State-of-the-Art Reviews
Apr 19, 2022

Review of Applications of Artificial Intelligence Algorithms in Pavement Management

Publication: Journal of Transportation Engineering, Part B: Pavements
Volume 148, Issue 3

Abstract

With the continuous advancement in data-acquisition devices, computer vision techniques, and machine-learning (ML) algorithms over the past decades, artificial intelligence (AI) technology has increasingly been applied to research and practice in pavement engineering and related fields. This paper is aimed at systematically synthesizing the state-of-the-art in applying AI algorithms and techniques to various areas of pavement management. To achieve this goal, the authors reviewed major work published in archival journals from 2015 to 2020. Key findings from the review are synthesized and presented based on three broad categories of pavement management activities: distress evaluation, performance modeling, and maintenance and rehabilitation (M&R) programming. Most of the reviewed studies have achieved positive and/or promising results, proving the effectiveness of leveraging AI algorithms for pavement management. Distress detection and classification are found to be the areas that attracted the most attention in terms of applying AI techniques and algorithms. In contrast, applying AI techniques to M&R programming represents a major research gap. Based on the review, it can be concluded that AI algorithms have made noticeable achievements in most activity areas of pavement management, although some major research gaps remain to be filled.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Ai, D., G. Jiang, L. S. Kei, and C. Li. 2018. “Automatic pixel-level pavement crack detection using information of multi-scale neighborhoods.” IEEE Access 6 (Apr): 24452–24463. https://doi.org/10.1109/ACCESS.2018.2829347.
Ali, J., R. Khan, N. Ahmad, and I. Maqsood. 2012. “Random forests and decision trees.” Int. J. Computer Sci. Issues (IJCSI) 9 (5): 272.
Al-Omari, B., and M. I. Darter. 1994. “Relationships between international roughness index and present serviceability rating.” Transp. Res. Rec. 1435 (Sep): 1.
ASTM. 2009. Standard practice for roads and parking lots pavement condition index surveys. West Conshohocken, PA: ASTM.
Attoh-Okine, N., and O. Adarkwa. 2013. Pavement condition surveys—Overview of current practices. Newark, DE: Univ. of Delaware.
Avila, M., S. Begot, F. Duculty, and T. S. Nguyen. 2014. “2D image based road pavement crack detection by calculating minimal paths and dynamic programming.” In Proc., IEEE Int. Conf. on Image Processing, 783–787. New York: IEEE.
Awad, M., and R. Khanna. 2015. “Support vector regression.” In Efficient learning machines, 67–80. Berlin: Springer.
Bang, S., S. Park, H. Kim, and H. Kim. 2019. “Encoder–decoder network for pixel-level road crack detection in black-box images.” Comput. -Aided Civ. Infrastruct. Eng. 34 (8): 713–727. https://doi.org/10.1111/mice.12440.
Barua, L., B. Zou, M. Noruzoliaee, and S. Derrible. 2021. “A gradient boosting approach to understanding airport runway and taxiway pavement deterioration.” Int. J. Pavement Eng. 22 (13): 1673–1687. https://doi.org/10.1080/10298436.2020.1714616.
Bello, I., H. Pham, Q.V. Le, M. Norouzi, and S. Bengio. 2016. “Neural combinatorial optimization with reinforcement learning.” Preprint, submitted November 29, 2016. https://arxiv.org/abs/1611.09940.
Brownlee, J. 2014. “Discover feature engineering, how to engineer features and how to get good at it.” Accessed August 15, 2020. https://machinelearningmastery.com/discover-feature-engineering-how-to-engineer-features-and-how-to-get-good-at-it/.
Brownlee, J. 2016. “A gentle introduction to xgboost for applied machine learning.” Accessed March 2, 2018. http://machinelearningmasterycom/gentle-introduction-xgboost-appliedmachine-learning/.
Canny, J. 1986. “A computational approach to edge detection.” IEEE Trans. Pattern Anal. Mach. Intell. 6 (Nov): 679–698. https://doi.org/10.1109/TPAMI.1986.4767851.
Cao, Z., H. Guo, W. Song, K. Gao, Z. Chen, L. Zhang, and X. Zhang. 2020. “Using reinforcement learning to minimize the probability of delay occurrence in transportation” IEEE Trans. Vehicular Technol. 69 (3): 2424–2436. https://doi.org/10.1109/TVT.2020.2964784.
Carvalho, D. V., E. M. Pereira, and J. S. Cardoso. 2019. “Machine learning interpretability: A survey on methods and metrics.” Electronics 8 (8): 832. https://doi.org/10.3390/electronics8080832.
Ceylan, H., M. B. Bayrak, and K. Gopalakrishnan. 2014. “Neural networks applications in pavement engineering: A recent survey.” Int. J. Pavement Res. Technol. 7 (6): 6.
Cha, Y. J., W. Choi, and O. Büyüköztürk. 2017. “Deep learning-based crack damage detection using convolutional neural networks.” Comput. -Aided Civ. Infrastruct. Eng. 32 (5): 361–378. https://doi.org/10.1111/mice.12263.
Chen, T., and C. Guestrin. 2016. “Xgboost: A scalable tree boosting system.” In Proc., 22nd ACM sigkdd Int. Conf. on knowledge discovery and data mining, 785–794. New York: Association for Computing Machinery.
Chi, S., J. Hwang, M. Arellano, Z. Zhang, and M. Murphy. 2013. “Development of network-level project screening methods supporting the 4-year pavement management plan in Texas.” J. Manage. Eng. 29 (4): 482–494. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000158.
Coenen, T. B., and A. Golroo. 2017. “A review on automated pavement distress detection methods.” Cogent Eng. 4 (1): 1374822. https://doi.org/10.1080/23311916.2017.1374822.
Cord, A., and S. Chambon. 2012. “Automatic road defect detection by textural pattern recognition based on AdaBoost.” Comput. -Aided Civ. Infrastruct. Eng. 27 (4): 244–259. https://doi.org/10.1111/j.1467-8667.2011.00736.x.
Cubero-Fernandez, A., F. Rodriguez-Lozano, R. Villatoro, J. Olivares, and J. M. Palomares. 2017. “Efficient pavement crack detection and classification.” EURASIP J. Image Video Process. 2017 (1): 1–11. https://doi.org/10.1186/s13640-017-0187-0.
Davies, R. M., and J. Sorenson. 2000. “Pavement preservation.” Public Roads 63 (4): 37–42.
Domitrović, J., H. Dragovan, T. Rukavina, and S. Dimter. 2018. “Application of an artificial neural network in pavement management system.” Supplement, Tehnički vjesnik 25 (S2): 466–473.
Dong, Y., Y. Shao, X. Li, X. Li, S. Li, L Quan, W. Zhang, and J. Du. 2019. “Forecasting pavement performance with a feature fusion LSTM-BPNN model.” In Proc., 28th ACM Int. Conf. on Information and Knowledge Management, 1953–1962. New York: Association for Computing Machinery.
Du, Y., N. Pan, Z. Xu, F. Deng, Y. Shen, and H. Kang. 2021. “Pavement distress detection and classification based on YOLO network.” Int. J. Pavement Eng. 22 (13): 1–14. https://doi.org/10.1080/10298436.2020.1714047.
Eisenbach, M., R. Stricker, D. Seichter, K. Amende, K. Debes, M. Sesselmann, D. Ebersbach, U. Stoeckert, and H. M. Gross. 2017. “How to get pavement distress detection ready for deep learning? A systematic approach.” In Proc., Int. Joint Conf. on Neural Networks (IJCNN), 2039–2047. New York: IEEE.
Elbagalati, O., M. A. Elseifi, K. Gaspard, and Z. Zhang. 2018. “Development of an enhanced decision-making tool for pavement management using a neural network pattern-recognition algorithm.” J. Transp. Eng., Part B: Pavements 144 (2): 04018018.
Elhadidy, A. A., S. M. El-Badawy, and E. E. Elbeltagi. 2019. “A simplified pavement condition index regression model for pavement evaluation.” Int. J. Pavement Eng. 22 (5): 1–10. https://doi.org/10.1080/10298436.2019.1633579.
Farid, D. M., L. Zhang, C. M. Rahman, M. A. Hossain, and R. Strachan. 2014. “Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks.” Expert Syst. Appl. 41 (4): 1937–1946. https://doi.org/10.1016/j.eswa.2013.08.089.
Fei, Y., K. C. Wang, A. Zhang, C. Chen, J. Q. Li, Y. Liu, G. Yang, and B. Li. 2019. “Pixel-level cracking detection on 3D asphalt pavement images through deep-learning-based CrackNet-V.” IEEE Trans. Intell. Transp. Syst. 21 (1): 273–284. https://doi.org/10.1109/TITS.2019.2891167.
Fernández-Delgado, M., E. Cernadas, S. Barro, and D. Amorim. 2014. “Do we need hundreds of classifiers to solve real world classification problems?” J. Mach. Learn. Res. 15 (1): 3133–3181.
France-Mensah, J., and W. J. O’Brien. 2018. “Budget allocation models for pavement maintenance and rehabilitation: Comparative case study.” J. Manage. Eng. 34 (2): 05018002. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000599.
Freund, Y., and R. E. Schapire. 1997. “A decision-theoretic generalization of on-line learning and an application to boosting.” J. Comput. Syst. Sci. 55 (1): 119–139. https://doi.org/10.1006/jcss.1997.1504.
Gade, K., S.C. Geyik, K. Kenthapadi, V. Mithal, and A. Taly. 2019. “Explainable AI in industry.” In Proc., 25th ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining, 3203–3204. New York: Association for Computing Machinery.
Gao, L., et al. 2012. “Network-level road pavement maintenance and rehabilitation scheduling for optimal performance improvement and budget utilization.” Comput. -Aided Civ. Infrastruct. Eng. 27 (4): 278–287. https://doi.org/10.1111/j.1467-8667.2011.00733.x.
Georgiou, P., C. Plati, and A. Loizos. 2018. “Soft computing models to predict pavement roughness: A comparative study.” Adv. Civ. Eng. 2018 (Jul): 1.
Gong, H., Y. Sun, and B. Huang. 2019. “Gradient boosted models for enhancing fatigue cracking prediction in mechanistic-empirical pavement design guide.” J. Transp. Eng. Part B: Pavements 145 (2): 04019014. https://doi.org/10.1061/JPEODX.0000121.
Gong, H., Y. Sun, Z. Mei, and B. Huang. 2018a. “Improving accuracy of rutting prediction for mechanistic-empirical pavement design guide with deep neural networks.” Constr. Build. Mater. 190 (Nov): 710–718. https://doi.org/10.1016/j.conbuildmat.2018.09.087.
Gong, H., Y. Sun, X. Shu, and B. Huang. 2018b. “Use of random forests regression for predicting IRI of asphalt pavements.” Constr. Build. Mater. 189 (Nov): 890–897. https://doi.org/10.1016/j.conbuildmat.2018.09.017.
Goodfellow, I., Y. Bengio, and A. Courville. 2016. Deep learning. Cambridge, MA: MIT Press.
Gopalakrishnan, K. 2018. “Deep learning in data-driven pavement image analysis and automated distress detection: A review.” Data 3 (3): 28. https://doi.org/10.3390/data3030028.
Gopalakrishnan, K., S. K. Khaitan, A. Choudhary, and A. Agrawal. 2017. “Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection.” Constr. Build. Mater. 157 (Dec): 322–330. https://doi.org/10.1016/j.conbuildmat.2017.09.110.
Hadjidemetriou, G. M., P. A. Vela, and S. E. Christodoulou. 2018. “Automated pavement patch detection and quantification using support vector machines.” J. Comput. Civ. Eng. 32 (1): 04017073. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000724.
Hafez, M., K. Ksaibati, and R. A. Atadero. 2019. “Optimizing expert-based decision-making of pavement maintenance using artificial neural networks with pattern-recognition algorithms.” Transp. Res. Rec. 2673 (11): 90–100. https://doi.org/10.1177/0361198119851085.
Han, C., T. Ma, G. Xu, S. Chen, and R. Huang. 2020. “Intelligent decision model of road maintenance based on improved weight random forest algorithm.” Int. J. Pavement Eng. 2020 (Jun): 1–13.
Hinton, G. E., S. Osindero, and Y.-W. Teh. 2006. “A fast learning algorithm for deep belief nets.” Neural computation 18 (7): 1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527.
Hoang, N.-D., and Q.-L. Nguyen. 2018. “Automatic recognition of asphalt pavement cracks based on image processing and machine learning approaches: A comparative study on classifier performance.” Math. Problems Eng. 2018 (Jul): 11. https://doi.org/10.1155/2018/6290498.
Hoang, N.-D., and Q.-L. Nguyen. 2019. “A novel method for asphalt pavement crack classification based on image processing and machine learning.” Eng. Comput. 35 (2): 487–498. https://doi.org/10.1007/s00366-018-0611-9.
Hossain, M., L. Gopisetti, and M. Miah. 2019. “International roughness index prediction of flexible pavements using neural networks.” J. Transp. Eng. Part B: Pavements 145 (1): 04018058. https://doi.org/10.1061/JPEODX.0000088.
Hossain, M., L. S. P. Gopisetti, and M. S. Miah. 2020. “Artificial neural network modelling to predict international roughness index of rigid pavements.” Int. J. Pavement Res. Technol. 13 (3): 1–11. https://doi.org/10.1007/s42947-020-0178-x.
Howard, J., and M. Bowles. 2012. “The two most important algorithms in predictive modeling today.” In Vol. 28 of Proc., Strata Conf. Presentation. Sebastopol, CA: O’Reilly Media.
Hsieh, Y.-A., and Y. J. Tsai. 2020. “Machine learning for crack detection: Review and model performance comparison.” J. Comput. Civ. Eng. 34 (5): 04020038. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000918.
Huang, J., et al. 2017. “Speed/accuracy trade-offs for modern convolutional object detectors.” In Proc., IEEE Conf. on Computer Vision and Pattern Recognition, 7310–7311. New York: IEEE.
IJ. 2018. “Statistics versus machine learning.” Nat. Methods 15 (4): 233. https://doi.org/10.1038/nmeth.4642.
Janani, L., R. K. Dixit, V. Sunitha, and S. Mathew. 2020. “Prioritisation of pavement maintenance sections deploying functional characteristics of pavements.” Int. J. Pavement Eng. 21 (14): 1815–1822. https://doi.org/10.1080/10298436.2019.1567923.
Justo-Silva, R., A. Ferreira, and G. Flintsch. 2021. “Review on machine learning techniques for developing pavement performance prediction models.” Sustainability 13 (9): 5248. https://doi.org/10.3390/su13095248.
Karballaeezadeh, N., S. D. Mohammadzadeh, S. Shamshirband, P. Hajikhodaverdikhan, A. Mosavi, and K. W. Chau. 2019. “Prediction of remaining service life of pavement using an optimized support vector machine (case study of Semnan–Firuzkuh road).” Eng. Appl. Comput. Fluid Mech. 13 (1): 188–198. https://doi.org/10.1080/19942060.2018.1563829.
Karballaeezadeh, N., F. Zaremotekhases, S. Shamshirband, A. Mosavi, N. Nabipour, P. Csiba, and A. R. Várkonyi-Kóczy. 2020. “Intelligent road inspection with advanced machine learning; hybrid prediction models for smart mobility and transportation maintenance systems.” Energies 13 (7): 1718. https://doi.org/10.3390/en13071718.
Kargah-Ostadi, N., and S. M. Stoffels. 2015. “Framework for development and comprehensive comparison of empirical pavement performance models.” J. Transp. Eng. 141 (8): 04015012. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000779.
Khurana, U., H. Samulowitz, and D. Turaga. 2018. “Feature engineering for predictive modeling using reinforcement learning.” In Vol. 32 of Proc., AAAI Conf. on Artificial Intelligence. Menlo Park, CA: Association for the Advancement of Artificial Intelligence.
Koch, C., K. Georgieva, V. Kasireddy, B. Akinci, and P. Fieguth. 2015. “A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure.” Adv. Eng. Inf. 29 (2): 196–210. https://doi.org/10.1016/j.aei.2015.01.008.
Lei, X., C. Liu, L. Li, and G. Wang. 2020. “Automated pavement distress detection and deterioration analysis using street view map.” IEEE Access 8 (2): 76163–76172. https://doi.org/10.1109/ACCESS.2020.2989028.
Li, B., K. C. Wang, A. Zhang, Y. Fei, and G. Sollazzo. 2019. “Automatic segmentation and enhancement of pavement cracks based on 3D pavement images.” J. Adv. Transp. 2019 (Feb): 1. https://doi.org/10.1155/2019/1813763.
Li, B., K. C. Wang, A. Zhang, E. Yang, and G. Wang. 2020. “Automatic classification of pavement crack using deep convolutional neural network.” Int. J. Pavement Eng. 21 (4): 457–463. https://doi.org/10.1080/10298436.2018.1485917.
Li, H., D. Song, Y. Liu, and B. Li. 2018. “Automatic pavement crack detection by multi-scale image fusion.” IEEE Trans. Intell. Trans. Syst. 20 (6): 2025–2036. https://doi.org/10.1109/TITS.2018.2856928.
Li, L., Y. Lv, and F.-Y. Wang. 2016. “Traffic signal timing via deep reinforcement learning.” IEEE/CAA J. Autom. Sin. 3 (3): 247–254. https://doi.org/10.1109/JAS.2016.7508798.
Li, L., L. Sun, G. Ning, and S. Tan. 2014. “Automatic pavement crack recognition based on BP neural network.” PROMET-Traffic Transp. 26 (1): 11–22. https://doi.org/10.7307/ptt.v26i1.1477.
Liu, P., K. K. R. Choo, L. Wang, and F. Huang. 2017. “SVM or deep learning? A comparative study on remote sensing image classification.” Soft Comput. 21 (23): 7053–7065. https://doi.org/10.1007/s00500-016-2247-2.
Maeda, H., Y. Sekimoto, T. Seto, T. Kashiyama, and H. Omata. 2018. “Road damage detection and classification using deep neural networks with smartphone images.” Comput.-Aided Civ. Infrastruct. Eng. 33 (12): 1127–1141. https://doi.org/10.1111/mice.12387.
Mahmood, M., U. Anuraj, S. Mathavan, and M. Rahman. 2020. “A unified artificial neural network model for asphalt pavement condition prediction.” In Proc., Institution of Civil Engineers-Transport, 1–11. London: Thomas Telford.
Majidifard, H., P. Jin, Y. Adu-Gyamfi, and W. G. Buttlar. 2020. “Pavement image datasets: A new benchmark dataset to classify and densify pavement distresses.” Transp. Res. Rec. 2674 (2): 328–339. https://doi.org/10.1177/0361198120907283.
Mao, H., M. Alizadeh, I. Menache, and S. Kandula. 2016. “Resource management with deep reinforcement learning.” In Proc., 15th ACM Workshop on Hot Topics in Networks, 50–56. New York: Association for Computing Machinery.
Mathavan, S., K. Kamal, and M. Rahman. 2015. “A review of three-dimensional imaging technologies for pavement distress detection and measurements.” IEEE Trans. Intell. Transp. Syst. 16 (5): 2353–2362. https://doi.org/10.1109/TITS.2015.2428655.
Mazari, M., and D. D. Rodriguez. 2016. “Prediction of pavement roughness using a hybrid gene expression programming-neural network technique.” J. Traffic Transp. Eng. 3 (5): 448–455. https://doi.org/10.1016/j.jtte.2016.09.007.
Milad, A., N. I. M. Yusoff, S. A. Majeed, A. N. H. Ibrahim, M. A. Hassan, and A. S. B. Ali. 2020. “Using an azure machine learning approach for flexible pavement maintenance.” In Proc., 16th IEEE Int. Colloquium on Signal Processing & Its Applications, 146–150. New York: IEEE.
Miller, J. S., and W. Y. Bellinger. 2014. Distress identification manual for the long-term pavement performance program. 5th ed. Washington, DC: Office of Infrastructure Research and Development.
Mokhtari, S., L. Wu, and H.-B. Yun. 2016. “Comparison of supervised classification techniques for vision-based pavement crack detection.” Transp. Res. Rec. 2595 (1): 119–127. https://doi.org/10.3141/2595-13.
Morales, F. J., A. Reyes, N. Caceres, L. M. Romero, F. G. Benitez, J. Morgado, and E. Duarte. 2021. “A machine learning methodology to predict alerts and maintenance interventions in roads.” Road Mater. Pavement Des. 22 (10): 1–22. https://doi.org/10.1080/14680629.2020.1753098.
Mousa, M., M. A. Elseifi, and A. Abdel-Khalek. 2019. “Development of tree-based algorithm for prediction of field performance of asphalt concrete overlays.” J. Transp. Eng. Part B: Pavements 145 (2): 04019011. https://doi.org/10.1061/JPEODX.0000112.
Múčka, P. 2017. “International Roughness Index specifications around the world.” Road Mater. Pavement Des. 18 (4): 929–965. https://doi.org/10.1080/14680629.2016.1197144.
Natekin, A., and A. Knoll. 2013. “Gradient boosting machines, a tutorial. Front. Neurorob. 7 (2): 21. https://doi.org/10.3389/fnbot.2013.00021.
Nhat-Duc, H., Q.-L. Nguyen, and V.-D. Tran. 2018. “Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network.” Autom. Constr. 94 (7): 203–213. https://doi.org/10.1016/j.autcon.2018.07.008.
Nie, M., and K. Wang. 2018. “Pavement distress detection based on transfer learning.” In Proc., 5th Int. Conf. on Systems and Informatics, 435–439. New York: IEEE.
Oakden-Rayner, L., G. Carneiro, T. Bessen, J. C. Nascimento, A. P. Bradley, and L. J. Palmer. 2017. “Precision radiology: Predicting longevity using feature engineering and deep learning methods in a radiomics framework.” Sci. Rep. 7 (1): 1–13. https://doi.org/10.1038/s41598-017-01931-w.
Oliveira, H., and P. L. Correia. 2009. “Automatic road crack segmentation using entropy and image dynamic thresholding.” In Proc., 17th European Signal Processing Conf., 622–626. New York: IEEE.
Oliveira, H., and P. L. Correia. 2014. “CrackIT—An image processing toolbox for crack detection and characterization.” In Proc., IEEE Int. Conf. on Image Processing, 798–802. New York: IEEE.
Park, K., N. E. Thomas, and K. Wayne Lee. 2007. “Applicability of the international roughness index as a predictor of asphalt pavement condition.” J. Transp. Eng. 133 (12): 706–709. https://doi.org/10.1061/(ASCE)0733-947X(2007)133:12(706).
Pauly, L., D. Hogg, R. Fuentes, and H. Peel. 2017. “Deeper networks for pavement crack detection.” In Proc., 34th ISARC, 479–485. London: International Association for Automation and Robotics in Construction.
Pierce, L. M., and N. D. Weitzel. 2019. Automated pavement condition surveys. Washington, DC: National Academies Press. https://doi.org/10.17226/25513.
Piryonesi, S. M., and T. E. El-Diraby. 2020. “Data analytics in asset management: Cost-effective prediction of the pavement condition index.” J. Infrastruct. Syst. 26 (1): 04019036. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000512.
Politis, S. S., Z. Zhang, S. Kouchaki, and C. H. Caldas. 2020. “Framework for network-level pavement condition assessment using remote sensing data mining.” J. Appl. Remote Sens. 14 (2): 1. https://doi.org/10.1117/1.JRS.14.024504.
Ragnoli, A., M. R. De Blasiis, and A. Di Benedetto. 2018. “Pavement distress detection methods: A review.” Infrastructures 3 (4): 58. https://doi.org/10.3390/infrastructures3040058.
Rodriguez-Lozano, F. J., F. León-García, J. C. Gámez-Granados, J. M. Palomares, and J. Olivares. 2020. “Benefits of ensemble models in road pavement cracking classification.” Comput.-Aided Civ. Infrastruct. Eng. 35 (11): 1194–1208. https://doi.org/10.1111/mice.12543.
Schapire, R. E. 2013. “Explaining adaboost.” In Empirical inference, 37–52. Berlin: Springer.
Serigos, P. A., K. Y. Chen, A. Smit, M. R. Murphy, and J. A. Prozzi. 2015. Automated distress surveys: Analysis of network level data (Phase III). Washington, DC: Federal Highway Administration.
Shahin, M. Y. 2005. Pavement management for airports, roads, and parking lots. Berlin: Springer.
Shi, Y., L. Cui, Z. Qi, F. Meng, and Z. Chen. 2016. “Automatic road crack detection using random structured forests.” IEEE Trans. Intell. Transp. Syst. 17 (12): 3434–3445. https://doi.org/10.1109/TITS.2016.2552248.
Sollazzo, G., T. Fwa, and G. Bosurgi. 2017. “An ANN model to correlate roughness and structural performance in asphalt pavements.” Constr. Build. Mater. 134 (2): 684–693. https://doi.org/10.1016/j.conbuildmat.2016.12.186.
Steudle, K., et al. 2012. Pavement management guide. 2nd ed. Washington, DC: AASHTO.
Stevenson, J., 2021. TxDOT Pavement manual. Austin, TX: Texas DOT.
Strong, A. 2016. “Applications of artificial intelligence & associated technologies.” Sci. [ETEBMS-2016] 5 (Mar): 16.
Sun, J., and Z. Zhang. 2020. “A post-disaster resource allocation framework for improving resilience of interdependent infrastructure networks.” Transp. Res. Part D: Transp. Environ. 85 (Aug): 102455. https://doi.org/10.1016/j.trd.2020.102455.
Sun, L., M. Kamaliardakani, and Y. Zhang. 2016. “Weighted neighborhood pixels segmentation method for automated detection of cracks on pavement surface images.” J. Comput. Civ. Eng. 30 (2): 04015021. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000488.
Sun, Y., B. Xue, M. Zhang, G. G. Yen, and J. Lv. 2020. “Automatically designing CNN architectures using the genetic algorithm for image classification.” IEEE Trans. Cybernetics 50 (9): 3840–3854. https://doi.org/10.1109/TCYB.2020.2983860.
Sutton, R. S., and A. G. Barto. 2018. Reinforcement learning: An introduction. Cambridge, MA: MIT Press.
Szegedy, C., A. Toshev, and D. Erhan. 2013. “Deep neural networks for object detection.” In Vol. 26 of Advances in Neural Information Processing Systems: 27th Annual Conference on Neural Information Processing Systems, 2553–2561. Lake Tahoe, NV: Neural Information Processing Systems.
Tabatabaee, N., M. Ziyadi, and Y. Shafahi. 2013. “Two-stage support vector classifier and recurrent neural network predictor for pavement performance modeling.” J. Infrastruct. Syst. 19 (3): 266–274. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000132.
Tong, Z., J. Gao, and H. Zhang. 2017. “Recognition, location, measurement, and 3D reconstruction of concealed cracks using convolutional neural networks.” Constr. Build. Mater. 146 (Aug): 775–787. https://doi.org/10.1016/j.conbuildmat.2017.04.097.
Tsai, Y. C. J., Y. Zhao, B. Pop-Stefanov, and A. Chatterjee. 2021. “Automatically detect and classify asphalt pavement raveling severity using 3D technology and machine learning.” Int. J. Pavement Res. Technol. 14 (4): 487–495. https://doi.org/10.1007/s42947-020-0138-5.
Tu, J. V. 1996. “Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes.” J. Clin. Epidemiol. 49 (11): 1225–1231. https://doi.org/10.1016/S0895-4356(96)00002-9.
Uddin, W., W. R. Hudson, and R. C. Haas. 2013. Public infrastructure asset management. New York: McGraw Hill.
Ukhwah, E. N., E. M. Yuniarno, and Y. K. Suprapto. 2019. “Asphalt pavement pothole detection using deep learning method based on YOLO neural network.” In Proc., 2019 International Seminar on Intelligent Technology and Its Applications, 35–40. New York: IEEE.
Varshney, K. R., and H. Alemzadeh. 2017. “On the safety of machine learning: Cyber-physical systems, decision sciences, and data products.” Big Data 5 (3): 246–255. https://doi.org/10.1089/big.2016.0051.
Wang, F., Z. Zhang, and R. B. Machemehl. 2003. “Decision-making problem for managing pavement maintenance and rehabilitation projects.” Transp. Res. Rec. 1853 (1): 21–28. https://doi.org/10.3141/1853-03.
Wang, J., Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu. 2016. “Cnn-rnn: A unified framework for multi-label image classification.” In Proc., IEEE Conf. on Computer Vision and Pattern Recognition, 2285–2294. New York: IEEE.
Xu, Z., Y. Wang, J. Tang, J. Wang, and M. C. Gursoy. 2017. “A deep reinforcement learning based framework for power-efficient resource allocation in cloud RANs.” In Proc., 2017 IEEE Int. Conf. on Communications, 1–6. New York: IEEE.
Yamany, M. S., T. U. Saeed, M. Volovski, and A. Ahmed. 2020. “Characterizing the performance of interstate flexible pavements using artificial neural networks and random parameters regression.” J. Infrastruct. Syst. 26 (2): 04020010. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000542.
Yao, L., Q. Dong, J. Jiang, and F. Ni. 2020. “Deep reinforcement learning for long-term pavement maintenance planning.” Comput.-Aided Civ. Infrastruct. Eng. 35 (11): 1230–1245. https://doi.org/10.1111/mice.12558.
Zakeri, H., F. M. Nejad, and A. Fahimifar. 2017. “Image based techniques for crack detection, classification and quantification in asphalt pavement: A review.” Arch. Comput. Methods Eng. 24 (4): 935–977. https://doi.org/10.1007/s11831-016-9194-z.
Zeiada, W., S. A. Dabous, K. Hamad, R. Al-Ruzouq, and M. A. Khalil. 2019. “Investigation and modelling of asphalt pavement performance in cold regions.” Int. J. Pavement Eng. 20 (8): 986–997. https://doi.org/10.1080/10298436.2017.1373391.
Zhang, A., K. C. Wang, Y. Fei, Y. Liu, C. Chen, G. Yang, J. Q. Li, E. Yang, and S. Qiu. 2019. “Automated pixel-level pavement crack detection on 3D asphalt surfaces with a recurrent neural network.” Comput.-Aided Civ. Infrastr. Eng. 34 (3): 213–229. https://doi.org/10.1111/mice.12409.
Zhang, A., K. C. Wang, Y. Fei, Y. Liu, S. Tao, C. Chen, J. Q. Li, and B. Li. 2018a. “Deep learning–based fully automated pavement crack detection on 3D asphalt surfaces with an improved CrackNet.” J. Comput. Civ. Eng. 32 (5): 04018041. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000775.
Zhang, A., K. C. Wang, B. Li, E. Yang, X. Dai, Y. Peng, Y. Fei, Y. Liu, J. Q. Li, and C. Chen. 2017a. “Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network.” Comput.-Aided Civ. Infrastr. Eng. 32 (10): 805–819. https://doi.org/10.1111/mice.12297.
Zhang, A., K. C. Wang, B. Li, E. Yang, X. Dai, Y. Peng, Y. Fei, Y. Liu, J. Q. Li, and C. Chen. 2020. “Machine learning for pavement performance modelling in warm climate regions.” Arabian J. Sci. Eng. 45 (5): 1–19. https://doi.org/10.1007/s13369-020-04398-6.
Zhang, K., H. Cheng, and B. Zhang. 2018b. “Unified approach to pavement crack and sealed crack detection using preclassification based on transfer learning.” J. Comput. Civ. Eng. 32 (2): 04018001. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000736.
Zhang, L., F. Yang, Y. D. Zhang, and Y. J. Zhu. 2016. “Road crack detection using deep convolutional neural network.” In Proc., IEEE Int. Conf. on Image Processing, 3708–3712. New York: IEEE.
Zhang, Q., D. Zhou, and X. Zeng. 2017b. “HeartID: A multiresolution convolutional neural network for ECG-based biometric human identification in smart health applications.” IEEE Access 5 (May): 11805–11816. https://doi.org/10.1109/ACCESS.2017.2707460.
Zhou, Z., S. Kearnes, L. Li, R. N. Zare, and P. Riley. 2019. “Optimization of molecules via deep reinforcement learning.” Sci. Rep. 9 (1): 1–10.
Ziari, H., J. Sobhani, J. Ayoubinejad, and T. Hartmann. 2016. “Prediction of IRI in short and long terms for flexible pavements: ANN and GMDH methods.” Int. J. Pavement Eng. 17 (9): 776–788. https://doi.org/10.1080/10298436.2015.1019498.
Zou, Q., Y. Cao, Q. Li, Q. Mao, and S. Wang. 2012. “CrackTree: Automatic crack detection from pavement images.” Pattern Recognit. Lett. 33 (3): 227–238. https://doi.org/10.1016/j.patrec.2011.11.004.

Information & Authors

Information

Published In

Go to Journal of Transportation Engineering, Part B: Pavements
Journal of Transportation Engineering, Part B: Pavements
Volume 148Issue 3September 2022

History

Published online: Apr 19, 2022
Published in print: Sep 1, 2022
Discussion open until: Sep 19, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, Dept. of Civil, Architectural, and Environmental Engineering, Univ. of Texas at Austin, Austin, TX 78712 (corresponding author). ORCID: https://orcid.org/0000-0002-1363-3320. Email: [email protected]
Zhanmin Zhang, Ph.D., A.M.ASCE [email protected]
Clyde E. Lee Endowed Professor in Transportation Engineering, Dept. of Civil, Architectural, and Environmental Engineering, Univ. of Texas at Austin, Austin, TX 78712. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • A Method for Surveying Road Pavement Distress Based on Front-View Image Data Using a Lightweight Segmentation Approach, Journal of Computing in Civil Engineering, 10.1061/JCCEE5.CPENG-5868, 38, 5, (2024).
  • Exploring the Efficacy of Sparse Feature in Pavement Distress Image Classification: A Focus on Pavement-Specific Knowledge, Applied Sciences, 10.3390/app13189996, 13, 18, (9996), (2023).
  • Machine Learning Approaches for Detection/Classification and Prediction Purposes in Pavement Engineering Studies: An Overview, 2023 IEEE 17th International Symposium on Applied Computational Intelligence and Informatics (SACI), 10.1109/SACI58269.2023.10158577, (000083-000090), (2023).
  • The pioneer of intelligent construction—An overview of the development of intelligent compaction, Journal of Road Engineering, 10.1016/j.jreng.2022.12.001, 2, 4, (348-356), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share