State-of-the-Art Reviews
Dec 21, 2022

Critical Review and Discussion of the Nonlinear Form of Radke–Prausnitz Model in Adsorption Solid–Liquid Phases

Publication: Journal of Environmental Engineering
Volume 149, Issue 3

Abstract

The Radke–Prausnitz model, a typical three-parameter model belonging to the Langmuir–Freundlich-type equation, is increasingly being used to correlate the equilibrium data of various adsorption processes. However, very few published works provide the correct information on (1) the nonlinear form of this model, (2) the units of its parameters, and (3) its original citation. This work provides a critical analysis of the Radke–Prausnitz model with special emphasis on promoting its proper application in adsorption research. The correct expression and citation of the models used in adsorption studies are provided. The correct units of its parameters aRP, bRP, and β are L/kg, (mol/kg)/(mol/L)β, and unitless when the solution phase concentration Ce is given in mol/L and the adsorbed phase concentration qe is defined in mol/kg. The Radke–Prausnitz model can be reduced to the Henry, Freundlich, Langmuir, or Redlich–Peterson model in some special cases. The Radke—Prausnitz model is valid when the exponent β is in the range of 0β1. A new adsorption equilibrium constant of this model is introduced. The feasibility of using the new equilibrium constant to calculate the thermodynamic parameters (ΔG°, ΔH°, and ΔS°) of adsorption processes is discussed herein.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Ahmad, M. A., N. Ahmad, and O. S. Bello. 2015. “Modified durian seed as adsorbent for the removal of methyl red dye from aqueous solutions.” Appl. Water Sci. 5 (4): 407–423. https://doi.org/10.1007/s13201-014-0208-4.
Ahmad, M. A., N. A. B. Ahmed, K. A. Adegoke, and O. S. Bello. 2019. “Sorption studies of methyl red dye removal using lemon grass (Cymbopogon citratus).” Chem. Data Collect. 22 (Aug): 100249. https://doi.org/10.1016/j.cdc.2019.100249.
Aksnes, D. W., L. Langfeldt, and P. Wouters. 2019. “Citations, citation indicators, and research quality: An overview of basic concepts and theories.” SAGE Open 9 (1): 215824401982957. https://doi.org/10.1177/2158244019829575.
Al-Ghouti, M. A., and D. A. Da’ana. 2020. “Guidelines for the use and interpretation of adsorption isotherm models: A review.” J. Hazard. Mater. 393 (Jul): 122383. https://doi.org/10.1016/j.jhazmat.2020.122383.
Anstey, A. 2015. “Publish and perish: How plagiarism can penalize perpetrators.” Br. J. Dermatol. 172 (3): 549–551. https://doi.org/10.1111/bjd.13678.
Ayawei, N., A. N. Ebelegi, and D. Wankasi. 2017. “Modelling and interpretation of adsorption isotherms.” J. Chem. 2017 (May): 3039817. https://doi.org/10.1155/2017/3039817.
Azizian, S., S. Eris, and L. D. Wilson. 2018. “Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution.” Chem. Phys. 513 (Sep): 99–104. https://doi.org/10.1016/j.chemphys.2018.06.022.
Barka, N., A. Assabbane, A. Nounah, L. Laanab, and Y. A. Ichou. 2009. “Removal of textile dyes from aqueous solutions by natural phosphate as a new adsorbent.” Desalination 235 (1): 264–275. https://doi.org/10.1016/j.desal.2008.01.015.
Basha, S., and Z. V. P. Murthy. 2007. “Kinetic and equilibrium models for biosorption of Cr(VI) on chemically modified seaweed, Cystoseira indica.” Process Biochem. 42 (11): 1521–1529. https://doi.org/10.1016/j.procbio.2007.08.004.
Basha, S., Z. V. P. Murthy, and B. Jha. 2008. “Isotherm modeling for biosorption of Cu(II) and Ni(II) from wastewater onto brown seaweed, Cystoseira indica.” AIChE J. 54 (12): 3291–3302. https://doi.org/10.1002/aic.11606.
Bayazit, Ş. S., and S. Şahin. 2020. “Acid-modulated zirconium based metal organic frameworks for removal of organic micropollutants.” J. Environ. Chem. Eng. 8 (5): 103901. https://doi.org/10.1016/j.jece.2020.103901.
Benjelloun, M., Y. Miyah, G. Akdemir Evrendilek, F. Zerrouq, and S. Lairini. 2021. “Recent advances in adsorption kinetic models: Their application to dye types.” Arabian J. Chem. 14 (4): 103031. https://doi.org/10.1016/j.arabjc.2021.103031.
Brudey, T., L. Largitte, C. Jean-Marius, T. Tant, P. C. Dumesnil, and P. Lodewyckx. 2016. “Adsorption of lead by chemically activated carbons from three lignocellulosic precursors.” J. Anal. Appl. Pyrolysis 120 (Jun): 450–463. https://doi.org/10.1016/j.jaap.2016.06.018.
Calleja, G., J. Serna, and J. Rodríguez. 1993. “Kinetics of adsorption of phenolic compounds from wastewater onto activated carbon.” Carbon 31 (5): 691–697. https://doi.org/10.1016/0008-6223(93)90005-U.
Carrales-Alvarado, D. H., I. Rodríguez-Ramos, R. Leyva-Ramos, E. Mendoza-Mendoza, and D. E. Villela-Martínez. 2020. “Effect of surface area and physical–chemical properties of graphite and graphene-based materials on their adsorption capacity towards metronidazole and trimethoprim antibiotics in aqueous solution.” Chem. Eng. J. 402 (Dec): 126155. https://doi.org/10.1016/j.cej.2020.126155.
Chatzopoulos, D., A. Varma, and R. L. Irvine. 1993. “Activated carbon adsorption and desorption of toluene in the aqueous phase.” AIChE J. 39 (12): 2027–2041. https://doi.org/10.1002/aic.690391213.
Chen, T., T. Da, and Y. Ma. 2021. “Reasonable calculation of the thermodynamic parameters from adsorption equilibrium constant.” J. Mol. Liq. 322 (Mar): 114980. https://doi.org/10.1016/j.molliq.2020.114980.
Costa, E., G. Calleja, and L. Marijuan. 1987. “Adsorption of phenol and p-nitrophenol on activated carbon: Determination of effective diffusion coefficients.” Adsorpt. Sci. Technol. 4 (1–2): 59–77. https://doi.org/10.1177/0263617487004001-206.
Das, D., G. Basak, V. Lakshmi, and N. Das. 2012. “Kinetics and equilibrium studies on removal of Zinc(II) by untreated and anionic surfactant treated dead biomass of yeast: Batch and column mode.” Biochem. Eng. J. 64 (May): 30–47. https://doi.org/10.1016/j.bej.2012.03.001.
Diaz de Tuesta, J. L., A. M. T. Silva, J. L. Faria, and H. T. Gomes. 2020. “Adsorption of Sudan-IV contained in oily wastewater on lipophilic activated carbons: Kinetic and isotherm modeling.” Environ. Sci. Pollut. Res. 27 (17): 20770–20785. https://doi.org/10.1007/s11356-020-08473-1.
Duan, T., B. Qian, Y. Wang, Q. Zhao, F. Xie, H. Zou, X. Zhou, Y. Song, and Y. Sheng. 2022. “Preparation of CaCO3: Eu3+@SiO2 and its application on adsorption of Tb3+.” Colloids Surf., A 641 (May): 128475. https://doi.org/10.1016/j.colsurfa.2022.128475.
Dwivedi, A. D., K. Gopal, and R. Jain. 2011. “Strengthening adsorption characteristics of non-steroidal anti-inflammatory drug onto microwave-assisted mesoporous material: Process design, mechanism and characterization.” Chem. Eng. J. 168 (3): 1279–1288. https://doi.org/10.1016/j.cej.2011.02.041.
Elwakeel, K. Z., A. M. Elgarahy, Z. A. Khan, M. S. Almughamisi, and A. S. Al-Bogami. 2020. “Perspectives regarding metal/mineral-incorporating materials for water purification: With special focus on Cr(VI) removal.” Mater. Adv. 1 (6): 1546–1574. https://doi.org/10.1039/D0MA00153H.
Farrier, D. S., A. L. Hines, and S. W. Wang. 1979. “Adsorption of phenol and benzoic acid from dilute aqueous solution onto a macroreticular resin.” J. Colloid Interface Sci. 69 (2): 233–237. https://doi.org/10.1016/0021-9797(79)90152-8.
Fenti, A., P. Iovino, and S. Salvestrini. 2019. “Some remarks on ‘A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption’ - Journal of Molecular Liquids 273 (2019) 425–434.” J. Mol. Liq. 276 (Feb): 529–530. https://doi.org/10.1016/j.molliq.2018.12.019.
Fil, B. A., R. Boncukcuoğlu, A. E. Yilmaz, and S. Bayar. 2012. “Adsorption of Ni(II) on ion exchange resin: Kinetics, equilibrium and thermodynamic studies.” Korean J. Chem. Eng. 29 (9): 1232–1238. https://doi.org/10.1007/s11814-012-0012-5.
Fonseca-Correa, R. A., L. Giraldo, and J. C. Moreno-Piraján. 2019. “Thermodynamic study of adsorption of nickel ions onto carbon aerogels.” Heliyon 5 (6): e01789. https://doi.org/10.1016/j.heliyon.2019.e01789.
Foo, K. Y., and B. H. Hameed. 2010. “Insights into the modeling of adsorption isotherm systems.” Chem. Eng. J. 156 (1): 2–10. https://doi.org/10.1016/j.cej.2009.09.013.
Freundlich, H. 1907. “Über die adsorption in Lösungen.” Z. Phys. Chem. 57 (1): 385–470. https://doi.org/10.1515/zpch-1907-5723.
Fritz, W., and E. U. Schluender. 1974. “Simultaneous adsorption equilibria of organic solutes in dilute aqueous solutions on activated carbon.” Chem. Eng. Sci. 29 (5): 1279–1282. https://doi.org/10.1016/0009-2509(74)80128-4.
Fu, Y., and T. Viraraghavan. 2002. “Removal of Congo red from an aqueous solution by fungus Aspergillus niger.” Adv. Environ. Res. 7 (1): 239–247. https://doi.org/10.1016/S1093-0191(01)00123-X.
Hadi, M., G. McKay, M. R. Samarghandi, A. Maleki, and M. Solaimany Aminabad. 2012. “Prediction of optimum adsorption isotherm: Comparison of chi-square and log-likelihood statistics.” Desalin. Water Treat. 49 (1–3): 81–94. https://doi.org/10.1080/19443994.2012.708202.
Hamdaoui, O., and E. Naffrechoux. 2007. “Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part II. Models with more than two parameters.” J. Hazard. Mater. 147 (1): 401–411. https://doi.org/10.1016/j.jhazmat.2007.01.023.
Hashem, A., A. Al-Anwar, N. M. Nagy, D. M. Hussein, and S. Eisa. 2016. “Isotherms and kinetic studies on adsorption of Hg(II) ions onto Ziziphus spina-christi L. from aqueous solutions.” Green Process. Synth. 5 (2): 213–224. https://doi.org/10.1515/gps-2015-0103.
Hashem, A., H. A. Hammad, and A. Al-Anwar. 2015. “Chemically modified Retama raetam biomass as a new adsorbent for Pb(II) ions from aqueous solution: Non-linear regression, kinetics and thermodynamics.” Green Process. Synth. 4 (6): 463–478. https://doi.org/10.1515/gps-2015-0074.
Henry, W. 1803. “III. Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures.” Philos. Trans. R. Soc. London 93: 29–42. https://doi.org/10.1098/rstl.1803.0004.
Inbaraj, B. S. 2006. “Comment on ‘Adsorption of reactive dyes from a textile effluent using sawdust as the adsorbent’.” Ind. Eng. Chem. Res. 45 (21): 7362. https://doi.org/10.1021/ie060816u.
Khambhaty, Y., K. Mody, S. Basha, and B. Jha. 2011. “Equilibrium modeling for biosorption of safranin onto chemically modified biomass of marine Aspergillus wentii.” Water Air Soil Pollut. 215 (1): 679–691. https://doi.org/10.1007/s11270-010-0509-7.
Khan, A. R., R. Ataullah, and A. Al-Haddad. 1997. “Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures.” J. Colloid Interface Sci. 194 (1): 154–165. https://doi.org/10.1006/jcis.1997.5041.
Kim, S. J., W. G. Shim, T. Y. Kim, H. Moon, S. J. Kim, and S. Y. Cho. 2002. “Adsorption equilibrium characteristics of 2,4-dichlorophenoxyacetic acid and 2,4-dinitrophenol on granular activated carbons.” Korean J. Chem. Eng. 19 (6): 967–977. https://doi.org/10.1007/BF02707219.
Langmuir, I. 1918. “The adsorption of gases on plane surfaces of glass, mica and platinum.” J. Am. Chem. Soc. 40 (9): 1361–1403. https://doi.org/10.1021/ja02242a004.
Largitte, L., and R. Pasquier. 2016. “New models for kinetics and equilibrium homogeneous adsorption.” Chem. Eng. Res. Des. 112 (Aug): 289–297. https://doi.org/10.1016/j.cherd.2016.06.021.
Leone, V., P. Iovino, S. Salvestrini, and S. Capasso. 2014. “Sorption of non-ionic organic pollutants onto a humic acids-zeolitic tuff adduct: Thermodynamic aspects.” Chemosphere 95 (Jun): 75–80. https://doi.org/10.1016/j.chemosphere.2013.08.019.
Leyva-Ramos, R. 1989. “Effect of temperature and ph on the adsorption of an anionic detergent on activated carbon.” J. Chem. Technol. Biotechnol. 45 (3): 231–240. https://doi.org/10.1002/jctb.280450308.
Lima, E. C., A. A. Gomes, and H. N. Tran. 2020. “Comparison of the nonlinear and linear forms of the van’t Hoff equation for calculation of adsorption thermodynamic parameters (ΔS° and ΔH°).” J. Mol. Liq. 311 (Jun): 113315. https://doi.org/10.1016/j.molliq.2020.113315.
Lima, E. C., A. Hosseini-Bandegharaei, J. C. Moreno-Piraján, and I. Anastopoulos. 2019. “A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption.” J. Mol. Liq. 273 (Jan): 425–434. https://doi.org/10.1016/j.molliq.2018.10.048.
Lima, É. C., M. H. Dehghani, A. Guleria, F. Sher, R. R. Karri, G. L. Dotto, and H. N. Tran. 2021. “Adsorption: Fundamental aspects and applications of adsorption for effluent treatment.” Chap. 3 in Green technologies for the defluoridation of water, edited by M. Hadi Dehghani, R. Karri, and E. Lima, 41–88. Amsterdam, Netherlands: Elsevier.
Liu, Y. 2009. “Is the free energy change of adsorption correctly calculated?” J. Chem. Eng. Data 54 (7): 1981–1985. https://doi.org/10.1021/je800661q.
Liu, Y., and Y.-J. Liu. 2008. “Biosorption isotherms, kinetics and thermodynamics.” Sep. Purif. Technol. 61 (3): 229–242. https://doi.org/10.1016/j.seppur.2007.10.002.
Madan, S. S., K. L. Wasewar, and C. Ravi Kumar. 2016. “Adsorption kinetics, thermodynamics, and equilibrium of α-toluic acid onto calcium peroxide nanoparticles.” Adv. Powder Technol. 27 (5): 2112–2120. https://doi.org/10.1016/j.apt.2016.07.024.
Mandal, A., and N. Singh. 2016. “Kinetic and isotherm error optimization studies for adsorption of atrazine and imidacloprid on bark of Eucalyptus tereticornis L.” J. Environ. Sci. Health, Part B 51 (3): 192–203. https://doi.org/10.1080/03601234.2015.1108817.
Marczewski, A. W., A. Deryło-Marczewska, and M. Jaroniec. 1990. “A simple method for evaluating the isotherm parameters for adsorption from dilute solutions on solids.” Mater. Chem. Phys. 24 (3): 287–297. https://doi.org/10.1016/0254-0584(90)90092-O.
Maurya, N. S., and A. K. Mittal. 2006. “Applicability of equilibrium isotherm models for the biosorptive uptakes in comparison to activated carbon-based adsorption.” J. Environ. Eng. 132 (12): 1589–1599. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:12(1589).
Mercado-Borrayo, B. M., R. Schouwenaars, M. I. Litter, C. V. Montoya-Bautista, and R. M. Ramírez-Zamora. 2014. “5: Metallurgical slag as an efficient and economical adsorbent of arsenic.” In Water reclamation and sustainability, edited by S. Ahuja, 95–114. Amsterdam, Netherlands: Elsevier.
Mollah, A. H., and C. W. Robinson. 1996. “Pentachlorophenol adsorption and desorption characteristics of granular activated carbon—I. Isotherms.” Water Res. 30 (12): 2901–2906. https://doi.org/10.1016/S0043-1354(96)00131-5.
Moral-Rodriguez, A. I., R. Leyva-Ramos, F. Carrasco-Marín, M. I. Bautista-Toledo, and A. F. Pérez-Cadenas. 2020. “Adsorption of diclofenac from aqueous solution onto carbon xerogels: Effect of synthesis conditions and presence of bacteria.” Water Air Soil Pollut. 231 (1): 17. https://doi.org/10.1007/s11270-019-4385-5.
Moreno-Castilla, C. 2004. “Adsorption of organic molecules from aqueous solutions on carbon materials.” Carbon 42 (1): 83–94. https://doi.org/10.1016/j.carbon.2003.09.022.
Moreno-Piraján, J. C., and L. Giraldo. 2010. “Adsorption of copper from aqueous solution by activated carbons obtained by pyrolysis of cassava peel.” J. Anal. Appl. Pyrolysis 87 (2): 188–193. https://doi.org/10.1016/j.jaap.2009.12.004.
Nayak, A. K., and A. Pal. 2020. “Utilization of lignocellulosic waste for acridine orange uptake: Insights into multiparameter isotherms modeling with ANN-aimed formulation.” J. Environ. Eng. 146 (9): 04020096. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001762.
Nemati, Y., P. Zahedi, M. Baghdadi, and S. Ramezani. 2019. “Microfluidics combined with ionic gelation method for production of nanoparticles based on thiol-functionalized chitosan to adsorb Hg (II) from aqueous solutions.” J. Environ. Manage. 238 (Nov): 166–177. https://doi.org/10.1016/j.jenvman.2019.02.124.
Noè, L. F., and D. J. Batten. 2006. “‘Publish or perish’: The pitfalls of duplicate publication.” Palaeontology 49 (6): 1365–1367. https://doi.org/10.1111/j.1475-4983.2006.00617.x.
Parsa, M. M., H. Pourfakhar, and M. Baghdadi. 2020. “Application of graphene oxide nanosheets in the coagulation-flocculation process for removal of total organic carbon (TOC) from surface water.” J. Water Process Eng. 37 (Oct): 101367. https://doi.org/10.1016/j.jwpe.2020.101367.
Patel, M., R. Kumar, C. U. Pittman, and D. Mohan. 2021. “Ciprofloxacin and acetaminophen sorption onto banana peel biochars: Environmental and process parameter influences.” Environ. Res. 201 (Oct): 111218. https://doi.org/10.1016/j.envres.2021.111218.
Podder, M. S., and C. B. Majumder. 2015. “SD/MnFe2O4 composite, a biosorbent for As(III) and As(V) removal from wastewater: Optimization and isotherm study.” J. Mol. Liq. 212 (Dec): 382–404. https://doi.org/10.1016/j.molliq.2015.09.011.
Podder, M. S., and C. B. Majumder. 2016. “Sequestering of As(III) and As(V) from wastewater using a novel neem leaves/MnFe2O4 composite biosorbent.” Int. J. Phytorem. 18 (12): 1237–1257. https://doi.org/10.1080/15226514.2016.1193467.
Radke, C. J., and J. M. Prausnitz. 1972. “Adsorption of organic solutes from dilute aqueous solution of activated carbon.” Ind. Eng. Chem. Fundam. 11 (4): 445–451. https://doi.org/10.1021/i160044a003.
Rajput, S., C. U. Pittman, and D. Mohan. 2016. “Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water.” J. Colloid Interface Sci. 468 (Apr): 334–346. https://doi.org/10.1016/j.jcis.2015.12.008.
Ramadoss, R., and D. Subramaniam. 2019. “Removal of divalent nickel from aqueous solution using blue-green marine algae: Adsorption modeling and applicability of various isotherm models.” Sep. Sci. Technol. 54 (6): 943–961. https://doi.org/10.1080/01496395.2018.1526194.
Redlich, O., and D. L. Peterson. 1959. “A useful adsorption isotherm.” J. Phys. Chem. 63 (6): 1024. https://doi.org/10.1021/j150576a611.
Salvestrini, S. 2019. “A modification of the Langmuir rate equation for diffusion-controlled adsorption kinetics.” React. Kinet. Mech. Catal. 128 (2): 571–586. https://doi.org/10.1007/s11144-019-01684-9.
Salvestrini, S., L. Ambrosone, and F.-D. Kopinke. 2022. “Some mistakes and misinterpretations in the analysis of thermodynamic adsorption data.” J. Mol. Liq. 352 (Apr): 118762. https://doi.org/10.1016/j.molliq.2022.118762.
Salvestrini, S., A. Fenti, S. Chianese, P. Iovino, and D. Musmarra. 2020. “Diclofenac sorption from synthetic water: Kinetic and thermodynamic analysis.” J. Environ. Chem. Eng. 8 (5): 104105. https://doi.org/10.1016/j.jece.2020.104105.
Salvestrini, S., V. Leone, P. Iovino, S. Canzano, and S. Capasso. 2014. “Considerations about the correct evaluation of sorption thermodynamic parameters from equilibrium isotherms.” J. Chem. Thermodyn. 68 (Jan): 310–316. https://doi.org/10.1016/j.jct.2013.09.013.
Sharma, R., A. Sarswat, C. U. Pittman, and D. Mohan. 2017. “Cadmium and lead remediation using magnetic and non-magnetic sustainable biosorbents derived from Bauhinia purpurea pods.” RSC Adv. 7 (14): 8606–8624. https://doi.org/10.1039/C6RA25295H.
Smith, N., and A. Cumberledge. 2020. “Quotation errors in general science journals.” Proc. R. Soc. A: Math. Phys. Eng. Sci. 476 (2242): 20200538. https://doi.org/10.1098/rspa.2020.0538.
Steffen, V., L. Cardozo-Filho, E. A. Silva, L. R. Evangelista, R. Guirardello, and M. R. Mafra. 2015. “Equilibrium modeling of ion adsorption based on Poisson–Boltzmann equation.” Colloids Surf., A 468 (Mar): 159–166. https://doi.org/10.1016/j.colsurfa.2014.11.065.
Taqui, S. N., R. Yahya, A. Hassan, F. Khanum, and A. A. Syed. 2019. “Valorization of nutraceutical industrial coriander seed spent by the process of sustainable adsorption system of acid black 52 from aqueous solution.” Int. J. Environ. Res. 13 (4): 639–659. https://doi.org/10.1007/s41742-019-00207-7.
Thuy Luong Thi, T., H. S. Ta, and K. Le Van. 2021. “Activated carbons from coffee husk: Preparation, characterization, and reactive red 195 adsorption.” J. Chem. Res. 45 (5–6): 380–394. https://doi.org/10.1177/1747519820970469.
Tomul, F., Y. Arslan, F. T. Başoğlu, Y. Babuçcuoğlu, and H. N. Tran. 2019. “Efficient removal of anti-inflammatory from solution by Fe-containing activated carbon: Adsorption kinetics, isotherms, and thermodynamics.” J. Environ. Manage. 238 (May): 296–306. https://doi.org/10.1016/j.jenvman.2019.02.088.
Tran, H. N. 2020. “Comments on ‘Fast and efficient removal of Cr(VI) to ppb level together with Cr(III) sequestration in water using layered double hydroxide interclated with diethyldithiocarbamate’.” Sci. Total Environ. 746 (Jul): 139854. https://doi.org/10.1016/j.scitotenv.2020.139854.
Tran, H. N. 2022. “Improper estimation of thermodynamic parameters in adsorption studies with distribution coefficient KD (qe/Ce) or Freundlich constant (KF): Considerations from the derivation of dimensionless thermodynamic equilibrium constant and suggestions.” Adsorpt. Sci. Technol. 2022 (Jul): 5553212.
Tran, H. N., E. C. Lima, R.-S. Juang, J.-C. Bollinger, and H.-P. Chao. 2021. “Thermodynamic parameters of liquid–phase adsorption process calculated from different equilibrium constants related to adsorption isotherms: A comparison study.” J. Environ. Chem. Eng. 9 (6): 106674. https://doi.org/10.1016/j.jece.2021.106674.
Tran, H. N., P. V. Viet, and H.-P. Chao. 2018. “Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds.” Ecotoxicol. Environ. Saf. 147 (Jan): 55–63. https://doi.org/10.1016/j.ecoenv.2017.08.027.
Tran, H. N., S.-J. You, A. Hosseini-Bandegharaei, and H.-P. Chao. 2017. “Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review.” Water Res. 120 (Sep): 88–116. https://doi.org/10.1016/j.watres.2017.04.014.
Tümsek, F., and Ö. Avcı. 2013. “Investigation of kinetics and isotherm models for the acid orange 95 adsorption from aqueous solution onto natural minerals.” J. Chem. Eng. Data 58 (3): 551–559. https://doi.org/10.1021/je301215s.
Vasanth Kumar, K., K. Porkodi, and F. Rocha. 2007. “Comments on ‘Equilibrium and kinetic studies for the biosorption system of copper(II) ion from aqueous solution using Tectona grandis L.f. leaves powder’.” J. Hazard. Mater. 146 (1): 428–429. https://doi.org/10.1016/j.jhazmat.2007.01.073.
Vasanth Kumar, K., and S. Sivanesan. 2006. “Equilibrium data, isotherm parameters and process design for partial and complete isotherm of methylene blue onto activated carbon.” J. Hazard. Mater. 134 (1): 237–244. https://doi.org/10.1016/j.jhazmat.2005.11.002.
Vieira, L. C., L. G. de Araujo, R. V. de Padua Ferreira, E. A. da Silva, R. L. S. Canevesi, and J. T. Marumo. 2019. “Uranium biosorption by Lemna sp. and Pistia stratiotes.” J. Environ. Radioact. 203 (Mar): 179–186. https://doi.org/10.1016/j.jenvrad.2019.03.019.
Vijayaraghavan, K., T. V. N. Padmesh, K. Palanivelu, and M. Velan. 2006. “Biosorption of Nickel(II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models.” J. Hazard. Mater. 133 (1): 304–308. https://doi.org/10.1016/j.jhazmat.2005.10.016.
Wanassi, B., I. B. Hariz, C. M. Ghimbeu, C. Vaulot, M. B. Hassen, and M. Jeguirim. 2017. “Carbonaceous adsorbents derived from textile cotton waste for the removal of Alizarin S dye from aqueous effluent: Kinetic and equilibrium studies.” Environ. Sci. Pollut. Res. 24 (11): 10041–10055. https://doi.org/10.1007/s11356-017-8410-1.
Wang, R.-C., C.-C. Kuo, and C.-C. Shyu. 1997. “Adsorption of phenols onto granular activated carbon in a liquid–solid fluidized bed.” J. Chem. Technol. Biotechnol. 68 (2): 187–194. https://doi.org/10.1002/(SICI)1097-4660(199702)68:2%3C187::AID-JCTB651%3E3.0.CO;2-1.
Wang, S. W., A. L. Hines, and D. S. Farrier. 1979. “Adsorption of aliphatic acids from aqueous solutions onto activated carbon.” J. Chem. Eng. Data 24 (4): 345–347. https://doi.org/10.1021/je60083a005.
Zheng, L., Y. Yang, P. Meng, and D. Peng. 2019. “Absorption of cadmium (II) via sulfur-chelating based cellulose: Characterization, isotherm models and their error analysis.” Carbohydr. Polym. 209 (Apr): 38–50. https://doi.org/10.1016/j.carbpol.2019.01.012.
Zhou, D.-M., H.-M. Chen, C.-R. Zheng, and C. Tu. 2001. “Catalytic effect of soil colloids on the reaction between CrVI and p-methoxyphenol.” Environ. Pollut. 111 (1): 75–81. https://doi.org/10.1016/S0269-7491(00)00028-2.
Zhou, X., X. Yu, J. Hao, and H. Liu. 2022. “Comments on the calculation of the standard equilibrium constant using the Langmuir model in Journal of Hazardous Materials 422 (2022) 126863.” J. Hazard. Mater. 429 (May): 128407. https://doi.org/10.1016/j.jhazmat.2022.128407.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 149Issue 3March 2023

History

Published online: Dec 21, 2022
Published in print: Mar 1, 2023
Discussion open until: May 21, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Director, Center for Energy and Environmental Materials, Institute of Fundamental and Applied Sciences, Duy Tan Univ., Ho Chi Minh 700000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan Univ., Da Nang City, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan Univ., Da Nang 550000, Viet Nam (corresponding author). ORCID: https://orcid.org/0000-0001-8361-2616. Email: [email protected]; [email protected]
Professor, Faculy of Sciences and Technology, Univ. of Limoges, Laboratory E2Lim, Limoges 87060, France. ORCID: https://orcid.org/0000-0003-4059-5793
Professor, Dept. of Environmental, Biological, and Pharmaceutical Sciences and Technologies, Univ. of Campania Luigi Vanvitelli, via Vivaldi 43, Caserta 81100, Italy; Environmental Technologies, Univ. Spin-Off of Univ. of Campania Luigi Vanvitelli, via Vivaldi 43, Caserta 81100, Italy. ORCID: https://orcid.org/0000-0002-9392-9358
Director, R&D Dept., Honeychem Research, Newtown, Wellington 6021, New Zealand. ORCID: https://orcid.org/0000-0003-4012-0667
Professor, Dept. of Chemical and Materials Engineering, Chang Gung Univ., Guishan, Taoyuan 33302, Taiwan; Div. of Nephrology, Dept. of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan. ORCID: https://orcid.org/0000-0002-6373-9668

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Modeling of aqueous phase adsorption: Is it time to bid adieu to the Harkins–Jura isotherm?, Journal of Molecular Liquids, 10.1016/j.molliq.2022.121122, 371, (121122), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share