State-of-the-Art Reviews
Jan 19, 2023

Fate of Per- and Polyfluoroalkyl Substances in Postconsumer Products during Waste Management

Publication: Journal of Environmental Engineering
Volume 149, Issue 4

Abstract

Per- and polyfluoroalkyl substances (PFAS) have been widely used in consumer products, and some inevitably end up as municipal solid waste. Significant knowledge gaps associated with the fate and release of PFAS from postconsumer products in solid waste management processes exist that limit our current ability to develop appropriate end-of-life management strategies for PFAS. The objectives of this paper are to summarize the current knowledge associated with the fate and release of PFAS from postconsumer products from commonly used waste management processes (including landfilling, recycling, composting, and incineration) and to use that information to identify knowledge gaps and potential exposure pathways for humans and the environment. The current results indicate that landfills are major sinks of PFAS because most PFAS-containing consumer products are landfilled, and PFAS was extensively reported in landfill leachate. More information is needed regarding the total influx of PFAS into landfills as well as landfill gas emissions. Recycling and composting also present potential exposure pathways. The reprocessing of carpet and paper packaging was reported to cause direct exposure to onsite workers through PFAS volatilization and dust emissions. Recycling can cause the circularity of PFAS in the new product and subsequent release throughout its lifespan. Composted food packaging was found to contain PFAS and could cause contamination during the land application of compost. The incineration of waste provides near-complete destruction (99%) of PFAS. However, some low-temperature regions within the furnace may still result in products of incomplete combustion, such as short-chain perfluoroalkyl acids and other stable fluorinated compounds, which may be released in incinerator ash. More information is needed regarding the mechanisms of PFAS thermal destruction. Case studies of PFAS product categories indicated that carpet and cosmetics might contribute to the release of more soluble and volatile PFAS, such as perfluoroalkyl acids and fluorotelomer alcohols during landfilling in leachate and gas. The fate of specific PFAS during waste management aligns well with their physical/chemical properties, such as solubility and volatility.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

References

Ahrens, L. 2011. “Polyfluoroalkyl compounds in the aquatic environment: A review of their occurrence and fate.” J. Environ. Monit. 13 (1): 20–31. https://doi.org/10.1039/C0EM00373E.
Alinezhad, A., P. Challa Sasi, P. Zhang, B. Yao, A. Kubátová, S. A. Golovko, M. Y. Golovko, and F. Xiao. 2022. “An investigation of thermal air degradation and pyrolysis of per- and polyfluoroalkyl substances and aqueous film-forming foams in soil.” ACS ES&T Eng. 2 (2): 198–209. https://doi.org/10.1021/acsestengg.1c00335.
Allred, B. M., J. R. Lang, M. A. Barlaz, and J. A. Field. 2015. “Physical and biological release of poly- and perfluoroalkyl substances (PFASs) from municipal solid waste in anaerobic model landfill reactors.” Environ. Sci. Technol. 49 (13): 7648–7656. https://doi.org/10.1021/acs.est.5b01040.
Antell, N., A. Cullen, and M. Kado. 2020. Investigating PFAS removal strategies during carpet recycling: A greener solutions approach. Berkeley, CA: Univ. of California.
Barlaz, M. A., J. Field, and S. Simonich. 2020. “2020 progress report: Characterization and quantification of per- and polyfluoroalkyl substances in landfill gas and estimate of emissions from U.S. landfills.” Accessed October 20, 2022. https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract_id/10990/report/2020.
Benskin, J. P., M. G. Ikonomou, F. A. P. C. Gobas, T. H. Begley, M. B. Woudneh, and J. R. Cosgrove. 2013. “Biodegradation of N-Ethyl perfluorooctane sulfonamido ethanol (EtFOSE) and EtFOSE-based phosphate diester (SAmPAP Diester) in marine sediments.” Environ. Sci. Technol. 47 (3): 1381–1389. https://doi.org/10.1021/es304336r.
Bokkers, G., B. van den Ven, P. Janssen, W. Bil, F. van Broekhuizen, M. Zeilmaker, and A. Oomen. 2019. Per- and polyfluoroalkyl substances (PFASs) in food contact materials. Bilthoven, Utrecht, Netherlands: National Institute for Public Health and the Environment.
Bolan, N., et al. 2021. “Remediation of poly- and perfluoroalkyl substances (PFAS) contaminated soils—To mobilize or to immobilize or to degrade? [Article].” J. Hazard. Mater. 401 (Jan): 123892. https://doi.org/10.1016/j.jhazmat.2020.123892.
Brinch, A., A. Jensen, and F. Christensen. 2018. Risk assessment of fluorinated substances in cosmetic products. Survey of chemical substances in consumer products No. 169. Odense, Denmark: Danish Environmental Protection Agency.
Busch, J., L. Ahrens, R. Sturm, and R. Ebinghaus. 2010. “Polyfluoroalkyl compounds in landfill leachates.” Environ. Pollut. 158 (5): 1467–1471. https://doi.org/10.1016/j.envpol.2009.12.031.
Butt, C. M., D. C. G. Muir, and S. A. Mabury. 2014. “Biotransformation pathways of fluorotelomer-based polyfluoroalkyl substances: A review.” Environ. Toxicol. Chem. 33 (2): 243–267. https://doi.org/10.1002/etc.2407.
CalEPA. 2019. “Product-chemical profile for carpets and rugs containing perfluoroalkyl or polyfluoroalkyl substance.” Accessed October 1, 2019. https://dtsc.ca.gov/wp-content/uploads/sites/31/2020/02/Final_ProductChemical_Profile_Carpets_Rugs_PFASs_a.pdf.
CARE. 2012. “CARE operational guidelines for handling and processing post consumer carpet.” Accessed December 1, 2012. https://carpetrecovery.org/wp-content/uploads/2014/04/OpGuidelines_HP_PCC.pdf.
Carlson, G. L., and S. Tupper. 2020. “Ski wax use contributes to environmental contamination by per- and polyfluoroalkyl substances.” Chemosphere 261 (Dec): 128078. https://doi.org/10.1016/j.chemosphere.2020.128078.
Charbonnet, J. A., A. E. Rodowa, N. T. Joseph, J. L. Guelfo, J. A. Field, G. D. Jones, C. P. Higgins, D. E. Helbling, and E. F. Houtz. 2021. “Environmental source tracking of per- and polyfluoroalkyl substances within a forensic context: Current and future techniques.” Environ. Sci. Technol. 55 (11): 7237–7245. https://doi.org/10.1021/acs.est.0c08506.
Chen, J., L. Tang, W.-Q. Chen, G. F. Peaslee, and D. Jiang. 2020. “Flows, stock, and emissions of poly- and perfluoroalkyl substances in California carpet in 2000–2030 under different scenarios.” Environ. Sci. Technol. 54 (11): 6908–6918. https://doi.org/10.1021/acs.est.9b06956.
Chinthakindi, S., H. Zhu, and K. Kannan. 2021. “An exploratory analysis of poly- and per-fluoroalkyl substances in pet food packaging from the United States.” Environ. Technol. Innovation 21 (Feb): 101247. https://doi.org/10.1016/j.eti.2020.101247.
Choi, Y. J., R. Kim Lazcano, P. Yousefi, H. Trim, and L. S. Lee. 2019. “Perfluoroalkyl acid characterization in U.S. municipal organic solid waste composts.” Environ. Sci. Technol. Lett. 6 (6): 372–377. https://doi.org/10.1021/acs.estlett.9b00280.
Chouhan, N., H. Vig, and R. Deshmukh. 2021. “Cosmetics market by category (skin and sun care products, hair care products, deodorants & fragrances, and makeup & color cosmetics), gender (men, women, and unisex), and distribution channel (hypermarkets/supermarkets, specialty stores, pharmacies, online sales channels, and others): Global opportunity analysis and industry forecast, 2021–2027.” Accessed Feburary 1, 2021. https://www.alliedmarketresearch.com/cosmetics-market.
Curtzwiler, G. W., P. Silva, A. Hall, A. Ivey, and K. Vorst. 2021. “Significance of perfluoroalkyl substances (PFAS) in food packaging.” Integr. Environ. Assess. Manage. 17 (1): 7–12. https://doi.org/10.1002/ieam.4346.
Degli-Innocenti, F. 2021. “Is composting of packaging real recycling?” Waste Manage. 130 (Jul): 61–64. https://doi.org/10.1016/j.wasman.2021.05.017.
Delschen, T., D. Barkowski, J. Hachen, A. Jungmann, W. Leuchs, R. Pape, F. Raecke, S. Schroers, and B. Susset. 2007. “Bodenbelastungen nach aufbringung PFT-haltiger abfälle in nordrheinwestfalen.” Bodenschutz 3: 65–70.
D’Eon, J. C., and S. A. Mabury. 2011. “Exploring indirect sources of human exposure to perfluoroalkyl carboxylates (PFCAs): evaluating uptake, elimination, and biotransformation of polyfluoroalkyl phosphate esters (PAPs) in the rat.” Environ. Health Perspect. 119 (3): 344–350. https://doi.org/10.1289/ehp.1002409.
Di Battista, V., R. K. Rowe, D. Patch, and K. Weber. 2020. “PFOA and PFOS diffusion through LLDPE and LLDPE coextruded with EVOH at 22 °C, 35 °C, and 50 °C.” Waste Manage. 117 (Nov): 93–103. https://doi.org/10.1016/j.wasman.2020.07.036.
Dimzon, I. K., X. Trier, T. Frömel, R. Helmus, T. P. Knepper, and P. de Voogt. 2016. “High resolution mass spectrometry of polyfluorinated polyether-based formulation.” J. Am. Soc. Mass Spectrom. 27 (2): 309–318. https://doi.org/10.1007/s13361-015-1269-9.
Eggen, T., M. Moeder, and A. Arukwe. 2010. “Municipal landfill leachates: A significant source for new and emerging pollutants.” Sci. Total Environ. 408 (21): 5147–5157. https://doi.org/10.1016/j.scitotenv.2010.07.049.
Ellis, D. A., J. W. Martin, A. O. De Silva, S. A. Mabury, M. D. Hurley, M. P. Sulbaek Andersen, and T. J. Wallington. 2004. “Degradation of fluorotelomer alcohols:  A likely atmospheric source of perfluorinated carboxylic acids.” Environ. Sci. Technol. 38 (12): 3316–3321. https://doi.org/10.1021/es049860w.
Favreau, P., C. Poncioni-Rothlisberger, B. J. Place, H. Bouchex-Bellomie, A. Weber, J. Tremp, J. A. Field, and M. Kohler. 2017. “Multianalyte profiling of per- and polyfluoroalkyl substances (PFASs) in liquid commercial products.” Chemosphere 171 (Mar): 491–501. https://doi.org/10.1016/j.chemosphere.2016.11.127.
FDA (Food and Drug Administration). 2020. Guidance for industry: Preparation of food contact notifications (administrative). Silver Spring, MD: FDA.
Fernandes, A. R., I. R. Lake, A. Dowding, M. Rose, N. R. Jones, R. Petch, F. Smith, and S. Panton. 2019. “The potential of recycled materials used in agriculture to contaminate food through uptake by livestock.” Sci. Total Environ. 667 (Jun): 359–370. https://doi.org/10.1016/j.scitotenv.2019.02.211.
Fujii, Y., K. H. Harada, and A. Koizumi. 2013. “Occurrence of perfluorinated carboxylic acids (PFCAs) in personal care products and compounding agents.” Chemosphere 93 (3): 538–544. https://doi.org/10.1016/j.chemosphere.2013.06.049.
Gallen, C., D. Drage, G. Eaglesham, S. Grant, M. Bowman, and J. F. Mueller. 2017. “Australia-wide assessment of perfluoroalkyl substances (PFASs) in landfill leachates.” J. Hazard. Mater. 331 (Jun): 132–141. https://doi.org/10.1016/j.jhazmat.2017.02.006.
Gallen, C., D. Drage, S. Kaserzon, C. Baduel, M. Gallen, A. Banks, S. Broomhall, and J. F. Mueller. 2016. “Occurrence and distribution of brominated flame retardants and perfluoroalkyl substances in Australian landfill leachate and biosolids.” J. Hazard. Mater. 312 (Jul): 55–64. https://doi.org/10.1016/j.jhazmat.2016.03.031.
Gallen, C., G. Eaglesham, D. Drage, T. H. Nguyen, and J. F. Mueller. 2018. “A mass estimate of perfluoroalkyl substance (PFAS) release from Australian wastewater treatment plants.” Chemosphere 208 (Oct): 975–983. https://doi.org/10.1016/j.chemosphere.2018.06.024.
Garg, S., J. Wang, P. Kumar, V. Mishra, H. Arafat, R. S. Sharma, and L. F. Dumée. 2021. “Remediation of water from per-/poly-fluoroalkyl substances (PFAS)—Challenges and perspectives.” J. Environ. Chem. Eng. 9 (4): 105784. https://doi.org/10.1016/j.jece.2021.105784.
Gebbink, W. A., S. Ullah, O. Sandblom, and U. Berger. 2013. “Polyfluoroalkyl phosphate esters and perfluoroalkyl carboxylic acids in target food samples and packaging—Method development and screening.” Environ. Sci. Pollut. Res. 20 (11): 7949–7958. https://doi.org/10.1007/s11356-013-1596-y.
Glenn, G., R. Shogren, X. Jin, W. Orts, W. Hart-Cooper, and L. Olson. 2021. “Per- and polyfluoroalkyl substances and their alternatives in paper food packaging.” Compr. Rev. Food Sci. Food Saf. 20 (3): 2596–2625. https://doi.org/10.1111/1541-4337.12726.
Glüge, J., M. Scheringer, I. T. Cousins, J. C. DeWitt, G. Goldenman, D. Herzke, R. Lohmann, C. A. Ng, X. Trier, and Z. Wang. 2020. “An overview of the uses of per- and polyfluoroalkyl substances (PFAS).” Environ. Sci. Processes Impacts 22 (12): 2345–2373. https://doi.org/10.1039/D0EM00291G.
Guo, Z., X. Liu, K. A. Krebs, and N. F. Roache. 2009. Perfluorocarboxylic acid content in 116 articles of commerce. Washington, DC: USEPA.
Hamid, H., L. Y. Li, and J. R. Grace. 2018. “Review of the fate and transformation of per- and polyfluoroalkyl substances (PFASs) in landfills.” Environ. Pollut. 235 (Apr): 74–84. https://doi.org/10.1016/j.envpol.2017.12.030.
Hamid, H., L. Y. Li, and J. R. Grace. 2020. “Aerobic biotransformation of fluorotelomer compounds in landfill leachate-sediment.” Sci. Total Environ. 713 (Apr): 136547. https://doi.org/10.1016/j.scitotenv.2020.136547.
Hart & Hickman. 2020. “Collective study of PFAS and 1,4-dioxane in landfill leachate and estimated influence on wastewater treatment plant facility influent.” Accessed March 10, 2020. https://files.nc.gov/ncdeq/Waste%20Management/DWM/NC-Collective-Study-Rpt-03-10-2020.pdf.
Helmer, R. W., D. M. Reeves, and D. P. Cassidy. 2022. “Per- and polyfluorinated alkyl substances (PFAS) cycling within Michigan: Contaminated sites, landfills and wastewater treatment plants.” Water Res. 210 (Feb): 117983. https://doi.org/10.1016/j.watres.2021.117983.
Horst, J., J. McDonough, I. Ross, and E. Houtz. 2020. “Understanding and managing the potential by-products of PFAS destruction.” Groundwater Monit. Rem. 40 (2): 17–27. https://doi.org/10.1111/gwmr.12372.
Islam, M. Z., and R. K. Rowe. 2009. “Permeation of BTEX through unaged and aged HDPE geomembranes.” J. Geotech. Geoenviron. Eng. 135 (8): 1130–1140. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000056.
Janousek, R. M., S. Lebertz, and T. P. Knepper. 2019. “Previously unidentified sources of perfluoroalkyl and polyfluoroalkyl substances from building materials and industrial fabrics.” Environ. Sci. Process Impacts 21 (11): 1936–1945. https://doi.org/10.1039/C9EM00091G.
Jiang, D., and T. Zhang. 2021. “State-level material flow analysis suggests the need to reconsider current monitoring practice and mitigation policies for poly- and perfluoroalkyl substances in carpet.” J. Ind. Ecol. 26 (3): 815–823. https://doi.org/10.1111/jiec.13213.
Kaza, S., L. C. Yao, P. Bhada-Tata, and F. Van Woerden. 2018. What a waste 2.0: A global snapshot of solid waste management to 2050. Washington, DC: World Bank Urban Development.
Kim, J.-W., N. M. Tue, T. Isobe, K. Misaki, S. Takahashi, P. H. Viet, and S. Tanabe. 2013. “Contamination by perfluorinated compounds in water near waste recycling and disposal sites in Vietnam.” Environ. Monit. Assess. 185 (4): 2909–2919. https://doi.org/10.1007/s10661-012-2759-x.
Kim, M., L. Y. Li, J. R. Grace, J. P. Benskin, and M. G. Ikonomou. 2015. “Compositional effects on leaching of stain-guarded (perfluoroalkyl and polyfluoroalkyl substance-treated) carpet in landfill leachate.” Environ. Sci. Technol. 49 (11): 6564–6573. https://doi.org/10.1021/es505333y.
Kissa, E. 2001. Fluorinated surfactants and repellents. 2nd ed. New York: Marcel Dekker.
Kotthoff, M., J. Müller, H. Jürling, M. Schlummer, and D. Fiedler. 2015. “Perfluoroalkyl and polyfluoroalkyl substances in consumer products.” Environ. Sci. Pollut. Res. 22 (19): 14546–14559. https://doi.org/10.1007/s11356-015-4202-7.
Krug, J. D., et al. 2022. “Combustion of C1 and C2 PFAS: Kinetic modeling and experiments.” J. Air Waste Manage. Assoc. 72 (3): 256–270. https://doi.org/10.1080/10962247.2021.2021317.
Lang, J. R., B. M. Allred, J. A. Field, J. W. Levis, and M. A. Barlaz. 2017. “National estimate of per- and polyfluoroalkyl substance (PFAS) release to U.S. municipal landfill leachate.” Environ. Sci. Technol. 51 (4): 2197–2205. https://doi.org/10.1021/acs.est.6b05005.
Lang, J. R., B. M. Allred, G. F. Peaslee, J. A. Field, and M. A. Barlaz. 2016. “Release of per- and polyfluoroalkyl substances (PFASs) from carpet and clothing in model anaerobic landfill reactors.” Environ. Sci. Technol. 50 (10): 5024–5032. https://doi.org/10.1021/acs.est.5b06237.
LANUV. 2011. “Verbreitung von PFT in der Umwelt: Ursachen—Untersuchungsstrategie—Ergebnisse—Maßnahmen.” LANUVFachbericht 34, landesamt für Natur, umwelt und verbraucherschutz Nordrhein-Westfalen. Accessed December 4, 2019. https://www.lanuv.nrw.de/filead min/lanuvpubl/3_fachberichte/30034.pdf.
Lee, H., J. D’eon, and S. A. Mabury. 2010. “Biodegradation of polyfluoroalkyl phosphates as a source of perfluorinated acids to the environment.” Environ. Sci. Technol. 44 (9): 3305–3310. https://doi.org/10.1021/es9028183.
Li, L., J. Liu, J. Hu, and F. Wania. 2017. “Degradation of fluorotelomer-based polymers contributes to the global occurrence of fluorotelomer alcohol and perfluoroalkyl carboxylates: A combined dynamic substance flow and environmental fate modeling analysis.” Environ. Sci. Technol. 51 (8): 4461–4470. https://doi.org/10.1021/acs.est.6b04021.
Lindstrom, A. B., M. J. Strynar, A. D. Delinsky, S. F. Nakayama, L. McMillan, E. L. Libelo, M. Neill, and L. Thomas. 2011. “Application of WWTP biosolids and resulting perfluorinated compound contamination of surface and well water in Decatur, Alabama, USA.” Environ. Sci. Technol. 45 (19): 8015–8021. https://doi.org/10.1021/es1039425.
Liu, J., J. Katahara, G. Li, S. Coe-Sullivan, and R. H. Hurt. 2012. “Degradation products from consumer nanocomposites: A case study on quantum dot lighting.” Environ. Sci. Technol. 46 (6): 3220–3227. https://doi.org/10.1021/es204430f.
Liu, J., and S. Mejia Avendaño. 2013. “Microbial degradation of polyfluoroalkyl chemicals in the environment: A review.” Environ. Int. 61 (Nov): 98–114. https://doi.org/10.1016/j.envint.2013.08.022.
Liu, Y., N. M. Robey, J. A. Bowden, T. M. Tolaymat, B. F. da Silva, H. M. Solo-Gabriele, and T. G. Townsend. 2021. “From waste collection vehicles to landfills: Indication of per- and polyfluoroalkyl substance (PFAS) transformation.” Environ. Sci. Technol. Lett. 8 (1): 66–72. https://doi.org/10.1021/acs.estlett.0c00819.
Liu, Z., Y. Lu, P. Wang, T. Wang, S. Liu, A. C. Johnson, A. J. Sweetman, and Y. Baninla. 2017. “Pollution pathways and release estimation of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in central and eastern China.” Sci. Total Environ. 580 (Feb): 1247–1256. https://doi.org/10.1016/j.scitotenv.2016.12.085.
Lohmann, R., et al. 2020. “Are fluoropolymers really of low concern for human and environmental health and separate from other PFAS?” Environ. Sci. Technol. 54 (20): 12820–12828. https://doi.org/10.1021/acs.est.0c03244.
Longendyke, G. K., S. Katel, and Y. Wang. 2022. “PFAS fate and destruction mechanisms during thermal treatment: A comprehensive review.” Environ. Sci. Processes Impacts 24 (2): 196–208. https://doi.org/10.1039/D1EM00465D.
Mahinroosta, R., and L. Senevirathna. 2020. “A review of the emerging treatment technologies for PFAS contaminated soils.” J. Environ. Manage. 255 (Feb): 109896. https://doi.org/10.1016/j.jenvman.2019.109896.
Maine Legislation. 2022. “Products containing PFAS, 38 M.R.S. §1614.” Accessed September 28, 2022. https://legislature.maine.gov/statutes/38/title38sec1614.html.
Masoner, J. R., et al. 2020. “Landfill leachate contributes per-/poly-fluoroalkyl substances (PFAS) and pharmaceuticals to municipal wastewater.” Environ. Sci. Water Res. Technol. 6 (5): 1300–1311. https://doi.org/10.1039/D0EW00045K.
Minnesota Pollution Control Agency. 2007. Active Landfill survey for PFCs, 2007. Willmar, MN: Minnesota Pollution Control Agency.
Nørgaard, A. W., J. S. Hansen, J. B. Sørli, M. Levin, P. Wolkoff, G. D. Nielsen, and S. T. Larsen. 2013. “Pulmonary toxicity of perfluorinated silane-based nanofilm spray products: Solvent dependency.” Toxicol. Sci. 137 (1): 179–188. https://doi.org/10.1093/toxsci/kft225.
Nørgaard, A. W., P. Wolkoff, and F. R. Lauritsen. 2010. “Characterization of nanofilm spray products by mass spectrometry.” Chemosphere 80 (11): 1377–1386. https://doi.org/10.1016/j.chemosphere.2010.06.004.
North Dakota Environmental Quality. 2018. North Dakota statewide 2018 per- and polyfluoroalkyl substances (PFAS) presence/absence survey. Bismarck, ND: North Dakota Department of Environmental Quality.
NTH Consultants. 2019. “Michigan waste & recycling association statewide study on landfill leachate PFOA and PFOS impact on water resource recovery facility influent.” Accessed March 6, 2019. https://www.bridgemi.com/sites/default/files/mwra-technical-report.pdf.
Olsen, G. W., S. C. Chang, P. E. Noker, G. S. Gorman, D. J. Ehresman, P. H. Lieder, and J. L. Butenhoff. 2009. “A comparison of the pharmacokinetics of perfluorobutanesulfonate (PFBS) in rats, monkeys, and humans.” Toxicology 256 (1–2): 65–74. https://doi.org/10.1016/j.tox.2008.11.008.
Peaslee, G. F., J. T. Wilkinson, S. R. McGuinness, M. Tighe, N. Caterisano, S. Lee, A. Gonzales, M. Roddy, S. Mills, and K. Mitchell. 2020. “Another pathway for firefighter exposure to per- and polyfluoroalkyl substances: Firefighter textiles.” Environ. Sci. Technol. Lett. 7 (8): 594–599. https://doi.org/10.1021/acs.estlett.0c00410.
Peng, L., W. Xu, Q. Zeng, F. Sun, Y. Guo, S. Zhong, F. Wang, and D. Chen. 2022. “Exposure to perfluoroalkyl substances in waste recycling workers: Distributions in paired human serum and urine.” Environ. Int. 158 (Jan): 106963. https://doi.org/10.1016/j.envint.2021.106963.
Pivnenko, K., E. Eriksson, and T. F. Astrup. 2015. “Waste paper for recycling: Overview and identification of potentially critical substances.” Waste Manage. 45 (Nov): 134–142. https://doi.org/10.1016/j.wasman.2015.02.028.
Poothong, S., S. K. Boontanon, and N. Boontanon. 2012. “Determination of perfluorooctane sulfonate and perfluorooctanoic acid in food packaging using liquid chromatography coupled with tandem mass spectrometry.” J. Hazard. Mater. 205 (Jan): 139–143. https://doi.org/10.1016/j.jhazmat.2011.12.050.
Poothong, S., E. Papadopoulou, J. A. Padilla-Sánchez, C. Thomsen, and L. S. Haug. 2020. “Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): From external exposure to human blood.” Environ. Int. 134 (Jan): 105244. https://doi.org/10.1016/j.envint.2019.105244.
Propp, V. R., A. O. De Silva, C. Spencer, S. J. Brown, S. D. Catingan, J. E. Smith, and J. W. Roy. 2021. “Organic contaminants of emerging concern in leachate of historic municipal landfills.” Environ. Pollut. 276 (May): 116474. https://doi.org/10.1016/j.envpol.2021.116474.
Rayne, S., and K. Forest. 2009. “A comparative assessment of octanol-water partitioning and distribution constant estimation methods for perfluoroalkyl carboxylates and sulfonates.” Nat. Precedings. 2009 (Jun): 1. https://doi.org/10.1038/npre.2009.3282.2.
Renou, S., J. G. Givaudan, S. Poulain, F. Dirassouyan, and P. Moulin. 2008. “Landfill leachate treatment: Review and opportunity.” J. Hazard. Mater. 150 (3): 468–493. https://doi.org/10.1016/j.jhazmat.2007.09.077.
Röhler, K., A. A. Haluska, B. Susset, B. Liu, and P. Grathwohl. 2021. “Long-term behavior of PFAS in contaminated agricultural soils in Germany.” J. Contam. Hydrol. 241 (Aug): 103812. https://doi.org/10.1016/j.jconhyd.2021.103812.
Russell, M. H., W. R. Berti, B. Szostek, and R. C. Buck. 2008. “Investigation of the biodegradation potential of a fluoroacrylate polymer product in aerobic soils.” Environ. Sci. Technol. 42 (3): 800–807. https://doi.org/10.1021/es0710499.
Sasi, P. C., A. Alinezhad, B. Yao, A. Kubátová, S. A. Golovko, M. Y. Golovko, and F. Xiao. 2021. “Effect of granular activated carbon and other porous materials on thermal decomposition of per- and polyfluoroalkyl substances: Mechanisms and implications for water purification.” Water Res. 200 (Jul): 117271. https://doi.org/10.1016/j.watres.2021.117271.
Schaider, L. A., S. A. Balan, A. Blum, D. Q. Andrews, M. J. Strynar, M. E. Dickinson, D. M. Lunderberg, J. R. Lang, and G. F. Peaslee. 2017. “Fluorinated compounds in U.S. fast food packaging.” Environ. Sci. Technol. Lett. 4 (3): 105–111. https://doi.org/10.1021/acs.estlett.6b00435.
Schultes, L., R. Vestergren, K. Volkova, E. Westberg, T. Jacobson, and J. P. Benskin. 2018. “Per- and polyfluoroalkyl substances and fluorine mass balance in cosmetic products from the Swedish market: Implications for environmental emissions and human exposure.” Environ. Sci. Processes Impacts 20 (12): 1680–1690. https://doi.org/10.1039/C8EM00368H.
Schulze, P. E., and H. Norin. 2006. Fluorinated pollutants in all-weather clothing. Friends of the Earth Norway—Rep. 2/2006. Stockholm, Sweden: Swedish Society for Nature Conservation.
Shoeib, T., Y. Hassan, C. Rauert, and T. Harner. 2016. “Poly- and perfluoroalkyl substances (PFASs) in indoor dust and food packaging materials in Egypt: Trends in developed and developing countries.” Chemosphere 144 (Feb): 1573–1581. https://doi.org/10.1016/j.chemosphere.2015.08.066.
Sivaram, A. K., L. Panneerselvan, A. Surapaneni, E. Lee, K. Kannan, and M. Megharaj. 2022. “Per- and polyfluoroalkyl substances (PFAS) in commercial composts, garden soils, and potting mixes of Australia.” Environ. Adv. 7 (Apr): 100174. https://doi.org/10.1016/j.envadv.2022.100174.
Solo-Gabriele, H. M., A. S. Jones, A. B. Lindstrom, and J. R. Lang. 2020. “Waste type, incineration, and aeration are associated with per- and polyfluoroalkyl levels in landfill leachates.” Waste Manage. 107 (Apr): 191–200. https://doi.org/10.1016/j.wasman.2020.03.034.
State Water Resources Control Board. 2019. “State Water Board updates guidelines for testing and reporting PFOA and PFOS as it assesses scope of problem.” Accessed August 23, 2019. https://www.waterboards.ca.gov/press_room/press_releases/2019/pr082319pfoa_pfos_guidelines_news_release.pdf.
Statista. 2021. “Recycling rate of municipal packaging waste in the European Union (EU-27) in 2019, by material.” Accessed June 22, 2022. https://www.statista.com/statistics/1072637/recycling-of-municipal-waste-in-the-eu-by-material/.
Stoiber, T., S. Evans, and O. V. Naidenko. 2020. “Disposal of products and materials containing per- and polyfluoroalkyl substances (PFAS): A cyclical problem [Editorial Material].” Chemosphere 260 (Dec): 127659. https://doi.org/10.1016/j.chemosphere.2020.127659.
Tansel, B. 2022. “PFAS risk propagation terminology in spatial and temporal scales: Risk intensification, risk attenuation, and risk amplification.” Sci. Total Environ. 835 (Apr): 155503. https://doi.org/10.1016/j.scitotenv.2022.155503.
Taylor, P. H., T. Yamada, R. C. Striebich, J. L. Graham, and R. J. Giraud. 2014. “Investigation of waste incineration of fluorotelomer-based polymers as a potential source of PFOA in the environment.” Chemosphere 110 (Sep): 17–22. https://doi.org/10.1016/j.chemosphere.2014.02.037.
Thakali, A., and J. D. MacRae. 2021. “A review of chemical and microbial contamination in food: What are the threats to a circular food system?” Environ. Res. 194 (Mar): 110635. https://doi.org/10.1016/j.envres.2020.110635.
Thoma, E. D., R. S. Wright, I. George, M. Krause, D. Presezzi, V. Villa, W. Preston, P. Deshmukh, P. Kauppi, and P. G. Zemek. 2022. “Pyrolysis processing of PFAS-impacted biosolids, a pilot study.” J. Air Waste Manage. Assoc. 72 (4): 309–318. https://doi.org/10.1080/10962247.2021.2009935.
Tian, Y., Y. Yao, S. Chang, Z. Zhao, Y. Zhao, X. Yuan, F. Wu, and H. Sun. 2018. “Occurrence and phase distribution of neutral and ionizable per- and polyfluoroalkyl substances (PFASs) in the atmosphere and plant leaves around landfills: A case study in Tianjin, China.” Environ. Sci. Technol. 52 (3): 1301–1310. https://doi.org/10.1021/acs.est.7b05385.
Toxics Use Reduction Institute. 2022. “Per- and poly-fluoroalkyl substances (PFAS) in artificial turf carpet.” Accessed February 25, 2020. https://www.turi.org/content/download/12963/201149/file/TURI+fact+sheet+-+PFAS+in+artificial+turf.pdf.
Trier, X., C. Taxvig, A. Rosenmai, and G. Pederson. 2017. PFAS in paper and board for food contact—Options for risk management of poly- and perfluorinated substances. Copenhagen, Denmark: Nordic Council of Ministers.
USEPA. 2020. “Advancing sustainable materials management: 2018 fact sheet.” Accessed December 1, 2020. https://www.epa.gov/sites/default/files/2020-11/documents/2018_ff_fact_sheet.pdf.
USEPA. 2021. “PFAS strategic roadmap: EPA’s commitments to action 2021-2024. Article EPA-100-K-21-002.” Accessed October 18, 2021. https://www.epa.gov/pfas/pfas-strategic-roadmap-epas-commitments-action-2021-2024.
USEPA. 2022. “Containers and packaging: Product-specific data.” Accessed December 3, 2022. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/containers-and-packaging-product-specific.
Wang, J., Z. Lin, X. He, M. Song, P. Westerhoff, K. Doudrick, and D. Hanigan. 2022. “Critical review of thermal decomposition of per- and polyfluoroalkyl substances: Mechanisms and implications for thermal treatment processes.” Environ. Sci. Technol. 56 (9): 5355–5370. https://doi.org/10.1021/acs.est.2c02251.
Wang, S., Q. Liu, Z. Zhao, C. Fan, X. Chen, G. Xu, M. Wu, J. Chen, and J. Li. 2020. “Enhanced low-temperature activity of toluene oxidation over the rod-like MnO2/LaMnO3 perovskites with alkaline hydrothermal and acid-etching treatment.” Ind. Eng. Chem. Res. 59 (14): 6556–6564. https://doi.org/10.1021/acs.iecr.0c00373.
Washburn, S. T., T. S. Bingman, S. K. Braithwaite, R. C. Buck, L. W. Buxton, H. J. Clewell, L. A. Haroun, J. E. Kester, R. W. Rickard, and A. M. Shipp. 2005. “Exposure assessment and risk characterization for perfluorooctanoate in selected consumer articles.” Environ. Sci. Technol. 39 (11): 3904–3910. https://doi.org/10.1021/es048353b.
Washington, J. W., J. J. Ellington, T. M. Jenkins, J. J. Evans, H. Yoo, and S. C. Hafner. 2009. “Degradability of an acrylate-linked, fluorotelomer polymer in soil.” Environ. Sci. Technol. 43 (17): 6617–6623. https://doi.org/10.1021/es9002668.
Washington, J. W., H. Yoo, J. J. Ellington, T. M. Jenkins, and E. L. Libelo. 2010. “Concentrations, distribution, and persistence of perfluoroalkylates in sludge-applied soils near Decatur, Alabama, USA.” Environ. Sci. Technol. 44 (22): 8390–8396. https://doi.org/10.1021/es1003846.
Weston & Sampson. 2020. “Poly- and perfluoroalkyl substances at wastewater treatment facilities and landfill leachate 2019 summary report.” Accessed January 30, 2020. https://dec.vermont.gov/sites/dec/files/wmp/SolidWaste/Documents/02.03.20_PFAS%20in%20LF%20and%20WWTF%20Final%20Report.pdf.
Whitehead, H. D., et al. 2021. “Fluorinated compounds in North American cosmetics.” Environ. Sci. Technol. Lett. 8 (7): 538–544. https://doi.org/10.1021/acs.estlett.1c00240.
Winchell, L. J., J. J. Ross, M. J. M. Wells, X. Fonoll, J. W. Norton Jr., and K. Y. Bell. 2021. “Per- and polyfluoroalkyl substances thermal destruction at water resource recovery facilities: A state of the science review.” Water Environ. Res. 93 (6): 826–843. https://doi.org/10.1002/wer.1483.
Xiao, F., P. C. Sasi, B. Yao, A. Kubátová, S. A. Golovko, M. Y. Golovko, and D. Soli. 2020. “Thermal stability and decomposition of perfluoroalkyl substances on spent granular activated carbon.” Environ. Sci. Technol. Lett. 7 (5): 343–350. https://doi.org/10.1021/acs.estlett.0c00114.
Xiao, F., P. C. Sasi, B. Yao, A. Kubátová, S. A. Golovko, M. Y. Golovko, and D. Soli. 2021. “Thermal decomposition of PFAS: Response to comment on ‘thermal stability and decomposition of perfluoroalkyl substances on spent granular activated carbon’.” Environ. Sci. Technol. Lett. 8 (4): 364–365. https://doi.org/10.1021/acs.estlett.1c00061.
Yamada, T., P. H. Taylor, R. C. Buck, M. A. Kaiser, and R. J. Giraud. 2005. “Thermal degradation of fluorotelomer treated articles and related materials.” Chemosphere 61 (7): 974–984. https://doi.org/10.1016/j.chemosphere.2005.03.025.
Yang, X., J. Huang, K. Zhang, G. Yu, S. Deng, and B. Wang. 2014. “Stability of 6:2 fluorotelomer sulfonate in advanced oxidation processes: Degradation kinetics and pathway.” Environ. Sci. Pollut. Res. Int. 21 (6): 4634–4642. https://doi.org/10.1007/s11356-013-2389-z.
Yao, B., R. Sun, A. Alinezhad, A. Kubátová, M. F. Simcik, X. Guan, and F. Xiao. 2022. “The first quantitative investigation of compounds generated from PFAS, PFAS-containing aqueous film-forming foams and commercial fluorosurfactants in pyrolytic processes.” J. Hazard. Mater. 436 (Jun): 129313. https://doi.org/10.1016/j.jhazmat.2022.129313.
Yin, T., H. Chen, M. Reinhard, X. Yi, Y. He, and K. Y.-H. Gin. 2017. “Perfluoroalkyl and polyfluoroalkyl substances removal in a full-scale tropical constructed wetland system treating landfill leachate.” Water Res. 125 (Nov): 418–426. https://doi.org/10.1016/j.watres.2017.08.071.
Yoo, H., J. W. Washington, J. J. Ellington, T. M. Jenkins, and M. P. Neill. 2010. “Concentrations, distribution, and persistence of fluorotelomer alcohols in sludge-applied soils near Decatur, Alabama, USA.” Environ. Sci. Technol. 44 (22): 8397–8402. https://doi.org/10.1021/es100390r.
Yuan, G., H. Peng, C. Huang, and J. Hu. 2016. “Ubiquitous occurrence of fluorotelomer alcohols in eco-friendly paper-made food-contact materials and their implication for human exposure.” Environ. Sci. Technol. 50 (2): 942–950. https://doi.org/10.1021/acs.est.5b03806.
Zafeiraki, E., D. Costopoulou, I. Vassiliadou, E. Bakeas, and L. Leondiadis. 2014. “Determination of perfluorinated compounds (PFCs) in various foodstuff packaging materials used in the Greek market.” Chemosphere 94 (Jan): 169–176. https://doi.org/10.1016/j.chemosphere.2013.09.092.
Zhang, C., Y. Peng, X. Niu, and K. Ning. 2014. “Determination of perfluoroalkyl substances in municipal landfill leachates from Beijing, China [Article].” Asian J. Chem. 26 (13): 3833–3836. https://doi.org/10.14233/ajchem.2014.15963.
Zhang, T., B. Zhang, X. Bai, Y. Yao, L. Wang, Y. Shu, K. Kannan, X. Huang, and H. Sun. 2019. “Health status of elderly people living near E-waste recycling sites: Association of E-waste dismantling activities with legacy perfluoroalkyl substances (PFASs).” Environ. Sci. Technol. Lett. 6 (3): 133–140. https://doi.org/10.1021/acs.estlett.9b00085.
Zhang, Y., S. Beesoon, L. Zhu, and J. W. Martin. 2013. “Biomonitoring of perfluoroalkyl acids in human urine and estimates of biological half-life.” Environ. Sci. Technol. 47 (18): 10619–10627. https://doi.org/10.1021/es401905e.
Zhu, H., and K. Kannan. 2020. “A pilot study of per- and polyfluoroalkyl substances in automotive lubricant oils from the United States.” Environ. Technol. Innovation 19 (Aug): 100943. https://doi.org/10.1016/j.eti.2020.100943.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 149Issue 4April 2023

History

Published online: Jan 19, 2023
Published in print: Apr 1, 2023
Discussion open until: Jun 19, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Pegasus Professor Emerita, Dept. of Civil, Environmental, and Construction Engineering, Univ. of Central Florida, Orlando, FL 32816 (corresponding author). ORCID: https://orcid.org/0000-0003-4609-4981. Email: [email protected]
Stephanie C. Bolyard, A.M.ASCE [email protected]
Senior Engineer to the Assistant Secretary, North Carolina Dept. of Environmental Quality, Raleigh, NC 27603. Email: [email protected]
Jiannan Chen, A.M.ASCE [email protected]
Assistant Professor, Dept. of Civil, Environmental, and Construction Engineering, Univ. of Central Florida, Orlando, FL 32816. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share