Abstract

The two-parameter Elovich isotherm is increasingly being used to describe the adsorption of water contaminants on solid materials. This isotherm is derived from a modified version of Langmuir’s kinetic theory for saturable adsorption. However, despite incorporating a saturation capacity parameter, the Elovich isotherm fails to predict an adsorption maximum at high concentrations. As a result, there are disparities between the estimated and observed saturation capacities. In this study, we have identified a conceptual flaw within the Elovich isotherm responsible for this anomaly. By introducing modifications to the theoretical derivation of the Elovich isotherm, we have rectified the conceptual defect. The modified isotherm retains the two parameters of the Elovich isotherm but possesses a different mathematical structure. In contrast to the Elovich isotherm, the new isotherm provides estimated saturation capacities that align closely with the observed values. A comparative analysis demonstrates the superiority of the new isotherm over the Elovich isotherm in fitting data featuring a plateau. However, the new isotherm is loading-implicit, posing challenges in data fitting. To overcome this limitation, we have developed a novel method to convert the loading-implicit isotherm into an explicit form. This conversion enables convenient data fitting and facilitates the evaluation of the site energy distribution of heterogeneous adsorbents.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Abbas, M. 2020. “Removal of brilliant green (BG) by activated carbon derived from medlar nucleus (ACMN)–kinetic, isotherms and thermodynamic aspects of adsorption.” Adsorpt. Sci. Technol. 38 (9–10): 464–482. https://doi.org/10.1177/0263617420957829.
Afonso, R., L. Gales, and A. Mendes. 2016. “Kinetic derivation of common isotherm equations for surface and micropore adsorption.” Adsorption 22 (7): 963–971. https://doi.org/10.1007/s10450-016-9803-z.
Basha, S., Z. V. P. Murthy, and B. Jha. 2008. “Isotherm modeling for biosorption of Cu(II) and Ni(II) from wastewater onto brown seaweed, Cystoseira indica.” AIChE J. 54 (12): 3291–3302. https://doi.org/10.1002/aic.11606.
Brandani, S. 2021. “Kinetics of liquid phase batch adsorption experiments.” Adsorption 27 (3): 353–368. https://doi.org/10.1007/s10450-020-00258-9.
Brunauer, S., K. S. Love, and R. G. Keenan. 1942. “Adsorption of nitrogen and the mechanism of ammonia decomposition over iron catalysts.” J. Am. Chem. Soc. 64 (4): 751–758. https://doi.org/10.1021/ja01256a005.
Chu, K. H., M. A. Hashim, A. Mudhoo, and J. Debord. 2023. “Beyond Freundlich and Langmuir: The Ruthven–virial equilibrium isotherm for aqueous-solid adsorption systems.” Chem. Pap. 77 (3): 1593–1600. https://doi.org/10.1007/s11696-022-02576-4.
Chu, K. H., and B. C. Tan. 2021. “Is the Frumkin (Fowler–Guggenheim) adsorption isotherm a two- or three-parameter equation?” Colloid Interface Sci. Commun. 45 (Nov): 100519. https://doi.org/10.1016/j.colcom.2021.100519.
Davis, C. W., and D. M. Di Toro. 2015. “Modeling nonlinear adsorption to carbon with a single chemical parameter: A lognormal Langmuir isotherm.” Environ. Sci. Technol. 49 (13): 7810–7817. https://doi.org/10.1021/es5061963.
Debord, J., M. Harel, J.-C. Bollinger, and K. H. Chu. 2022. “The Elovich isotherm equation: Back to the roots and new developments.” Chem. Eng. Sci. 262 (Nov): 118012. https://doi.org/10.1016/j.ces.2022.118012.
Debord, J., M. Harel, B. Cheknane, J.-C. Bollinger, and O. Bouras. 2016a. “Correction: A modified Sips distribution for use in adsorption isotherms and in fractal kinetic studies.” RSC Adv. 6 (114): 113681. https://doi.org/10.1039/C6RA90125E.
Debord, J., M. Harel, B. Cheknane, J.-C. Bollinger, and O. Bouras. 2016b. “A modified Sips distribution for use in adsorption isotherms and in fractal kinetic studies.” RSC Adv. 6 (70): 66266–66274. https://doi.org/10.1039/C6RA10197F.
de Vargas Brião, G., and K. H. Chu. 2022. “Inversion of loading-implicit adsorption isotherms by means of the Lambert W function.” J. Chem. Technol. Biotechnol. 97 (11): 3202–3210. https://doi.org/10.1002/jctb.7189.
Dusart, O., H. Bouabane, and M. Mazet. 1991. “Adsorption on activated carbon of amino acids in water: Determination of equilibrium parameters by different equations.” [In French.] J. Chim. Phys. 88 (May): 259–270. https://doi.org/10.1051/jcp/1991880259.
Ferrandon, O., H. Bouabane, and M. Mazet. 1995. “Tests for the validity of different models used for the adsorption of solutes on activated carbon.” [In French.] Rev. Sci. Eau 8 (2): 183–200. https://doi.org/10.7202/705218ar.
Gupt, C. B., S. Bordoloi, S. Sekharan, and A. K. Sarmah. 2020. “Adsorption characteristics of Barmer bentonite for hazardous waste containment application.” J. Hazard. Mater. 396 (Sep): 122594. https://doi.org/10.1016/j.jhazmat.2020.122594.
Hamdaoui, O., and E. Naffrechoux. 2007. “Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part I. Two-parameter models and equations allowing determination of thermodynamic parameters.” J. Hazard. Mater. 147 (1–2): 381–394. https://doi.org/10.1016/j.jhazmat.2007.01.021.
Jabłońska, B. 2020. “Removing of Cr(III) and Cr(VI) compounds from aqueous solutions by shale waste rocks.” Desalin. Water Treat. 186 (2): 234–246. https://doi.org/10.5004/dwt.2020.25435.
Jäckel, P. 2005. “A note on multivariate Gauss-Hermite quadrature.” Accessed June 28, 2023. http://www.jaeckel.org/ANoteOnMultivariateGaussHermiteQuadrature.pdf.
Jana, S., J. Ray, B. Mondal, S. K. Samanta, and T. Tripathy. 2021. “Equilibrium and kinetics study of methyl violet adsorption by pineapple leaf fibers-cl-poly (acrylic acid-co-2-dimethyl amino ethyl acrylate) hydrogel.” J. Appl. Polym. Sci. 138 (35): 50882. https://doi.org/10.1002/app.50882.
Khenniche, L., and F. Benissad-Aissani. 2010. “Adsorptive removal of phenol by coffee residue, activated carbon, and commercial activated carbon: Equilibrium, kinetics, and thermodynamics.” J. Chem. Eng. Data 55 (11): 4677–4686. https://doi.org/10.1021/je100302e.
Kwan, T. 1956. “Power rate law in heterogeneous catalysts.” J. Phys. Chem. 60 (8): 1033–1037. https://doi.org/10.1021/j150542a004.
Landsberg, P. T. 1955. “On the logarithmic rate law in chemisorption and oxidation.” J. Chem. Phys. 23 (6): 1079–1087. https://doi.org/10.1063/1.1742193.
Langmuir, I. 1916. “The constitution and fundamental properties of solids and liquids. Part I. Solids.” J. Am. Chem. Soc. 38 (11): 2221–2295. https://doi.org/10.1021/ja02268a002.
Maity, S., S. Nanda, and A. Sarkar. 2021. “Colocasia esculenta stem as novel biosorbent for potentially toxic metals removal from aqueous system.” Environ. Sci. Pollut. Res. 28 (42): 58885–58901. https://doi.org/10.1007/s11356-021-13026-1.
Manjunath, S. V., R. S. Baghel, and M. Kumar. 2020. “Antagonistic and synergistic analysis of antibiotic adsorption on Prosopis juliflora activated carbon in multicomponent systems.” Chem. Eng. J. 381 (Feb): 122713. https://doi.org/10.1016/j.cej.2019.122713.
Meng, F., Q. Huang, S. L. Larson, and F. X. Han. 2021. “The adsorption characteristics of uranium(VI) from aqueous solution on leonardite and leonardite-derived humic acid: A comparative study.” Langmuir 37 (43): 12557–12567. https://doi.org/10.1021/acs.langmuir.1c01838.
Ncibi, M. C., A. M. Ben Hamissa, A. Fathallah, M. H. Kortas, T. Baklouti, B. Mahjoub, and M. Seffen. 2009. “Biosorptive uptake of methylene blue using Mediterranean green alga Enteromorpha spp.” J. Hazard. Mater. 170 (2–3): 1050–1055. https://doi.org/10.1016/j.jhazmat.2009.05.075.
Nikzad, S., A. A. Amooey, and A. Alinejad-Mir. 2021. “High effective removal of diazinon from aqueous solutions using the magnetic tragacanth-montmorillonite nanocomposite: Isotherm, kinetic, and mechanism study.” Environ. Sci. Pollut. Res. 28 (16): 20426–20439. https://doi.org/10.1007/s11356-020-12238-1.
Osawa, N., M. Kubota, H. Wu, and S.-Y. Kim. 2022. “Adsorption and separation behavior of Pd(II) from simulated high-level liquid waste using N,N,N’,N’-tetra-2-ethylhexyl-thiodiglycolamide silica-based adsorbent.” Sep. Sci. Technol. 57 (1): 48–59. https://doi.org/10.1080/01496395.2021.1883653.
Ozcelik, E., E. S. Mercan, S. Erdemir, M. Karaman, and M. Tabakci. 2021. “Calixarene-tethered textile fabric for the efficient removal of hexavalent chromium from polluted water.” Colloids Surf., A 626 (Oct): 127045. https://doi.org/10.1016/j.colsurfa.2021.127045.
Patil, S. A., S. K. Patil, A. S. Sartape, S. C. Bhise, M. M. Vadiyar, M. A. Anuse, and S. S. Kolekar. 2020. “A Pongamia pinnata pods based activated carbon as an efficient scavenger for adsorption of toxic Co(II): Kinetic and thermodynamic study.” Sep. Sci. Technol. 55 (16): 2904–2918. https://doi.org/10.1080/01496395.2019.1659366.
Pourret, O., J.-C. Bollinger, A. Hursthouse, and E. D. van Hullebusch. 2022. “Sorption versus adsorption: The words they are a-changin’, not the phenomena.” Sci. Total Environ. 838 (Sep): 156545. https://doi.org/10.1016/j.scitotenv.2022.156545.
Rangabhashiyam, S., N. Anu, M. S. G. Nandagopal, and N. Selvaraju. 2014. “Relevance of isotherm models in biosorption of pollutants by agricultural byproducts.” J. Environ. Chem. Eng. 2 (1): 398–414. https://doi.org/10.1016/j.jece.2014.01.014.
Roginsky, S. 1934. “An equation for the kinetics of activated adsorption.” Nature 134 (3398): 935. https://doi.org/10.1038/134935a0.
Saadi, R., Z. Saadi, R. Fazaeli, and N. E. Fard. 2015. “Monolayer and multilayer adsorption isotherm models for sorption from aqueous media.” Korean J. Chem. Eng. 32 (5): 787–799. https://doi.org/10.1007/s11814-015-0053-7.
Salzer, H. E., R. Zucker, and R. Capuano. 1952. “Table of the zeros and weight factors of the first twenty Hermite polynomials.” J. Res. Natl. Bur. Stand. 48 (2): 111–116. https://doi.org/10.6028/jres.048.016.
Saxena, M., N. Sharma, and R. Saxena. 2020. “Highly efficient and rapid removal of a toxic dye: Adsorption kinetics, isotherm, and mechanism studies on functionalized multiwalled carbon nanotubes.” Surf. Interfaces 21 (Dec): 100639. https://doi.org/10.1016/j.surfin.2020.100639.
Sircar, S. 2017. “Comments on practical use of Langmuir gas adsorption isotherm model.” Adsorption 23 (1): 121–130. https://doi.org/10.1007/s10450-016-9839-0.
Skopp, J. 2009. “Derivation of the Freundlich adsorption isotherm from kinetics.” J. Chem. Educ. 86 (11): 1341–1343. https://doi.org/10.1021/ed086p1341.
Stigler, S. M. 1980. “Stigler’s law of eponymy.” Trans. N. Y. Acad. Sci. 39 (1): 147–157. https://doi.org/10.1111/j.2164-0947.1980.tb02775.x.
Swenson, H., and N. P. Stadie. 2019. “Langmuir’s theory of adsorption: A centennial review.” Langmuir 35 (16): 5409–5426. https://doi.org/10.1021/acs.langmuir.9b00154.
Taylor, H. A., and N. Thon. 1952. “Kinetics of chemisorption.” J. Am. Chem. Soc. 74 (16): 4169–4173. https://doi.org/10.1021/ja01136a063.
Tewari, C., G. Tatrari, S. Kumar, S. Pandey, A. Rana, M. Pal, and N. G. Sahoo. 2022. “Green and cost-effective synthesis of 2D and 3D graphene-based nanomaterials from Drepanostachyum falcatum for bio-imaging and water purification applications.” Chem. Eng. J. Adv. 10 (May): 100265. https://doi.org/10.1016/j.ceja.2022.100265.
Vaid, V., and R. Jindal. 2022. “An efficient pH-responsive kappa-carrageenan/tamarind kernel powder hydrogel for the removal of brilliant green and rose Bengal from aqueous solution.” J. Appl. Polym. Sci. 139 (21): 52218. https://doi.org/10.1002/app.52218.
Xie, Z.-W., J.-C. Lin, M.-Y. Xu, H.-Y. Wang, Y.-X. Wu, F.-A. He, and H.-L. Jiang. 2020. “Novel Fe3O4 nanoparticle/β-cyclodextrin-based polymer composites for the removal of methylene blue from water.” Ind. Eng. Chem. Res. 59 (26): 12270–12281. https://doi.org/10.1021/acs.iecr.0c01115.
Zeldowitsch, Y. 1934. “On the mechanism of the catalytic oxidation of CO on MnO2.” [In German.] Acta Phys. URSS 1 (3–4): 449–469.
Zhao, J., X. Yang, G. Liang, Z. Wang, S. Li, Z. Wang, and X. Xie. 2020. “Effective removal of two fluoroquinolone antibiotics by PEG-4000 stabilized nanoscale zero-valent iron supported onto zeolite (PZ-NZVI).” Sci. Total Environ. 710 (Mar): 136289. https://doi.org/10.1016/j.scitotenv.2019.136289.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 149Issue 11November 2023

History

Received: Apr 28, 2023
Accepted: Jul 5, 2023
Published online: Sep 14, 2023
Published in print: Nov 1, 2023
Discussion open until: Feb 14, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Researcher, Dept. of Chemical Engineering, Faculty of Engineering, Univ. of Malaya, Kuala Lumpur 50603, Malaysia (corresponding author). ORCID: https://orcid.org/0000-0003-4012-0667. Email: [email protected]
Mohd Ali Hashim [email protected]
Professor, Dept. of Chemical Engineering, Faculty of Engineering, Univ. of Malaya, Kuala Lumpur 50603, Malaysia. Email: [email protected]
Jean Debord [email protected]
Researcher, Service de Pharmacologie-Toxicologie, Hôpital Dupuytren, 87042 Limoges, France. Email: [email protected]
Michel Harel [email protected]
Professor, Université de Limoges, Laboratoire Vie-Santé UR 24 134, Faculté de Médecine, 87025 Limoges, France; Institut de Mathématiques de Toulouse, UMR CNRS 5219, 31062 Toulouse, France. Email: [email protected]
Professor, Université de Limoges, Laboratoire E2Lim, Faculté des Sciences & Techniques, 87060 Limoges, France. ORCID: https://orcid.org/0000-0003-4059-5793. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share