Technical Papers
Nov 22, 2022

Preparation of Chitosan-Carbon Nanotubes Decorated with ZnO@laccase: Application in the Removal of Bisphenol A from Aqueous Solution

Publication: Journal of Environmental Engineering
Volume 149, Issue 2

Abstract

Bioremediation with immobilized enzymes has been established as the method for restoring contaminated ecosystems with the help of biological tools on a global scale. The purpose of this work is to immobilize the laccase enzyme for increasing the biocatalyst′s ability in order to remove bisphenol A (BPA). Initially, the nanocatalyst was prepared by immobilizing laccase on chitosan using carbon nanotubes decorated with zinc oxide. Subsequently, Fourier transformed infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and dot mapping were employed to characterize the prepared nanocomposites. Laccase activity, immobilization yield (%), thermal and storage stability, and reusability of laccase immobilized on chitosan-coated carbon nanotubes (CNTs)/ZnO nanocomposites were also measured. The chitosan (CS)-CNTs/ZnO@laccase nanocatalyst performance in different operational conditions (initial concentrations of bisphenol A, amount of nanobiocatalyst, pH, and irradiation time) on the photodegradation process of bisphenol A were also investigated and optimized using the response surface methodology (RSM)-central composite design (CCD) model. The RSM design and experiments demonstrated that 94.51% of BPA was removed under optimal conditions (initial BPA concentration of 100  mgL1, nanocatalyst amount of 1  gL1, pH=9, and 40 min of contact exposure). Laccase was a critical factor in this process, and after five recycling cycles, immobilized laccase retained 61% of its original activity, indicating that this nanobiocatalyst can be used in purification processes as a durable and robust catalyst.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This study was extracted from thesis of Ms. Shabnam Maali Ahari. The authors would like to express their gratitude to Ahar Branch, Islamic Azad University for the support of this research. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

Asif, M., and T. C. Bhalla. 2016. “Hydroxynitrile lyase of Wild Apricot (Prunus armeniaca L.): Purification, characterization and application in synthesis of Enantiopure Mandelonitrile.” Catal. Lett. 146 (Jun): 1118–1127. https://doi.org/10.1007/s10562-016-1725-6.
Auriol, M., Y. Filali-Meknassi, R. D. Tyagi, and C. D. Adams. 2007. “Laccase-catalyzed conversion of natural and synthetic hormones from a municipal wastewater.” Water Res. 41 (15): 3281–3288. https://doi.org/10.1016/j.watres.2007.05.008.
Bautista-Toledo, I., M. A. Ferro-García, J. Rivera-Utrilla, C. Moreno-Castilla, and F. J. Vegas Fernández. 2005. “Bisphenol a removal from water by activated carbon. Effects of carbon characteristics and solution chemistry.” Environ. Sci. Technol. 39 (16): 6246–6250. https://doi.org/10.1021/es0481169.
Beck, S. M., H. Sabarez, V. Gaukel, and K. Knoerzer. 2014. “Enhancement of convective drying by application of airborne ultrasound—A response surface approach.” Ultrason. Sonochem. 21 (6): 2144–2150. https://doi.org/10.1016/j.ultsonch.2014.02.013.
Bilal, M., Z. Jing, Y. Zhao, and H. M. Iqbal. 2019. “Immobilization of fungal laccase on glutaraldehyde cross linked chitosan beads and its bio-catalytic potential to degrade bisphenol A.” Biocatal. Agric. Biotechnol. 19 (May): 101174. https://doi.org/10.1016/j.bcab.2019.101174.
Boyjoo, Y., M. Ang, and V. Pareek. 2014. “Lamp emission and quartz sleeve modelling in slurry 410 photocatalytic reactors.” Chem. Eng. Sci. 111 (May): 34–40. https://doi.org/10.1016/j.ces.2014.02.023.
Bratkovskaja, I., R. Vidziunaite, and J. Kulys. 2004. “Oxidation of phenolic compounds by peroxidase in the presence of soluble polymers.” Biochemistry 69 (9): 985–992. https://doi.org/10.1023/B:BIRY.0000043540.87287.80.
Caló, E., and V. V. Khutoryanskiy. 2015. “Biomedical applications of hydrogels: A review of patents and commercial products.” Eur. Polym. J. 65 (Apr): 252–267. https://doi.org/10.1016/j.eurpolymj.2014.11.024.
Chen, X., Z. Wu, D. Liu, and Z. Gao. 2017. “Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of Azo dyes.” Nanoscale Res. Lett. 12 (1): 143–148. https://doi.org/10.1186/s11671-017-1904-4.
Choi, K. J., S. G. Kim, C. W. Kim, and S. H. Kim. 2005. “Effects of activated carbon types and service life on removal of endocrine disrupting chemicals: Amitrol, nonylphenol, and bisphenol A.” Chemosphere 58 (11): 1535–1545. https://doi.org/10.1016/j.chemosphere.2004.11.080.
Dai, Y., J. Yao, Y. Song, X. Liu, S. Wang, and Y. Yuan. 2016. “Enhanced performance of immobilized laccase in electrospun fibrous membranes by carbon nanotubes modification and its application for bisphenol A removal from water.” J. Hazard. Mater. 317 (Nov): 485–493. https://doi.org/10.1016/j.jhazmat.2016.06.017.
Dellagnezze, B., G. V. de Sousa, L. L. Martins, D. F. Domingos, E. E. G. Limache, S. P. de Vasconcellos, G. F. da Cruz, and V. M. de Oliveira. 2014. “Bioremediation potential of microorganisms derived from petroleum reservoirs.” Mar. Pollut. Bull. 89 (1–2): 191–200. https://doi.org/10.1016/j.marpolbul.2014.10.003.
Fathi, E., F. Derakhshanfard, P. Gharbani, and Z. Ghazi Tabatabaei. 2020. “Facile synthesis of MgO/C3N4 nanocomposite for removal of reactive orange 16 under visible light.” J. Inorg. Organomet. Polym. 30 (6): 2234–2240. https://doi.org/10.1007/s10904-019-01362-2.
Ganjali, S. T., F. Motiee, and Z. Ghazi Tabatabaie. 2014. “Correlation between physico-mechanical and rheological properties of rubber compounds based on NR-BR with CC gel content in polybutadiene.” Polym. Korea 38 (4): 425–433. https://doi.org/10.7317/pk.2014.38.4.425.
Guan, Z., X. Y. Tang, T. Nishimura, Y. M. Huang, and B. J. Reid. 2017. “Adsorption of linear alkyl benzene sulfonates on carboxyl modified multi-walled carbon nanotubes.” J. Hazard. Mater. 322 (Jan): 205–214. https://doi.org/10.1016/j.jhazmat.2016.02.067.
Habiba, U., T. A. Siddique, T. C. Joo, A. Salleh, B. C. Ang, and A. M. Afifi. 2017. “Synthesis of 441  chitosan/polyvinyl alcohol/zeolite composite for removal of methyl orange, Congo red and 442 chromium(VI) by flocculation/adsorption.” Carbohydr. Polym. 157 (Feb): 1568–1576. https://doi.org/10.1016/j.carbpol.2016.11.037.
Hong, J. G., and Y. Chen. 2015. “Evaluation of electrochemical properties and reverse electrodialysis performance for porous cation exchange membranes with sulfate-functionalized iron oxide.” J. Membr. Sci. 473 (Jan): 210–217. https://doi.org/10.1016/j.memsci.2014.09.012.
Hou, J., G. Dong, Y. Ye, and V. Chen. 2014a. “Enzymatic degradation of bisphenol-A with immobilized laccase on TiO2 sol–gel coated PVDF membrane.” J. Membr. Sci. 469 (Nov): 19–30. https://doi.org/10.1016/j.memsci.2014.06.027.
Hou, J., G. Dong, Y. Ye, and V. Chen. 2014b. “Laccase immobilization on titania nanoparticles and titania-functionalized membranes.” J. Membr. Sci. 452 (Feb): 229–240. https://doi.org/10.1016/j.memsci.2013.10.019.
Imran, M., D. E. Crowley, A. Khalid, S. Hussain, M. W. Mumtaz, and M. Arshad. 2015. “Microbial biotechnology for decolorization of textile wastewaters.” Rev. Environ. Sci. Biotechnol. 14 (1): 73–92. https://doi.org/10.1007/s11157-014-9344-4.
Kahraman, H. T. 2017. “Development of an adsorbent via chitosan nano-organoclay assembly to remove hexavalent chromium from wastewater.” Int. J. Biol. Macromol. 94 (Jan): 202–209. https://doi.org/10.1016/j.ijbiomac.2016.09.111.
Kalay, M., H. Kart, S. Özdemir Kart, and T. Çaǧin. 2009. “Elastic properties and pressure induced transitions of ZnO polymorphs from first-principle calculations.” J. Alloys Compd. 484 (1–2): 431–438. https://doi.org/10.1016/j.jallcom.2009.04.116.
Karim, S. A., A. Mohamed, M. M. Abdel-Mottaleb, T. A. Osman, and A. Khattab. 2019. “Visible light photocatalytic activity of PAN-CNTs/ZnO-NH2 electrospun nanofibers.” J. Alloys Compd. 772 (Jan): 650–655. https://doi.org/10.1016/j.jallcom.2018.09.155.
Khataee, A. R., M. L. ZareiMoradkhannejhad, and L. Moradkhannejhad. 2010. “Application of response surface methodology for optimization of azo dye removal by oxalate catalyzed photoelectro-Fenton process using carbon nanotube-PTFE cathode.” Desalination 258 (1–3): 112–119. https://doi.org/10.1016/j.desal.2010.03.028.
Lassouane, F., H. Aït-Amar, S. Amrani, and S. Rodriguez-Couto. 2019. “A promising laccase immobilization approach for bisphenol A removal from aqueous solutions.” Bioresour. Technol. 271 (Jan): 360–367. https://doi.org/10.1016/j.biortech.2018.09.129.
Latif, A., A. Maqbool, K. Sun, and Y. Si. 2022a. “Immobilization of Trametes versicolor laccase on Cu-alginate beads for biocatalytic degradation of bisphenol A in water: Optimized immobilization, degradation and toxicity assessment.” J. Environ. Chem. Eng. 10 (1): 107089. https://doi.org/10.1016/j.jece.2021.107089.
Latif, A., A. Maqbool, R. Zhou, M. Arsalan, K. Sun, and Y. Si. 2022b. “Optimized degradation of bisphenol A by immobilized laccase from Trametes versicolor using Box-Behnken design (BBD) and artificial neural network (ANN).” J. Environ. Chem. Eng. 10 (2): 107331. https://doi.org/10.1016/j.jece.2022.107331.
Li, Y. P., W. Ye, and Y. J. Cui. 2020. “A metal-organic frameworks@ carbon nanotubes based electrochemical sensor for highly sensitive and selective determination of ascorbic acid.” J. Mol. Struct. 1209 (Jun): 127086–127992. https://doi.org/10.1016/j.molstruc.2020.127986.
Liu, W., H. Zhang, B. Cao, K. Lin, and J. Gan. 2011. “Oxidative removal of bisphenol A using zero valent aluminum–acid system.” Water Res. 45 (4): 1872–1878. https://doi.org/10.1016/j.watres.2010.12.004.
Lloret, L., G. Eibes, M. T. Moreira, G. Feijoo, and J. M. Lema. 2013. “On the use of a high-redox potential laccase as an alternative for the transformation of non-steroidal anti-inflammatory drugs (NSAIDs).” J. Mol. Catal. B: Enzym. 97 (Dec): 233–242. https://doi.org/10.1016/j.molcatb.2013.08.021.
Maqbool, A., W. Hui, and X. Xin. 2020. “Removal of heavy metals from urban soil using functionalized carbon-coated composite.” Int. J. Environ. Sci. Technol. 17 (12): 4787–4802. https://doi.org/10.1007/s13762-020-02790-1.
Mehrizad, A., M. A. Behnajady, P. Gharbani, and S. Sabbagh. 2019. “Sonocatalytic degradation of Acid Red 1 by sonochemically synthesized zinc sulfide-titanium dioxide nanotubes: Optimization, kinetics and thermodynamics studies.” J. Cleaner Prod. 215 (Apr): 1341–1350. https://doi.org/10.1016/j.jclepro.2019.01.172.
Metaxa, Z., J. W. T. Seo, M. S. K. Gdoutos, M. C. Hersam, and S. P. Shah. 2012. “Highly concentrated carbon nanotube admixture for nano-fibre reinforced cementitious materials.” Cem. Concr. Compos. 34 (5): 612–617. https://doi.org/10.1016/j.cemconcomp.2012.01.006.
Mohapatra, D. P., S. K. Brar, R. D. Tyagi, and R. Y. Surampalli. 2010. “Physico-chemical pre-treatment and biotransformation of wastewater and wastewater sludge--fate of bisphenol A.” Chemosphere 78 (8): 923–941. https://doi.org/10.1016/j.chemosphere.2009.12.053.
Nair, R. R., P. Demarche, and S. N. Agathos. 2013. “Formulation and characterization of an immobilized laccase biocatalyst and its application to eliminate organic micropollutants in wastewater.” New Biotechnol. 30 (6): 814–823. https://doi.org/10.1016/j.nbt.2012.12.004.
Okazaki, S. Y., J. Michizoe, M. Goto, S. Furusaki, H. Wariishi, and H. Tanaka. 2002. “Oxidation of bisphenol A catalyzed by laccase hosted in reversed micelles in organic media.” Enzyme Microbiol. Technol. 31 (3): 227–232. https://doi.org/10.1016/S0141-0229(02)00104-7.
Ong, C. B., L. Y. Ng, and A. W. Mohammad. 2018. “A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications.” Renewable Sustainable Energy Rev. 81 (Jan): 536–551. https://doi.org/10.1016/j.rser.2017.08.020.
Paździor, K., J. Wrębiak, A. Klepacz-Smółka, M. Gmurek, L. Bilińska, and L. Kos. 2017. “Influence of ozonation and biodegradation on toxicity of industrial textile wastewater.” J. Environ. Manage. 195 (Jun): 166–173. https://doi.org/10.1016/j.jenvman.2016.06.055.
Piao, M., D. Zou, Y. Yang, X. Ren, C. Qin, and Y. Piao. 2019. “Multi-functional laccase immobilized hydrogel microparticles for efficient removal of bisphenol A.” Materials 12 (5): 704. https://doi.org/10.3390/ma12050704.
Pradhan, A. K., P. K. Rana, and P. K. Sahoo. 2015. “Biodegradability and swelling capacity of kaolin based chitosan-g-PHEMA nanocomposite hydrogel.” Int. J. Biol. Macromol. 74 (Mar): 620–626. https://doi.org/10.1016/j.ijbiomac.2014.12.024.
Prasannalakshmi, P., and N. Shanmugam. 2017. “Fabrication of TiO2/ZnS nanocomposites for solar energy mediated photocatalytic application.” Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 175 (Mar): 1–10. https://doi.org/10.1016/j.saa.2016.12.018.
Qiu, P., B. Park, J. Choi, B. Thokchom, A. B. Pandit, and J. Khim. 2018. “A review on heterogeneous sonocatalyst for treatment of organic pollutants in aqueous phase based on catalytic mechanism.” Ultrason. Sonochem. 45 (Jul): 29–49. https://doi.org/10.1016/j.ultsonch.2018.03.003.
Raei Abbasabadi, O. R., M. R. Farahpour, and Z. Ghazi Tabatabaei. 2022. “Accelerative effect of nanohydrogels based on chitosan/ZnO incorporated with citral to heal the infected full-thickness wounds; an experimental study.” Int. J. Biol. Macromol. 217 (Sep): 42–54. https://doi.org/10.1016/j.ijbiomac.2022.07.038.
Rahmani, K., M. A. Faramarzi, A. H. Mahvi, M. Gholami, A. Esrafili, H. Forootanfar, and M. Farzadkia. 2015. “Elimination and detoxification of sulfathiazole and sulfamethoxazole assisted by laccase immobilized on porous silica beads.” Int. Biodeterior. Biodegrad. 97 (Jun): 107–114. https://doi.org/10.1016/j.ibiod.2014.10.018.
Ravikumar, K., B. Deebika, and K. Balu. 2005. “Decolourization of aqueous dye solutions by a novel adsorbent: Application of statistical designs and surface plots for the optimization and regression analysis.” J. Hazard. Mater. 122 (1–2): 75–83. https://doi.org/10.1016/j.jhazmat.2005.03.008.
Rochester, J. R. 2013. “Bisphenol A and human health: A review of the literature.” Reprod. Toxicol. 42 (Dec): 132–155. https://doi.org/10.1016/j.reprotox.2013.08.008.
Sadeghzadeh, S., Z. Ghobadi Nejad, S. Ghasemi, M. Khafaji, and S. M. Borghei. 2020. “Removal of bisphenol A in aqueous solution using magnetic cross-linked laccase aggregates from Trametes hirsuta.” Bioresour. Technol. 306 (Jun): 123169. https://doi.org/10.1016/j.biortech.2020.123169.
Salam, M. A., M. S. I. Makki, and M. Y. A. Abdelaal. 2011. “Preparation and characterization of multi-walled carbon nanotubes/chitosan nanocomposite and its application for the removal of heavy metals from aqueous solution.” J. Alloys Compd. 509 (5): 2582–2587. https://doi.org/10.1016/j.jallcom.2010.11.094.
Salis, A., M. Pisano, M. Monduzzi, V. Solinas, and E. Sanjust. 2009. “Laccase from Pleurotus sajor-caju on functionalised SBA-15 mesoporous silica: Immobilisation and use for the oxidation of phenolic compounds.” J. Mol. Catal. B: Enzym. 58 (1–4): 175–180. https://doi.org/10.1016/j.molcatb.2008.12.008.
Sharifi, M., F. Arjomandi Rad, and J. Talat. 2016. “Preparation of laccase-graphene oxide nanosheet/alginate composite: Application for the removal of cetirizine from aqueous solution.” J. Environ. Chem. Eng. 4 (3): 3013–3020. https://doi.org/10.1016/j.jece.2016.06.012.
Song, Z., C. Williams, and R. Edyvean. 2004. “Treatment of tannery wastewater by chemical coagulation.” Desalination 164 (3): 249–259. https://doi.org/10.1016/S0011-9164(04)00193-6.
Tang, C., T. Zhou, J. Yang, Q. Zhang, F. Chen, Q. Fu, and L. Yang. 2011. “Wet-grinding assisted ultrasonic dispersion of pristine multi-walled carbon nanotubes (MWCNTs) in chitosan solution.” Colloids Surf., B 86 (1): 189–197. https://doi.org/10.1016/j.colsurfb.2011.03.041.
Tavares, A. P. M., C. G. Silva, G. Dražić, A. M. T. Silva, J. M. Loureiro, and J. L. Faria. 2015. “Laccase immobilization over multi-walled carbon nanotubes: Kinetic, thermodynamic and stability studies.” J. Colloid Interface Sci. 454 (Sep): 52–60. https://doi.org/10.1016/j.jcis.2015.04.054.
Vandenberg, L. N., R. Hauser, M. Marcus, N. Olea, and W. V. Welshons. 2007. “Human exposure to bisphenol a (BPA).” Reprod. Toxicol. 24 (2): 139–177. https://doi.org/10.1016/j.reprotox.2007.07.010.
Venkatesan, J., I. Bhatnagar, and S. K. Kim. 2014. “Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering.” Mar. Drugs 12 (1): 300–316. https://doi.org/10.3390/md12010300.
Vera, M., G. S. Nyanhongo, A. Pellis, B. L. Rivas, and G. M. Guebitz. 2019. “Immobilization of Myceliophthorathermophila laccase on poly (glycidyl methacrylate) microspheres enhances the degradation of azinphos-methyl.” J. Appl. Polym. Sci. 136 (16): 47417. https://doi.org/10.1002/app.47417.
Wang, H., X. Xiang, and F. Li. 2010. “Hybrid ZnAl-LDH/CNTs nanocomposites: Noncovalent assembly and enhanced photodegradation performance.” AIChE J. 56 (3): 768–778. https://doi.org/10.1002/aic.12020.
Yang, L., Z. Yixin, X. Guangshen, Z. Juhong, Y. Gang, and W. Yujue. 2021. “Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment.” Front. Environ. Sci. Eng. 15 (1): 1–8. https://doi.org/10.1007/s11783-020-1293-2.
Yoshihara, S. I., M. Makishima, N. Suzuki, and S. Ohta. 2001. “Metabolic activation of bisphenol A by rat liver S9 fraction.” Toxicol. Sci. 62 (2): 221–227. https://doi.org/10.1093/toxsci/62.2.221.
Zeng, S., X. Qin, and L. Xia. 2017. “Degradation of the herbicide isoproturon by laccase mediator systems.” Biochem. Eng. J. 119 (Mar): 92–100. https://doi.org/10.1016/j.bej.2016.12.016.
Zhang, W., L. Zhou, and H. Deng. 2016. “Ag modified g-C3N4 composites with enhanced visible-light photocatalytic activity for diclofenac degradation.” J. Mol. Catal. A: Chem. 423 (Nov): 270–276. https://doi.org/10.1016/j.molcata.2016.07.021.
Zheng, F., B. K. Cui, X. J. Wu, G. Meng, H. X. Liu, and J. Si. 2016. “Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes.” Int. Biodeterior. Biodegrad. 110 (May): 69–78. https://doi.org/10.1016/j.ibiod.2016.03.004.
Zhu, Y., X. Liu, K. W. K. Yeung, P. K. Chu, and S. Wu. 2017. “Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures.” Appl. Surf. Sci. 400 (Apr): 14–23. https://doi.org/10.1016/j.apsusc.2016.12.158.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 149Issue 2February 2023

History

Received: Feb 23, 2022
Accepted: Sep 10, 2022
Published online: Nov 22, 2022
Published in print: Feb 1, 2023
Discussion open until: Apr 22, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Shabnam Maali Ahari
Master’s Student, Dept. of Chemistry, Ahar Branch, Islamic Azad Univ., P.O. Box 5451116714, Ahar, Iran.
Zohreh Ghazi Tabatabaei [email protected]
Assistant Professor, Dept. of Chemistry, Ahar Branch, Islamic Azad Univ., P.O. Box 5451116714, Ahar, Iran (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share