pavements.” Int. J. Appl. Innovation Eng. Manage. 2 (4): 540–552.
Chen, J. S., and C. C. Huang. 2006. “Fundamental characterisation of SBS modified asphalt with sulphur.” J. Appl. Polym. Sci. 103 (5): 2817–2825. https://doi.org/10.1002/app.24621.
Colagrande, S. 1997. “Polyolefin plastics taken from solid urban waste in bituminous concrete.” In Proc., 2nd European Symp. on Performance and Durability of Bituminous Materials, 85. Leeds, UK: Univ. of Leeds.
Coplantz, J. S., M. T. Yapp, and F. N. Finn. 1993. Review of relationships between modified asphalt properties and pavement performance. Washington, DC: Strategic Highway Resource Program, National Resource Council.
Costa, L. M. B., H. M. R. Silva, J. Peralta, and J. R. M. Oliveira. 2019. “Using waste polymers as a reliable alternative for asphalt binder modification: Performance and morphological assessment.” Constr. Build. Mater. 198 (Feb): 237–244. https://doi.org/10.1016/j.conbuildmat.2018.11.279.
Curtis, C. W. 1990. A literature review of liquid anti-stripping and tests for measuring stripping. Washington, DC: National Research Council.
Denning, J. H., and J. Carswell. 1983. Assessment of novophalt as a binder for rolled asphalt wearing course. Crowthrome, UK: Transport and Road Research Laboratory.
Epps, J. 1986. Asphalt pavement modifiers. Reston, VA: ASCE.
Fernandes, S., J. Peralta, J. R. M. Oliveira, R. C. Williams, and H. M. R. D. Silva. 2017. “Improving asphalt mixture performance by partially replacing bitumen with waste motor oil and elastomer modifiers.” Appl. Sci. 7: 794. https://doi.org/10.3390/app7080794.
Flynn, L. 1993. “Recycled plastic finds home in asphalt binders.” J. Road Bridges. 58 (2): 32–41.
Fuentes-Auden, C., J. A. Sandoval, A. Jerez, F. J. Navarro, F. J. Martinez-Boza, P. Partal, and C. Gallegos. 2008. “Evaluation of thermal and mechanical properties of recycled polyethylene modified bitumen.” Polym. Test. 27 (8): 1005–1012. https://doi.org/10.1016/j.polymertesting.2008.09.006.
Garcia-Morales, M., P. Partal, F. J. Navarro, F. Martınez-Boza, C. Gallegos, N. González, O. González, and M. E. Muñoz. 2004. “Viscous properties and microstructure of recycled eva modified bitumen.” Fuel 83 (1): 31–38. https://doi.org/10.1016/S0016-2361(03)00217-5.
Gawande, A., G. Zamare, V. C. Renge, S. Tayde, and G. Bharsakale. 2012. “An overview on waste plastic utilization in asphalting of roads.” J. Eng. Res. Stud. 3 (2): 1–5.
Geyer, R., J. R. Jambeck, and K. L. Law. 2017. “Production, use, and fate of all plastics ever made.” Sci. Adv. 3 (7): e1700782. https://doi.org/10.1126/sciadv.1700782.
Ghabchi, R., C. P. Dharmarathna, and M. Mihandoust. 2021. “Feasibility of using micronized recycled polyethylene terephthalate (PET) as an asphalt binder additive: A laboratory study.” Constr. Build. Mater. 292: 123377.
Ghuzlan, K. A., G. G. Al-Khateeb, and Y. Qasem. 2013. “Rheological properties of polyethylene modified asphalt binder.” In Proc., 3rd Annual Int. Conf. on Civil Engineering, 10: 1–14. Athina, Greece: Athens Institute for Education & Research.
Gokhale, S. V. 2000. “Simplified protocol for triaxial testing of hot mix asphalt concrete.” M.S. thesis, Civil and Environmental Engineering Faculty, Pennsylvania State Univ.
Gonzalez, A., B. J. Cardinale, G. R. H. Allington, J. Byrnes, K. A. Endsley, D. G. Brown, D. U. Hooper, M. I. O’Connor, and M. Loreau. 2016. “Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity.” Ecology 97 (8): 1949–1960. https://doi.org/10.1890/15-1759.1.
González, O., M. E. Munoz, A. Santamaria, M. Garcia-Morales, and F. J. Navarro. 2004. “Rheology and stability of bitumen/EVA blends.” Eur. Polym. J. 40 (10): 2365–2372. https://doi.org/10.1016/j.eurpolymj.2004.06.001.
Goodrich, J. L. 1988. “Asphalt and polymer modified asphalt properties related to the performance of asphalt concrete mixes.” In Vol. 57 of Proc., Association of Asphalt Paving Technologists (AAPT), 116–125. Washington, DC: Transportation Research Board.
Habib, N. Z., I. Kamruddin, M. Napiah, and I. M. Tan. 2010. “Rheological properties of polyethylene and polypropylene modified bitumen.” Int. J. Civil Environ. Struct. Constr. Archit. Eng. 4 (12): 381–385.
Hasaninia, M., and F. Haddadi. 2017. “The characteristics of hot mixed asphalt modified by nanosilica.” Pet. Sci. Technol. 35 (4): 351–359. https://doi.org/10.1080/10916466.2016.1258412.
Hínísloğlu, S., and E. Ağar. 2004. “Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix.” Mater. Lett. 58 (3–4): 267–271. https://doi.org/10.1016/S0167-577X(03)00458-0.
Hintz, C. 2012. “Understanding mechanisms leading to asphalt binder fatigue.” Ph.D. dissertation, Civil and environmental Engineering Dept., Univ. of Wisconsin-Madison.
Huang, Y., R. N. Bird, and O. Heidrich. 2007. “A review of the use of recycled solid waste materials in asphalt pavements.” Resour. Conserv. Recycl. 52 (1): 58–73. https://doi.org/10.1016/j.resconrec.2007.02.002.
Jain, P. K., S. B. Sangita, and I. R. Arya. 1992. “Characterisation of polymer modified asphalt binders for roads and airfield surfacings.” In Polymer modified asphalt binders, 431–455. West Conshohocken, PA: ASTM.
Jew, P., J. A. Shimizu, M. Svacic, and R. T. Woodhams. 1986. “Polyethylene modified bitumens for paving applications.” J. Appl. Polym. Sci. 31: 2685–2704.
Jiménez-Mateos, J. M., L. C. Quintro, and C. Rial. 1996. “Characterization of petroleum bitumens and their fractions by thermogravimetric analysis and differential scanning calorimetry.” Fuel 75 (15): 1691–1700. https://doi.org/10.1016/S0016-2361(96)00169-X.
Justo, C. E. G., and A. Veeraragavan. 2002. Utilisation of waste plastic bags in bituminous mix for improved performance of roads. Bengaluru, India: Banglore Univ.
Kakar, M. R., Z. Refaa, J. Worlitschek, A. Stamatiou, M. N. Partl, and M. Bueno. 2019. “Thermal and rheological characterization of bitumen modified with microencapsulated phase change materials.” Constr. Build. Mater. 215: 171–179. https://doi.org/10.1016/j.conbuildmat.2019.04.171.
Kanitpong, K., and H. Bahia. 2005. “Relating adhesion and cohesion of asphalts to the effect of moisture on laboratory performance of asphalt mixtures.” Transp. Res. Rec. 1901 (1): 33–43. https://doi.org/10.3141/1901-05.
Khan, I., and P. J. Gundaliya. 2012. “Utilisation of waste polyethylene materials in bituminous concrete mix for improved performance of flexible pavements.” Int. J. Sci. Res. 1 (12): 57–58.
Khattak, M. J., and G. Y. Baladi. 2001. “Fatigue and permanent deformation models for polymer-modified asphalt mixtures.” Transp. Res. Rec. 1767 (1): 135–145. https://doi.org/10.3141/1767-17.
Khurshid, M. B., N. A. Qureshi, A. Hussain, and M. J. Iqbal. 2019. “Enhancement of hot mix asphalt (HMA) properties using waste polymers.” Arabian J. Sci. Eng. 44: 8239–8248. https://doi.org/10.1007/s13369-019-03748-3.
Kim, Y.-R., J. S. Lutif, A. Bhasin, and D. N. Little. 2008. “Evaluation of moisture damage mechanisms and effects of hydrated lime in asphalt mixtures through measurements of mixture component properties and performance testing.” J. Mater. Civ. Eng. 20 (10): 659–667. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:10(659).
Kuloglu, N. 1999. “Effect of Astragalus on characteristics of asphalt concrete.” J. Mater. Civ. Eng. 11 (4): 283. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(283).
Kumar, P., and P. Anand. 2012. “Laboratory study on moisture susceptibility of dense graded mixes.” J. Transp. Eng. 138 (1): 105–113. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000306.
Lavin, P. 2003. Asphalt pavements: A practical guide to design, production and maintenance for engineers and architects. Boca Raton, FL: CRC Press.
Leng, Z., A. Sreeram, R. K. Padhan, and Z. Tan. 2018. “Value-added application of waste PET based additives in bituminous mixtures containing high percentage of reclaimed asphalt pavement (RAP).” J. Cleaner Prod. 196: 615–625. https://doi.org/10.1016/j.jclepro.2018.06.119.
Lesueur, D. 2009. “The colloidal structure of bitumen: Consequences on the rheology and on the mechanism of bitumen modification.” Adv. Colloid Interface Sci. 145 (1–2): 42–82. https://doi.org/10.1016/j.cis.2008.08.011.
Li, L., Y. Yang, Y. Gao, and Y. Zhang. 2021. “Healing characterisations of waste-derived bitumen based on crack length: Laboratory and modelling.” J. Cleaner Prod. 316: 128269. https://doi.org/10.1016/j.jclepro.2021.128269.
Li, X., N. Gibson, A. Andriescu, and T. S. Arnold. 2017. “Performance evaluation of REOB-modified asphalt binders and mixtures.” Supplement, Road Mater. Pavement Des. 18 (S1): 128–153. https://doi.org/10.1080/14680629.2016.1266754.
Little, D. N. 1993. “Enhancement of asphalt concrete mixtures to meet structural requirements through the addition of recycled polythene, use of waste materials in hot-mix asphalt.” ASTM Spec. Tech. Publ. 1193: 210–230.
Liu, G., T. Yang, J. Li, Y. Jia, Y. Zhao, and J. Zhang. 2018. “Effects of aging on rheological properties of asphalt materials and asphalt-filler interaction ability.” Constr. Build. Mater. 168: 501–511.
Mashaan, N., A. Chegenizadeh, and H. Nikraz. 2022. “A Comparison on Physical and Rheological Properties of Three Different Waste Plastic-Modified Bitumen.” Recycling 7 (18). https://doi.org/10.3390/recycling7020018.
Medeiros, M. S., Jr., J. S. Daniel, H. L. Bolton, and W. C. Meagher. 2012. “Evaluation of moisture and low-temperature cracking susceptibility of warm-mixture asphalt.” Int. J. Pavement Eng. 13 (5): 395–400. https://doi.org/10.1080/10298436.2011.582113.
Mercado, A. E. 2007. “Influence of fundamental material properties and air void structure on moisture damage of asphalt mixes.” Ph.D. dissertation, Civil and environmental Engineering Dept., Texas A&M Univ.
Moatasim, A., P. F. Cheng, and A. I. Al-Hadidy. 2011. “Laboratory evaluation of HMA with high density polyethylene as a modifier.” Constr. Build. Mater. 25 (5): 2764–2770. https://doi.org/10.1016/j.conbuildmat.2010.12.037.
Moghadas Nejad, F., A. Azarhoosh, and G. H. Hamedi. 2014. “Effect of high density polyethylene on the fatigue and rutting performance of hot mix asphalt—A laboratory study.” Road Mater. Pavement Des. 15 (3): 746–756. https://doi.org/10.1080/14680629.2013.876443.
NCAT (National Center for Asphalt Technology). 1991. Hot mix asphalt materials, mixture design and construction. Auburn, AL: Auburn Univ.
Newman, K. 2004. “Polymer—Modified asphalt mixtures for heavy—Duty pavements: Fatigue characteristics as measured by flexural beam testing.” In Proc., 2004 FAA Worldwide Airport Technology Transfer Conf. Washington, DC: DOT.
Nizamuddin, S., M. Jamal, R. J. Gravina, and F. Giustozzi. 2020. “Recycled plastic as bitumen modifier: The role of recycled linear low-density polyethylene in the modification of physical, chemical and rheological properties of bitumen.” J. Clean. Prod. 266: 121988. https://doi.org/10.1016/j.jclepro.2020.121988.
Panda, M., and M. Muzumdar. 2002. “Utilisation of reclaimed polyethylene in bituminous paving mixes.” J. Mater. Civ. Eng. 14 (6): 527–530. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:6(527).
Perez-Lepe, A., F. J. Martinez-Boza, C. Gallegos, O. Gonzalez, M. E. Munoz, and A. Santamaria. 2003. “Influence of the processing conditions on the rheological behavior of polymer-modified bitumen.” Fuel 82 (11): 1339–1348. https://doi.org/10.1016/S0016-2361(03)00065-6.
PlasticsEurope. 2014. Plastics–The facts 2014: An analysis of european plastics production, demand and waste data. Brussels, Belgium: PlasticsEurope.
Prasad, K. V. R., S. P. Mahendra, and N. S. Kumar. 2013. “Study on utilization of pet (polyethyleneteraphthalate) waste in bituminous mixes.” Int. J. Electron. Commun. Technol. 4 (1): 187–190.
Punith, V. S., and A. Veeragaran. 2004. “Fatigue characteristic of recycled plastics modified bituminous concrete mix.” Indian Highway 70: 11–29.
Punith, V. S., and A. Veeraragavan. 2007. “Behavior of asphalt concrete mixtures with reclaimed polyethylene as additive.” J. Mater. Civ. Eng. 19 (6): 500–507. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:6(500).
Punith, V. S., A. Veeraragavan, and S. N. Amirkhanian. 2011. “Evaluation of reclaimed polyethylene modified asphalt concrete mixtures.” Int. J. Pavement Res. Technol. 4 (1): 1–10.
Rahman, W. M. N. W. A., and A. F. A. Wahab. 2013. “Green pavement using recycled polyethylene terephthalate (PET) as partial fine aggregate replacement in modified asphalt.” Procedia Eng. 53: 124–128. https://doi.org/10.1016/j.proeng.2013.02.018.
Read, J., and D. Whiteoak. 2003. The shell bitumen handbook. 5th ed. London: Thomas Telford.
Rowe, G. M., G. King, and M. Anderson. 2014. “The influence of binder rheology on the cracking of asphalt mixes in airport and highway projects.” J. Test. Eval. 42 (5): 20130245. https://doi.org/10.1520/JTE20130245.
Sabina, D. K., T. A. Khan, D. K. Sangita, D. K. Sharma, and B. M. Sharma. 2009. “Performance evaluation of waste plastic/polymers modified bituminous concrete mixes.” J. Sci. Ind. Res. 68 (11): 975–979.
Salter, R. J., and F. Rafati-Afshar. 1987. “Effect of additives on bituminous highway pavement materials evaluated by the indirect tensile test.” Transp. Res. Rec. 1115: 183–195.
Silva, L., A. Benta, and L. Picado-Santos. 2018. “Asphalt rubber concrete fabricated by the dry process: Laboratory assessment of resistance against reflection cracking.” Constr. Build. Mater. 160: 539–550. https://doi.org/10.1016/j.conbuildmat.2017.11.081.
Somayaji, S. 2001. Civil engineering materials. Upper Saddle River, NJ: Prentice Hall.
Souliman, M. I., M. Mamlouk, and A. Eifert. 2016. “Cost-effectiveness of rubber and polymer modified asphalt mixtures as related to sustainable fatigue performance.” Procedia Eng. 145 (Jan): 404–411. https://doi.org/10.1016/j.proeng.2016.04.007.
Statista. 2020. “Global plastic production 1950–2021.” Accessed December 13, 2022. https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/.
Stroup-Gardiner, M., and E. R. Brown. 2000. Segregation in hot-mix asphalt pavements. NCHRP Rep. 441. Washington, DC: Transportation Research Board.
Subhy, A., D. Lo Presti, and G. Airey. 2016. “Rubberised bitumen manufacturing assisted by rheological measurements.” Road Mater. Pavement Des. 17 (2): 290–310. https://doi.org/10.1080/14680629.2015.1079549.
Sui, Y., and Z. Chen. 2011. “Application and performance of polyethylene modifying additive in asphalt mixture.” In Proc., Third Int. Conf. on Transportation Engineering. Reston, VA: ASCE. https://doi.org/10.1061/41184(419)316.
Sultana, S. K., and K. S. B. Prasad. 2012. “Utilization of waste plastic as a strength modifier in surface course of flexible and rigid pavements.” Int. J. Eng. Res. Appl. 2: 1185–1191.
Swami, V., J. Abhijeet, and P. Karan. 2012. “Use of waste plastic in construction of bituminous roads.” Int. J. Eng. Sci. Technol. 4 (5): 1–5.
Tarefder, R. A., and A. M. Zaman. 2010. “Nanoscale evaluation of moisture damage in polymer modified asphalts.” J. Mater. Civ. Eng. 22 (7): 714–725. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000072.
Terrel, R. L., and J. L. Walter. 1986. “Modified asphalt pavement materials—The European experience (with discussion).” In Vol.55 of Proc., Association of Asphalt Paving Technologists, 482. Washington, DC: Transportation Research Board.
Torres, H. P., S. R. M. Fernandes, C. D. A. Loureiro, and J. R. M. Oliveira. 2020. “Use of polymer modified binders as rejuvenators in recycled asphalt mixtures.” Int. J. Pavement Res. Technol. 13 (6): 654–664. https://doi.org/10.1007/s42947-020-6006-5.
UNEP (United Nations Environment Programme). 2014. Valuing plastics: The business case for measuring, managing and disclosing plastic use in the consumer goods industry. Nairobi, Kenya: UNEP.
Vasudevan, R. 2006. “Utilization of waste plastics for flexible pavement.” Indian Highways 34 (7): 105–111.
Verma, S. S. 2008. “Roads from plastic waste.” Indian Concr. J. 3 (1): 43–44.
Vlachovicova, Z., C. Wekumbura, J. Stastna, and L. Zanzotto. 2007. “Creep charactristics of asphalt modified by radial styrene-butadiene-styrene copolymer.” Constr. Build. Mater. 21 (3): 567–577. https://doi.org/10.1016/j.conbuildmat.2005.09.006.
Wong, W. G., H. F. Han, G. P. He, K. C. P. Wang, and W. M. Lu. 2004. “Rutting response of hot mix asphalt to generalized dynamic shear moduli of asphalt binder.” Constr. Build. Mater. 18 (6): 399–408. https://doi.org/10.1016/j.conbuildmat.2004.03.003.
Woodhams, R. T. 1982. Methods of increasing the fracture toughness of asphalt concrete. Washington, DC: Transportation Research Board.
Woodhams, R. T. 1987. “Bitumen-polyolefin compositions.” PCT Int. Appl. 87: 5313.
Xiao, F., W. Zhao, and S. N. Amirkhanian. 2010. “Influence of antistripping additives on moisture susceptibility of warm mix asphalt mixtures.” J. Mater. Civ. Eng. 22 (10): 1047–1055. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000111.
Yang, Y., and Y. Cheng. 2016. “Preparation and performance of asphalt compound modified with waste crumb rubber and waste polyethylene.” Adv. Mater. Sci. Eng. 2016: 5803709.
Yao, H., Q. Dai, and Z. You. 2016. “Molecular dynamics simulation of physicochemical properties of the asphalt model.” Fuel 164: 83–93. https://doi.org/10.1016/j.fuel.2015.09.045.
Yeh, P. H., Y. H. Nien, J. H. Chen, W. C. Chen, and J. S. Chen. 2005. “Thermal and rheological properties of maleated polypropylene modified asphalt.” Polym. Eng. Sci. 45 (8): 1152–1158. https://doi.org/10.1002/pen.20386.
Yvonne, B. M., J. M. Alejandro, and R. Yajaira. 2003. “Use of rheological compatability criteria to study SBS modified asphalt.” J. Appl. Polym. Sci. 90 (7): 1772–1782.
Zhu, J., B. Birgisson, and N. Kringos. 2014. “Polymer modification of bitumen: Advances and challenges.” Eur. Polym. J. 54 (May): 18–38. https://doi.org/10.1016/j.eurpolymj.2014.02.005.
Zollinger, C. 2005. “Application of surface energy measurements to evaluation moisture susceptibility of asphalt and aggregates.” Ph.D. dissertation, Dept. of Civil and Environmental Engineering, Texas A&M Univ.
Zoorab, S. E., and L. B. Suparma. 2000. “Laboratory design and investigation of the properties of continuously graded asphaltic concrete containing recycled plastics aggregate replacement (plastiphalt).” Cem. Concr. Compos. 22 (4): 233–242. https://doi.org/10.1016/S0958-9465(00)00026-3.

Information & Authors

Information

Published In

Go to Journal of Transportation Engineering, Part B: Pavements
Journal of Transportation Engineering, Part B: Pavements
Volume 149Issue 1March 2023

History

Received: Feb 3, 2020
Accepted: Sep 16, 2022
Published online: Jan 2, 2023
Published in print: Mar 1, 2023
Discussion open until: Jun 2, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Senior Lecturer, School of Engineering and Technology, Central Queensland Univ., Mackay Orralea, QLD 4740, Australia (corresponding author). ORCID: https://orcid.org/0000-0002-5158-2077. Email: [email protected]
Samanthika Liyanapathirana [email protected]
Professor, School of Computing, Engineering, and Mathematics, Western Sydney Univ., Kingswood, NSW 2747, Australia. Email: [email protected]
John Yeaman [email protected]
Professor, Faculty of Science, Health, Education, and Engineering, Univ. of the Sunshine Coast, Sippy Downs, QLD 4556, Australia. Email: [email protected]
Jerome Egwurube [email protected]
Engineer, Dept. of Transport and Main Roads, Infrastructure Management and Delivery Div., Program Delivery and Operation, Rockhampton, QLD 4701, Australia. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share