Abstract

Lecythis minor is a tree commonly known as Monkey pot tree. Its fruits are composed of urn-shaped epicarps, which are bulky ligneous capsules of slow degradation. Activated carbon monoliths were prepared from this fruit epicarp (bioresidue, the source of lignocellulosic matter) by chemical activation with H3PO4. The activation conditions were optimized using a central composite design, considering parameters of temperature, time, and chemical ratio as variables, and iodine and methylene blue number (IN and MBN), along with yield (Y), as responses. The best conditions for activation were 532°C (T), 1.5 h (t), and 1.5-g H3PO4/1-g raw matter (chemical ratio, CR), with response values of 996 mg I/1-g activated carbon (AC) (IN), 361-mg MB/1-g AC (MBN), and 42% (Y). Likewise, the physicochemical/surface characterization of the activated carbon Lecythis minor (ACLM) allowed establishing that it developed micro- and mesopores (Vmicro=0.72  cm3/g; Vmeso=0.87  cm3/g), as well as ultra-microporosity, a BET surface area of 2,164  m2/g, and a total pore volume of 1.7  cm3/g; also, the removal percentages of the emerging contaminants diclofenac and cephalexin in water were above 96%. It is concluded that fruit epicarp of L. minor is a natural-origin resource to produce AC monoliths, with satisfactory yield, desirable surface development, and high thermal stability, capable of adsorption and removal of pharmaceutical products, and other emergent contaminants from water bodies.

Practical Applications

The development of activated carbons from agricultural residues, following processes that maximize their potential as adsorbents, has great potential for the removal of pollutants in water bodies. The above takes into account that in tropical countries there are residues that are totally wasted and that can be investigated by researchers following the methods listed in this work. The pollutants that can be adsorbed vary; for example, chemical residues and medicines that are excreted from the body or that are not properly disposed, dyes, or any other residue that, due to its dimensional characteristics, is complex to capture with other techniques for cleaning water bodies (e.g., mechanical means or filters). The solution to the removal of emerging pollutants is within everyone’s reach.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors would like to thank the Universidad del Norte for the financial support granted to Cindy J. Elles-Pérez through the Program of Doctoral Scholarship 2013 (No. UN-OJ-2013-22022).

References

Al Bahri, M., L. Calvo, M. A. Gilarranz, and J. J. Rodriguez. 2012. “Activated carbon from grape seeds upon chemical activation with phosphoric acid: Application to the adsorption of diuron from water.” Chem. Eng. J. 203 (Sep): 348–356. https://doi.org/10.1016/j.cej.2012.07.053.
Altenor, S., B. Carene, E. Emmanuel, J. Lambert, J.-J. Ehrhardt, and S. Gaspard. 2009. “Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation.” J. Hazard. Mater. 165 (1–3): 1029–1039. https://doi.org/10.1016/j.jhazmat.2008.10.133.
ASTM. 2013a. Standard practice for proximate analysis of coal and coke. ASTM D3172-13. West Conshohocken, PA: ASTM.
ASTM. 2013b. Standard test method for determination of 2,4-toluene diisocyanate (2,4-TDI) and 2,6-toluene diisocyanate (2,6-TDI) in air (with 9-(N-methylaminomethyl) anthracene method) (MAMA) in the workplace. ASTM D5932-08(2013)e1. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test method for determination of iodine number of activated carbon. ASTM D4607-14. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard specification for poly(vinyl chloride) resins. ASTM D1755-15. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test methods for determination of carbon, hydrogen and nitrogen in analysis samples of coal and carbon in analysis samples of coal and coke. ASTM D5373-16. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard test method for moisture in the analysis sample of coal and coke. ASTM D3173/D3173M-17a. West Conshohocken, PA: ASTM.
ASTM. 2017b. Test methods for moisture in activated carbon. ASTM D2867-17. West Conshohocken, PA: ASTM.
ASTM. 2018. Standard test method for total ash content of activated carbon. ASTM D2866-11(2018). West Conshohocken, PA: ASTM.
Aygün, A., S. Yenisoy-Karakaş, and I. Duman. 2003. “Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties.” Microporous Mesoporous Mater. 66 (2–3): 189–195. https://doi.org/10.1016/j.micromeso.2003.08.028.
Buelvas Álvarez, L. P., and J. A. Ramírez Osorio. 2014. “Biomimética de estructuras vegetales: Mejorando la seguridad en el ciclismo a partir de la olla de mono.” Bachelor’s thesis, Escuela de Arquitectura y Diseño, Facultad de Diseño Industrial, Universidad Pontificia Bolivariana.
Cagnon, B., X. Py, A. Guillot, F. Stoeckli, and G. Chambat. 2009. “Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors.” Bioresour. Technol. 100 (1): 292–298. https://doi.org/10.1016/j.biortech.2008.06.009.
Chowdhury, Z. K. 2013. Activated carbon: Solutions for improving water quality. Denver: American Water Works Association.
Danish, M., and T. Ahmad. 2018. “A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application.” Renewable Sustainable Energy Rev. 87 (Jun): 1–21. https://doi.org/10.1016/j.rser.2018.02.003.
Danish, M., T. Ahmad, W. N. A. W. Nadhari, M. Ahmad, W. A. Khanday, L. Ziyang, and Z. Pin. 2018. “Optimization of banana trunk-activated carbon production for methylene blue-contaminated water treatment.” Appl. Water Sci. 8 (1): 9. https://doi.org/10.1007/s13201-018-0644-7.
Danish, M., R. Hashim, M. N. M. Ibrahim, and O. Sulaiman. 2014. “Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass.” Biomass Bioenergy 61 (Feb): 167–178. https://doi.org/10.1016/j.biombioe.2013.12.008.
Das, S., and S. Mishra. 2017. “Box-Behnken statistical design to optimize preparation of activated carbon from Limonia acidissima shell with desirability approach.” J. Environ. Chem. Eng. 5 (1): 588–600. https://doi.org/10.1016/j.jece.2016.12.034.
El Maguana, Y., N. Elhadiri, M. Bouchdoug, and M. Benchanaa. 2018. “Study of the influence of some factors on the preparation of activated carbon from walnut cake using the fractional factorial design.” J. Environ. Chem. Eng. 6 (1): 1093–1099. https://doi.org/10.1016/j.jece.2018.01.023.
García, J. R., U. Sedran, M. A. A. Zaini, and Z. A. Zakaria. 2018. “Preparation, characterization, and dye removal study of activated carbon prepared from palm kernel shell.” Environ. Sci. Pollut. Res. 25 (6): 5076–5085. https://doi.org/10.1007/s11356-017-8975-8.
Giraldo, L., and J. C. Moreno-Piraján. 2008. “Monoliths of activated carbon from coconut shell and impregnation with nickel and copper.” Rev. Colomb. Quím. 37 (3): 355–370.
Girgis, B. S., and A.-N. A. El-Hendawy. 2002. “Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid.” Microporous Mesoporous Mater. 52 (2): 105–117. https://doi.org/10.1016/S1387-1811(01)00481-4.
Girgis, B. S., E. Smith, M. M. Louis, and A.-N. A. El-Hendawy. 2009. “Pilot production of activated carbon from cotton stalks using H3PO4.” J. Anal. Appl. Pyrolysis 86 (1): 180–184. https://doi.org/10.1016/j.jaap.2009.06.002.
Girgis, B. S., A. M. Soliman, and N. A. Fathy. 2011. “Development of micro-mesoporous carbons from several seed hulls under varying conditions of activation.” Microporous Mesoporous Mater. 142 (2): 518–525. https://doi.org/10.1016/j.micromeso.2010.12.044.
Girgis, B. S., S. S. Yunis, and A. M. Soliman. 2002. “Characteristics of activated carbon from peanut hulls in relation to conditions of preparation.” Mater. Lett. 57 (1): 164–172. https://doi.org/10.1016/S0167-577X(02)00724-3.
Hayashi, J., T. Horikawa, I. Takeda, K. Muroyama, and F. Nasir Ani. 2002. “Preparing activated carbon from various nutshells by chemical activation with K2CO3.” Carbon 40 (13): 2381–2386. https://doi.org/10.1016/S0008-6223(02)00118-5.
Jagtoyen, M., and F. Derbyshire. 1998. “Activated carbons from yellow poplar and white oak by H3PO4 activation.” Carbon 36 (7): 1085–1097. https://doi.org/10.1016/S0008-6223(98)00082-7.
Kemal, A., K. Siraj, and W. H. Michael. 2019. “Adsorption of Cu (II) and Cd (II) onto activated carbon prepared from pumpkin seed shell.” J. Environ. Sci. Pollut. Res. 5 (1): 328–333. https://doi.org/10.30799/jespr.161.19050105.
Kumar, A., and H. M. Jena. 2016. “Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4.” Results Phys. 6 (Apr): 651–658. https://doi.org/10.1016/j.rinp.2016.09.012.
Kyzas, G. Z., E. A. Deliyanni, and K. A. Matis. 2016. “Activated carbons produced by pyrolysis of waste potato peels: Cobalt ions removal by adsorption.” Colloids Surf., A 490 (Jun): 74–83. https://doi.org/10.1016/j.colsurfa.2015.11.038.
Lafont, J. J., E. A. Calle, and L. C. Durango. 2013. “Composición química del aceite de almendras producidas por el árbol Olleto (Lecythis minor DC).” Información Tecnológica 24 (1): 59–68. https://doi.org/10.4067/S0718-07642013000100008.
Liou, T.-H. 2010. “Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation.” Chem. Eng. J. 158 (2): 129–142. https://doi.org/10.1016/j.cej.2009.12.016.
Liu, H., P. Dai, J. Zhang, C. Zhang, N. Bao, C. Cheng, and L. Ren. 2013. “Preparation and evaluation of activated carbons from lotus stalk with trimethyl phosphate and tributyl phosphate activation for lead removal.” Chem. Eng. J. 228 (Jul): 425–434. https://doi.org/10.1016/j.cej.2013.04.117.
López Camacho, R., and M. I. Montero. 2005. Manual de identificación de especies forestales con manejo certificable por comunidades. Bogotá DC, Colombia, Canada: Instituto Amazónico de Investigaciones Científicas.
Lozano-Castelló, D., D. Cazorla-Amorós, and A. Linares-Solano. 2004. “Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons.” Carbon 42 (7): 1233–1242. https://doi.org/10.1016/j.carbon.2004.01.037.
Mahmood, T., R. Ali, A. Naeem, M. Hamayun, and M. Aslam. 2017. “Potential of used Camellia sinensis leaves as precursor for activated carbon preparation by chemical activation with H3PO4; optimization using response surface methodology.” Process Saf. Environ. Prot. 109 (Aug): 548–563. https://doi.org/10.1016/j.psep.2017.04.024.
Marsh, H., and F. Rodríguez-Reinoso. 2006. Activated carbon. Amsterdam, Netherlands: Elsevier.
Miao, M.-S., Q. Liu, L. Shu, Z. Wang, Y.-Z. Liu, and Q. Kong. 2016. “Removal of cephalexin from effluent by activated carbon prepared from alligator weed: Kinetics, isotherms, and thermodynamic analyses.” In Process safety and environmental protection, challenges in environmental science and engineering, 481–489. Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/j.psep.2016.03.017.
Molina-Sabio, M., and F. Rodríguez-Reinoso. 2004. “Role of chemical activation in the development of carbon porosity.” Colloids Surf., A 241 (1): 15–25. https://doi.org/10.1016/j.colsurfa.2004.04.007.
Molina-Sabio, M., F. Rodríguez-Reinoso, F. Caturla, and M. J. Sellés. 1995. “Porosity in granular carbons activated with phosphoric acid.” Carbon 33 (8): 1105–1113. https://doi.org/10.1016/0008-6223(95)00059-M.
Montgomery, D. C. 2017. Design and analysis of experiments. Hoboken, NJ: Wiley.
Nahil, M. A., and P. T. Williams. 2012. “Pore characteristics of activated carbons from the phosphoric acid chemical activation of cotton stalks.” Biomass Bioenergy 37 (Feb): 142–149. https://doi.org/10.1016/j.biombioe.2011.12.019.
Neimark, A. V., Y. Lin, P. I. Ravikovitch, and M. Thommes. 2009. “Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons.” Carbon 47 (7): 1617–1628. https://doi.org/10.1016/j.carbon.2009.01.050.
Nickrent, D., M. Costea, J. Barcelona, P. Pelser, and K. C. Nixon. 2006. “PhytoImages-Image search engine.” Accessed January 16, 2023. http://phytoimages.siu.edu/.
Njoku, V. O., M. A. Islam, M. Asif, and B. H. Hameed. 2014. “Preparation of mesoporous activated carbon from coconut frond for the adsorption of carbofuran insecticide.” J. Anal. Appl. Pyrolysis 110 (Nov): 172–180. https://doi.org/10.1016/j.jaap.2014.08.020.
Njoku, V. O., M. A. Islam, M. Asif, and B. H. Hameed. 2015. “Adsorption of 2,4-dichlorophenoxyacetic acid by mesoporous activated carbon prepared from H3PO4-activated langsat empty fruit bunch.” J. Environ. Manage. 154 (Apr): 138–144. https://doi.org/10.1016/j.jenvman.2015.02.002.
Nowakowski, D. J., C. R. Woodbridge, and J. M. Jones. 2008. “Phosphorus catalysis in the pyrolysis behaviour of biomass.” J. Anal. Appl. Pyrolysis 83 (2): 197–204. https://doi.org/10.1016/j.jaap.2008.08.003.
Olivares-Marín, M., C. Fernández-González, A. Macías-García, and V. Gómez-Serrano. 2006. “Thermal behaviour of lignocellulosic material in the presence of phosphoric acid. Influence of the acid content in the initial solution.” Carbon 44 (11): 2347–2350. https://doi.org/10.1016/j.carbon.2006.04.004.
Olivier, J. P., W. B. Conklin, and M. V. Szombathely. 1994. “Determination of pore size distribution from density functional theory: A comparison of nitrogen and argon results.” In Studies in surface science and catalysis, characterization of porous solids III, edited by J. Rouquerol, F. Rodríguez-Reinoso, K. S. W. Sing, and K. K. Unger, 81–89. Amsterdam, Netherlands: Elsevier.
Örtl, E. 2019. The database “Pharmaceuticals in the Environment”—Update and new analysis Dresden, Germany: Umweltbundesamt.
Perrich, J. R. 2018. Activated carbon adsorption for wastewater treatment. Boca Raton, FL: CRC Press.
Porras, Á. C., and A. R. González. 2016. “Aprovechamiento de residuos orgánicos agrícolas y forestales en Iberoamérica.” Acad. Virtualidad 9 (2): 90–107. https://doi.org/10.18359/ravi.2004.
Prahas, D., Y. Kartika, N. Indraswati, and S. Ismadji. 2008. “Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization.” Chem. Eng. J. 140 (1–3): 32–42. https://doi.org/10.1016/j.cej.2007.08.032.
Qin, C., Y. Chen, and J. Gao. 2014. “Manufacture and characterization of activated carbon from marigold straw (Tagetes erecta L) by H3PO4 chemical activation.” Mater. Lett. 135 (Feb): 123–126. https://doi.org/10.1016/j.matlet.2014.07.151.
Raposo, F., M. A. De La Rubia, and R. Borja. 2009. “Methylene blue number as useful indicator to evaluate the adsorptive capacity of granular activated carbon in batch mode: Influence of adsorbate/adsorbent mass ratio and particle size.” J. Hazard. Mater. 165 (1–3): 291–299. https://doi.org/10.1016/j.jhazmat.2008.09.106.
Ravikovitch, P. I., A. Vishnyakov, R. Russo, and A. V. Neimark. 2000. “Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms.” Langmuir 16 (5): 2311–2320. https://doi.org/10.1021/la991011c.
Rouquerol, J., F. Rouquerol, P. Llewellyn, G. Maurin, and K. S. W. Sing. 2013. Adsorption by powders and porous solids: Principles, methodology and applications. Cambridge, MA: Academic Press.
Sayğılı, H., F. Güzel, and Y. Önal. 2015. “Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption.” J. Cleaner Prod. 93 (Aug): 84–93. https://doi.org/10.1016/j.jclepro.2015.01.009.
Sudaryanto, Y., S. B. Hartono, W. Irawaty, H. Hindarso, and S. Ismadji. 2006. “High surface area activated carbon prepared from cassava peel by chemical activation.” Bioresour. Technol. 97 (5): 734–739. https://doi.org/10.1016/j.biortech.2005.04.029.
Sulaiman, N. S., R. Hashim, M. H. Mohamad Amini, M. Danish, and O. Sulaiman. 2018. “Optimization of activated carbon preparation from cassava stem using response surface methodology on surface area and yield.” J. Cleaner Prod. 198 (Mar): 1422–1430. https://doi.org/10.1016/j.jclepro.2018.07.061.
Sych, N. V., S. I. Trofymenko, O. I. Poddubnaya, M. M. Tsyba, V. I. Sapsay, D. O. Klymchuk, and A. M. Puziy. 2012. “Porous structure and surface chemistry of phosphoric acid activated carbon from corncob.” Appl. Surf. Sci. 261 (Nov): 75–82. https://doi.org/10.1016/j.apsusc.2012.07.084.
Thommes, M., K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. W. Sing. 2015. “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report).” Pure Appl. Chem. 87 (9–10): 1051–1069. https://doi.org/10.1515/pac-2014-1117.
Vargas, A. M. M., C. A. Garcia, E. M. Reis, E. Lenzi, W. F. Costa, and V. C. Almeida. 2010. “NaOH-activated carbon from flamboyant (Delonix regia) pods: Optimization of preparation conditions using central composite rotatable design.” Chem. Eng. J. 162 (1): 43–50. https://doi.org/10.1016/j.cej.2010.04.052.
Vargas, D. P., L. Giraldo, J. Silvestre-Albero, and J. C. Moreno-Piraján. 2011. “CO2 adsorption on binderless activated carbon monoliths.” Adsorption 17 (3): 497–504. https://doi.org/10.1007/s10450-010-9309-z.
Wang, Y., S. Zuo, J. Yang, and S.-H. Yoon. 2017. “Evolution of phosphorus-containing groups on activated carbons during heat treatment.” Langmuir 33 (12): 3112–3122. https://doi.org/10.1021/acs.langmuir.7b00095.
Xu, J., L. Chen, H. Qu, Y. Jiao, J. Xie, and G. Xing. 2014. “Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H3PO4.” Appl. Surf. Sci. 320 (Nov): 674–680. https://doi.org/10.1016/j.apsusc.2014.08.178.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 149Issue 4April 2023

History

Received: Aug 7, 2022
Accepted: Dec 15, 2022
Published online: Feb 14, 2023
Published in print: Apr 1, 2023
Discussion open until: Jul 14, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Chemical Engineer, Dept. of Civil and Environmental Engineering, Universidad del Norte, Área Metropolitana de Barranquilla, Atlántico 081007, Colombia. ORCID: https://orcid.org/0000-0002-4465-9822. Email: [email protected]
Professor, Dept. of Civil and Environmental Engineering, Universidad del Norte, Área Metropolitana de Barranquilla, Atlántico 081007, Colombia (corresponding author). ORCID: https://orcid.org/0000-0003-2472-1390. Email: [email protected]
Professor, Dept. of Chemistry and Biology. Universidad del Norte, Área Metropolitana de Barranquilla, Atlántico 081007, Colombia. ORCID: https://orcid.org/0000-0003-2145-1495. Email: [email protected]
Professor, Dept. of Civil and Environmental Engineering, Universidad del Norte, Área Metropolitana de Barranquilla, Atlántico 081007, Colombia. ORCID: https://orcid.org/0000-0002-5198-8122. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share