Technical Papers
Sep 6, 2023

Bioremediation of Copper with Endophytic Bacteria Bacillus sp. and Streptomyces griseus

Publication: Journal of Environmental Engineering
Volume 149, Issue 11

Abstract

The present study investigated the copper tolerance and bioremediation potential of endophytic bacteria because endophytic bacteria are the most common bacterial strains associated with heavy metal bioremediation. The acute toxic effects of copper on living organisms were determined using two endophytic bacterial species, Bacillus sp. and Streptomyces griseus (S. griseus). After 4 days of acute toxicity test, changes in metal and bacteria concentrations in water, inhibition (%), bioaccumulation rate, and bioconcentration factors were evaluated. According to the evaluations, cell weights decreased, and inhibition rate (%) increased with increasing metal concentration after a certain level (10  mg/LCu). With increasing metal concentrations from 5 to 25  mg/L, biosorption efficiency decreased from 35.94% to 20.73% for S. griseus and from 56.36% to 34.47% for Bacillus sp. The bioaccumulation quantities increased with increasing metal concentrations for both species. Based on the present findings, it is concluded that Bacillus sp. and S. griseus are suitable candidates for the bioremediation of copper ions from contaminated environments. These endophytic bacteria use hyperaccumulating plants for more effective bioremediation of heavy metals.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This work was supported by Ondokuz Mayıs University Research projects PYO.MUH.1904.18.027 directed by Associate Professor Dr. Hülya Böke Özkoç.

References

Abo-Alkasem, M. I., N. H. Hassan, and M. M. Abo Elsoud. 2023. “Microbial bioremediation as a tool for the removal of heavy metals.” Bull. Natl. Res. Cent. 47 (1): 31. https://doi.org/10.1186/s42269-023-01006-z.
Aiswarya Sudheer, C. K., and I. Chattopadhyay. 2023. “Endophytic bacteria for drug discovery and bioremediation of heavy metals.” Chap. 8 in Endophytic association: What, why and how, edited by M. Shah and D. Deka, 159–181. Cambridge, MA: Academic Press.
Aladesanmi, O. T., J. G. Oroboade, C. P. Osisiogu, and A. O. Osewole. 2019. “Bioaccumulation factor of selected heavy metals in Zea mays.J. Health Pollut. 9 (24): 191207. https://doi.org/10.5696/2156-9614-9.24.191207.
Albert, Q., L. Leleyter, M. Lemoine, N. Heutte, J. P. Rioult, L. Sage, F. Baraud, and D. Garon. 2018. “Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora.Chemosphere 196 (Apr): 386–392. https://doi.org/10.1016/j.chemosphere.2017.12.156.
Ali˙ustaoğlu, M. T. 2020. “Evaluation of heavy metal toxicity with bacterial struts insulated from soil.” Master’s thesis, Institute of Graduate Studies, Environmental Engineering Dept., Ondokuz Mayıs Univ.
Altinkaynak, H., and I. Ozkoc. 2020. “Isolation and molecular characterization of plant growth promoting bacteria from the rhizosphere of orchids in Turkey.” Rhizosphere 16 (Dec): 100280. https://doi.org/10.1016/j.rhisph.2020.100280.
APHA (American Public Health Association). 1995. Standard methods for the examination of water and wastewater. Washington, DC: APHA.
Atay, Ş., and H. B. Özkoç. 2010. “Effect of sediment on the bioavailability and toxicity of copper and zinc to a green alga.” Fresenius Environ. Bull. 19 (12a): 3018–3027.
Atay, Ş.H. B. Özkoç, and V. R. Uslu. 2013. “Sediment toxicity for evaluation of sediment quality guidelines and bioavailability of copper and zinc.” Fresenius Environ. Bull. 22 (4a): 1031–1042.
Babu, A. G., J.-D. Kim, and B.-T. Oh. 2013. “Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1.” J. Hazard. Mater. 250–251 (Apr): 477–483. https://doi.org/10.1016/j.jhazmat.2013.02.014.
Babu, A. G., P. J. Shea, D. Sudhakar, I. B. Jung, and B. T. Oh. 2015. “Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil.” J. Environ. Manage. 151 (Mar): 160–166. https://doi.org/10.1016/j.jenvman.2014.12.045.
Bharagava, R. N., and P. Chowdhary. 2019. Emerging and eco-friendly approaches for waste management. Singapore: Springer.
Bharagava, R. N., and G. Saxena. 2020. Bioremediation of industrial waste for environmental safety: Volume II: Biological agents and methods for industrial waste management. Singapore: Springer.
Black, R., M. Sartaj, A. Mohammadian, and H. A. M. Qiblawey. 2014. “Biosorption of Pb and Cu using fixed and suspended bacteria.” J. Environ. Chem. Eng. 2 (3): 1663–1671. https://doi.org/10.1016/j.jece.2014.05.023.
Burbank, L. P. 2022. “Threat of Xylella fastidiosa and options for mitigation in infected plants.” CABI Rev. 17 (Jun): 1–12. https://doi.org/10.1079/cabireviews202217021.
Burges, A., L. Epelde, G. Benito, U. Artetxe, J. M. Becerril, and C. Garbisu. 2016. “Enhancement of ecosystem services during endophyte-assisted aided phytostabilization of metal contaminated mine soil.” Sci. Total Environ. 562 (Aug): 480–492. https://doi.org/10.1016/j.scitotenv.2016.04.080.
Chen, L., S. Luo, X. Li, Y. Wan, J. Chen, and C. Liu. 2014. “Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake.” Soil Biol. Biochem. 68 (Jan): 300–308. https://doi.org/10.1016/j.soilbio.2013.10.021.
Chen, X. C., Y. P. Wang, Q. Lin, J. Y. Shi, W. X. Wu, and Y. X. Chen. 2005. “Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1.” Colloids Surf., B 46 (2): 101–107. https://doi.org/10.1016/j.colsurfb.2005.10.003.
Darwesh, O. M., M. F. Eida, and I. A. Matter. 2021. “Environmental nanobiotechnology: Microbial-mediated nanoparticles for sustainable environment.” In Microbial nanobiotechnology. Edited by A. Lateef. Singapore: Springer.
Davis, T. A., B. Volesky, and A. Mucci. 2003. “A review of the biochemistry of heavy metal biosorption by brown algae.” Water Res. 37 (18): 4311–4330. https://doi.org/10.1016/S0043-1354(03)00293-8.
de Abreu, F. C., P. N. da Costa, A. M. Brondi, E. J. Pilau, F. C. Gozzo, M. N. Eberlin, M. G. Trevisan, and J. S. Garcia. 2014. “Effects of cadmium and copper biosorption on Chlorella vulgaris.Bull. Environ. Contam. Toxicol. 93 (4): 405–409. https://doi.org/10.1007/s00128-014-1363-x.
Demarco, C. F., M. S. Quadro, F. Selau Carlos, S. Pieniz, L. B. G. A. Morselli, and R. Andreazza. 2023. “Bioremediation of aquatic environments contaminated with heavy metals: A review of mechanisms, solutions and perspectives.” Sustainability 15 (2): 1411. https://doi.org/10.3390/su15021411.
Dixit, R., et al. 2015. “Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes.” Sustainability 7 (2): 2189–2212. https://doi.org/10.3390/su7022189.
Do, M. H., H. H. Ngo, W. Guo, S. W. Chang, D. D. Nguyen, A. Pandey, P. Sharma, S. Varjani, T. A. H. Nguyen, and N. B. Hoang. 2022. “A dual chamber microbial fuel cell based biosensor for monitoring copper and arsenic in municipal wastewater.” Sci. Total Environ. 811 (Mar): 152261. https://doi.org/10.1016/j.scitotenv.2021.152261.
Doty, S. L., et al. 2007. “Enhanced phytoremediation of volatile environmental pollutants with transgenic trees.” Proc. Natl. Acad. Sci. USA 104 (43): 16816–16821. https://doi.org/10.1073/pnas.0703276104.
Esposito, A., F. Pagnanelli, and F. Vegliò. 2002. “pH-related equilibria models for biosorption in single metal systems.” Chem. Eng. Sci. 57 (3): 307–313. https://doi.org/10.1016/S0009-2509(01)00399-2.
Fan, X., and F. Song. 2014. “Bioremediation of atrazine: Recent advances and promises.” J. Soils Sediments 14 (10): 1727–1737. https://doi.org/10.1007/s11368-014-0921-5.
Fathollahi, A., S. J. Coupe, A. H. El-Sheikh, and E. O. Nnadi. 2021. “Cu(II) biosorption by living biofilms: Isothermal, chemical, physical and biological evaluation.” J. Environ. Manage. 282 (Mar): 111950. https://doi.org/10.1016/j.jenvman.2021.111950.
Franco-Franklin, V., S. Moreno-Riascos, and T. Ghneim-Herrera. 2021. “Are endophytic bacteria an option for increasing heavy metal tolerance of plants? A meta-analysis of the effect size.” Front. Environ. Sci. 8 (Jan): 603668. https://doi.org/10.3389/fenvs.2020.603668.
Goutam, J., J. Sharma, R. Singh, and D. Sharma. 2021. “Fungal-mediated bioremediation of heavy metal–polluted environment.” In Microbial rejuvenation of polluted environment. Edited by D. G. Panpatte, and Y. K. Jhala, 51–76. Singapore: Springer.
Govarthanan, M., R. Mythili, T. Selvankumar, S. Kamala-Kannan, A. Rajasekar, and Y. C. Chang. 2016. “Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of Tridax procumbens.3 Biotech 6 (2): 242. https://doi.org/10.1007/s13205-016-0560-1.
Guo, H., et al. 2010. “Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14.” Bioresour. Technol. 101 (22): 8599–8605. https://doi.org/10.1016/j.biortech.2010.06.085.
Gupta, T., D. Chakraborty, and A. Sarkar. 2023. “Microbial enzymes and role in bioremediation of environmental pollutants: Prospects and challenges.” In Vol. 2 of Microbial degradation and detoxification of pollutants. Berlin: Walter de Gruyter.
Ibrahim, A. A., A. G. Yusuf, G. Ismail, M. A. Ibrahim, A. R. Musa, and M. S. Sulaiman. 2021. “Conceptual background of bioaccumulation in environmental science.” World J. Adv. Pharm. Life Sci. 1 (1): 035–041. https://doi.org/10.53346/wjapls.2021.1.1.0015.
Jeyakumar, P., C. Debnath, R. Vijayaraghavan, and M. Muthuraj. 2022. “Trends in bioremediation of heavy metal contaminations.” Environ. Eng. Res. 28 (4): 220631. https://doi.org/10.4491/eer.2021.631.
Kashyap, S., R. Chandra, B. Kumar, and P. Verma. 2022. “Biosorption efficiency of nickel by various endophytic bacterial strains for removal of nickel from electroplating industry effluents: An operational study.” Ecotoxicology 31 (4): 565–580. https://doi.org/10.1007/s10646-021-02445-y.
Li, K., and W. Ramakrishna. 2011. “Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth.” J. Hazard. Mater. 189 (1–2): 531–539. https://doi.org/10.1016/j.jhazmat.2011.02.075.
Liu, Q., Y. Wang, S. Sun, F. Tang, H. Chen, S. Chen, C. Zhao, and L. Li. 2023. “A novel chitosan-biochar immobilized microorganism strategy to enhance bioremediation of crude oil in soil.” Chemosphere 313 (Feb): 137367. https://doi.org/10.1016/j.chemosphere.2022.137367.
Mahar, A., P. Wang, A. Ali, M. K. Awasthi, A. H. Lahori, Q. Wang, R. Li, and Z. Zhang. 2016. “Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review.” Ecotoxicol. Environ. Saf. 126 (Apr): 111–121. https://doi.org/10.1016/j.ecoenv.2015.12.023.
Majhi, K., M. Let, U. Halder, and R. Bandopadhyay. 2023. “Copper adsorption potentiality of Bacillus stercoris GKSM6 and Pseudomonas alcaliphila GKSM11 isolated from Singhbhum copper mines.” Geomicrobiol. J. 40 (2): 193–202. https://doi.org/10.1080/01490451.2022.2137603.
Maltsev, Y., S. Maltseva, and M. Kulikovskiy. 2023. “Toxic effect of copper on soil microalgae: Experimental data and critical review.” Int. J. Environ. Sci. Technol. (Jan): 1–8. https://doi.org/10.1007/s13762-023-04766-3.
Manohari, R., and K. N. Yogalakshmi. 2016. “Optimization of copper (II) removal by response surface methodology using root nodule endophytic bacteria isolated from Vigna unguiculataWater Air Soil Pollut. 227 (8): 285. https://doi.org/10.1007/s11270-016-2964-2.
Mello, I. S., S. Targanski, W. Pietro-Souza, F. F. F. Stachack, A. J. Terezo, and M. A. Soares. 2020. “Endophytic bacteria stimulate mercury phytoremediation by modulating its bioaccumulation and volatilization.” Ecotoxicol. Environ. Saf. 202 (Oct): 110818. https://doi.org/10.1016/j.ecoenv.2020.110818.
Muyssen, B. T. A., and C. R. Janssen. 2002. “Accumulation and regulation of zinc in Daphnia magna: Links with homeostasis and toxicity.” Arch. Environ. Contam. Toxicol. 43 (4): 492–496. https://doi.org/10.1007/s00244-002-1245-9.
Nguyen, K. B. T., and T. H. T. Phan. 2023. “Application of plant endophytic microorganisms (endophytes) in the treatment of heavy metal pollution in soils.” In Proc., Advances in Research on Water Resources and Environmental Systems, GTER 2022 Environmental Science and Engineering, edited by P. L. Vo, D. A. Tran, T. L. Pham, T. Le, H. Thu, and N. Nguyen Viet. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-031-17808-5_13.
Orozco, C. I., M. S. Freire, D. Gómez-Díaz, and J. González-Álvarez. 2023. “Removal of copper from aqueous solutions by biosorption onto pine sawdust.” Sustainable Chem. Pharm. 32 (May): 101016. https://doi.org/10.1016/j.scp.2023.101016.
Özkoc, H. B., and Z. S. Taylan. 2010. “Assessment of various parameters of metal biology in marine microalgae Phaeodactylum tricornutum and Dunaliella tertıolecta.Fresenius Environ. Bull. 19 (12a): 2981–2986.
Parven, S., A. De, and A. Gupta. 2022. “Cu and Pb accumulation and removal from aqueous medium by Enydra fluctuans Lour. (Asteraceae)—A medicinal plant with potential for phytoremediation.” Environ. Sci. Pollut. Res. 29 (44): 66902–66912. https://doi.org/10.1007/s11356-022-20483-9.
Peng, H., D. Li, J. Ye, H. Xu, W. Xie, Y. Zhang, M. Wu, L. Xu, Y. Liang, and W. Liu. 2019. “Biosorption behavior of the Ochrobactrum MT180101 on ionic copper and chelate copper.” J. Environ. Manage. 235 (Apr): 224–230. https://doi.org/10.1016/j.jenvman.2019.01.060.
Priya, A. K., L. Gnanasekaran, K. Dutta, S. Rajendran, D. Balakrishnan, and M. Soto-Moscoso. 2022. “Biosorption of heavy metals by microorganisms: Evaluation of different underlying mechanisms.” Chemosphere 307 (Nov): 135957. https://doi.org/10.1016/j.chemosphere.2022.135957.
Priya, E. M., and K. S. Tamilselvi. 2023. “Biotransformation of heavy metals by plant growth promoting endophytic bacteria: An assessment.” Indones. J. Social Environ. Issues 4 (1): 36–44. https://doi.org/10.47540/ijsei.v4i1.741.
Rajeshkumar, R., S. Sahu, and J. R. Agharwal. 2012. “Biosorption of Cadmium (II) ions by the cadmium tolerant bacteria isolated from the chemical exposed soil of fireworks industry.” J. Pure Appl. Microbiol. 6 (Jun): 781–787.
Rajkumar, M., N. Ae, and H. Freitas. 2009. “Endophytic bacteria and their potential to enhance heavy metal phytoextraction.” Chemosphere 77 (2): 153–160. https://doi.org/10.1016/j.chemosphere.2009.06.047.
Rand, G. M., and S. R. Petrocelli. 1985. Fundamentals of aquatic toxicology: Methods and applications, 374–415. New York: Hemispheres.
Ribeiro, P. G., G. C. Martins, C. G. Moreira, C. de Oliveira, M. L. D. C. Andrade, T. S. Sales, W. F. T. Chagas, C. R. G. Labory, T. S. de Carvalho, and L. R. G. Guilherme. 2020. “Interactions of cadmium and zinc in high zinc tolerant native species Andropogon gayanus cultivated in hydroponics: Growth endpoints, metal bioaccumulation, and ultrastructural analysis.” Environ. Sci. Pollut. Res. 27 (36): 45513–45526. https://doi.org/10.1007/s11356-020-10183-7.
Rubio-Santiago, J., et al. 2023. “Characterization of endophytic bacteria isolated from Typha latifolia and their effect in plants exposed to either Pb or Cd.” Plants 12 (3): 498. https://doi.org/10.3390/plants12030498.
Sagadevan, S., I. Fatimah, T. C. Egbosiuba, S. F. Alshahateet, J. A. Lett, G. K. Weldegebrieal, M. V. Le, and M. R. Johan. 2022. “Photocatalytic efficiency of titanium dioxide for dyes and heavy metals removal from wastewater.” Bull. Chem. React. Eng. Catal. 17 (2): 430–450. https://doi.org/10.9767/bcrec.17.2.13948.430-450.
Şentürk, İ., N. S. Eyceyurt Divarcı, and M. Öztürk. 2023. “Phytoremediation of nickel and chromium-containing industrial wastewaters by water lettuce (Pistia stratiotes).” Int. J. Phytorem. 25 (5): 550–561. https://doi.org/10.1080/15226514.2022.2092063.
Sharma, P., and S. Kumar. 2021. “Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: Recent advances.” Bioresour. Technol. 339 (Nov): 125589. https://doi.org/10.1016/j.biortech.2021.125589.
Singh, V., et al. 2023. “Heavy metal contamination in the aquatic ecosystem: Toxicity and its remediation using eco-friendly approaches.” Toxics 11 (2): 147. https://doi.org/10.3390/toxics11020147.
Sui, X., X. Wang, Y. Li, and H. Ji. 2021. “Remediation of petroleum-contaminated soils with microbial and microbial combined methods: Advances, mechanisms, and challenges.” Sustainability 13 (16): 9267. https://doi.org/10.3390/su13169267.
Timková, I., J. Sedláková-Kaduková, and P. Pristaš. 2018. “Biosorption and bioaccumulation abilities of actinomycetes/streptomycetes isolated from metal contaminated sites.” Separations 5 (4): 54. https://doi.org/10.3390/separations5040054.
USEPA. 1994. “Using toxicity tests in ecological risk assessment.” Intermittent Bull. 2 (1): 1–12.
USEPA. 2002. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. EPA-821-R-02-013. Washington, DC: USEPA.
Varghese, R. 2012. “Biological removal of lead by Bacillus sp. obtained from metal contaminated industrial area.” J. Microbiol. Biotechnol. Food Sci. 2 (2): 756–770.
Volaric, A., Z. Svircev, D. Tamindzija, and D. Radnovic. 2021. “Microbial bioremediation of heavy metals.” Hem. Ind. 75 (2): 103–115. https://doi.org/10.2298/HEMIND200915010V.
Vulpe, C. B., M. A. Matica, R. Kovačević, D. Dascalu, Z. Stevanovic, A. Isvoran, V. Ostafe, and G. Menghiu. 2023. “Copper accumulation efficiency in different recombinant microorganism strains available for bioremediation of heavy metal-polluted waters.” Int. J. Mol. Sci. 24 (8): 7575. https://doi.org/10.3390/ijms24087575.
Wang, Q., et al. 2020. “The endophytic bacterium Sphingomonas SaMR12 alleviates Cd stress in oilseed rape through regulation of the GSH-AsA cycle and antioxidative enzymes.” BMC Plant Biol. 20 (1): 63. https://doi.org/10.1186/s12870-020-2273-1.
Wang, S., T. Liu, X. Xiao, and S. Luo. 2021. “Advances in microbial remediation for heavy metal treatment: A mini review.” J. Leather Sci. Eng. 3 (1): 1–10. https://doi.org/10.1186/s42825-020-00042-z.
Wu, P., Z. Wang, A. Bhatnagar, P. Jeyakumar, H. Wang, Y. Wang, and X. Li. 2021. “Microorganisms-carbonaceous materials immobilized complexes: Synthesis, adaptability and environmental applications.” J. Hazard. Mater. 416 (Aug): 125915. https://doi.org/10.1016/j.jhazmat.2021.125915.
Yadav, Y., R. Gothalwal, and R. K. Tenguriya. 2018. “Management of heavy metal pollution by using bacterial biomass.” Int. J. Biotech Trends Technol. 8 (1): 15–27. https://doi.org/10.14445/22490183/IJBTT-V8I1P603.
Yao, Y., et al. 2022. “A field study on the composition, structure, and function of endophytic bacterial community of Robinia pseudoacacia at a composite heavy metals tailing.” Sci. Total Environ. 850 (Dec): 157874. https://doi.org/10.1016/j.scitotenv.2022.157874.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 149Issue 11November 2023

History

Received: Apr 5, 2023
Accepted: Jul 11, 2023
Published online: Sep 6, 2023
Published in print: Nov 1, 2023
Discussion open until: Feb 6, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Associate Professor, Engineering Faculty, Dept. of Environmental Engineering, Ondokuz Mayıs Univ., Samsun 55139, Turkey. ORCID: https://orcid.org/0000-0002-8775-837X. Email: [email protected]; [email protected]
Mirac Tansu Aliustaoğlu [email protected]
Engineering Faculty, Dept. of Environmental Engineering, Ondokuz Mayıs Univ., Samsun 55139, Turkey. Email: [email protected]
Associate Professor, Engineering Faculty, Dept. of Environmental Engineering, Sivas Cumhuriyet Univ., Sivas 58140, Turkey (corresponding author). ORCID: https://orcid.org/0000-0002-8217-2281. Email: [email protected]; [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share