Technical Papers
Sep 25, 2024

Evaluation of the Mechanical Performance of Asphalt Mixtures Containing Waste Tire Rubber and Graphene

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 12

Abstract

This study aimed to evaluate the mechanical performance of asphalt mixtures with tire rubber powder (TRP) and graphene composite-modified asphalt binder. Asphalt mixtures with graphene/TRP-modified binders, as well as TRP-modified and conventional asphalt mixtures, were prepared. The performance of the mixtures was evaluated using dynamic creep, resilient modulus, semi-circular bending fracture, indirect tensile fatigue, and freeze-thaw splitting tests. Results showed that the graphene/TRP composite asphalt mixtures exhibited superior rutting resistance, fatigue performance, fracture resistance, and moisture stability over the TRP-modified and conventional asphalt mixtures. The findings demonstrated that incorporating graphene into TRP-modified binders may result in asphalt mixtures with more desirable mechanical performance. This study may shed more light on the application of TRP and graphene in asphalt to improve pavements’ overall performance and sustainability.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors gratefully acknowledge the financial supports by the Key R&D project of Zhejiang Communication (No. ZJXL-JTT-202201A) and R&D project of Zhejiang Communication (No. 202303).

References

AASHTO. 2015. Standard method of test for determining the dynamic modulus and flow number for asphalt mixtures using the asphalt mixture performance tester (AMPT). AASHTO TP 79-15. Washington, DC: AASHTO.
Abdelmagid, A. A. A., and C. Pei Feng. 2019. “Evaluating the effect of rice-husk ash and crumb-rubber powder on the high-temperature performance of asphalt binder.” J. Mater. Civ. Eng. 31 (12): 1–9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002962.
Adnan, A. M., C. Lü, X. Luo, J. Wang, and G. Liu. 2022. “Fracture properties and potential of asphalt mixtures containing graphene oxide at low and intermediate temperatures.” Int. J. Pavement Eng. 1–17. https://doi.org/10.1080/10298436.2021.2020268.
Adnan, A. M., and J. Wang. 2023. “Enhancement of rheological performance and compatibility of tire rubber-modified asphalt binder with the addition of grapheme.” Constr. Build. Mater. 402 (Oct): 133038. https://doi.org/10.1016/j.conbuildmat.2023.133038.
Ahmad Nazki, M., T. Chopra, and A. K. Chandrappa. 2020. “Rheological properties and thermal conductivity of bitumen binders modified with grapheme.” Constr. Build. Mater. 238 (Mar): 117693. https://doi.org/10.1016/j.conbuildmat.2019.117693.
Airey, G. D. 2003. “Rheological properties of styrene butadiene styrene polymer modified road bitumens.” Fuel 82 (14): 1709–1719. https://doi.org/10.1016/S0016-2361(03)00146-7.
Aliha, M. R. M., A. Razmi, and A. Mansourian. 2017. “The influence of natural and synthetic fibers on low temperature mixed mode I + II fracture behavior of warm mix asphalt (WMA) materials.” Eng. Fract. Mech. 182 (Sep): 322–336. https://doi.org/10.1016/j.engfracmech.2017.06.003.
Amid, S., A. Foroutan, S. Dessouky, H. Mork, and A. Kavussi. 2019. “The use of high content of fine crumb rubber in asphalt mixes using dry process.” Constr. Build. Mater. 222 (Oct): 643–653. https://doi.org/10.1016/j.conbuildmat.2019.06.180.
Amini, A., A. Goli, and H. Ziari. 2017. “The influence of nanoclay on the performance properties and moisture susceptibility of rubberized asphalt mixture.” Pet. Sci. Technol. 35 (2): 175–182. https://doi.org/10.1080/10916466.2016.1248775.
Amini, A., H. Ziari, S. A. Saadatjoo, N. S. Hashemifar, and A. Goli. 2021. “Rutting resistance, fatigue properties and temperature susceptibility of nano clay modified asphalt rubber binder.” Constr. Build. Mater. 267 (Jan): 120946. https://doi.org/10.1016/j.conbuildmat.2020.120946.
Asphalt Institute. 2003. Superpave mix design. Superpave series No. 2 (SP-02). Lexington, KY: Asphalt Institute.
ASTM. 1989. Resistance to plastic flow of bituminous mixtures using marshall apparatus. ASTM D-1559. West Conshohocken, PA: ASTM.
ASTM. 1995. Standard test method for indirect tension test for resilient modulus of bituminous mixtures. ASTM D4123. West Conshohocken, PA: ASTM.
ASTM. 2007. Standard test method for ductility of bituminous materials. ASTM D113. West Conshohocken, PA: ASTM.
ASTM. 2012a. Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate. ASTM C127. West Conshohocken, PA: ASTM.
ASTM. 2012b. Standard test method for density, relative density (specific gravity), and absorption of fine aggregate. ASTM C128. West Conshohocken, PA: ASTM.
ASTM. 2013a. Standard test method for indirect tensile (IDT) strength of bituminous mixtures. D6931-12. West Conshohocken, PA: ASTM.
ASTM. 2013b. Standard test method for penetration of bituminous materials. ASTM D5. West Conshohocken, PA: ASTM.
ASTM. 2014a. Standard test method for degradation of small-sized coarse aggregate by abrasion and impact in the Los Angeles machine. ASTM C131. West Conshohocken, PA: ASTM.
ASTM. 2014b. Standard test method for softening point of bitumen (ring-and-ball apparatus). ASTM D36. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. ASTM D4402. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test method for evaluation of asphalt mixture cracking resistance using the semi-circular bend test (SCB) at intermediate temperatures. ASTM D8044. West Conshohocken, PA: ASTM.
Ayatollahi, M. R., and M. R. M. Aliha. 2007. “Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading.” Comput. Mater. Sci. 38 (4): 660–670. https://doi.org/10.1016/j.commatsci.2006.04.008.
Azarhoosh, A., and M. Koohmishi. 2020. “Investigation of the rutting potential of asphalt binder and mixture modified by styrene-ethylene/propylene-styrene nanocomposite.” Constr. Build. Mater. 255 (Sep): 119363. https://doi.org/10.1016/j.conbuildmat.2020.119363.
Babagoli, R. 2020. “Investigation of the high-temperature behavior of asphalt binders modified by warm additives through performance grade and multiple stress creep and recovery system.” J. Mater. Civ. Eng. 32 (2): 1–9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002997.
Bastos, J. B. S., L. F. A. L. Babadopulos, and J. B. Soares. 2017. “Relationship between multiple stress creep recovery (MSCR) binder test results and asphalt concrete rutting resistance in Brazilian roadways.” Constr. Build. Mater. 145 (Aug): 20–27. https://doi.org/10.1016/j.conbuildmat.2017.03.216.
Behnood, A. 2019. “Application of rejuvenators to improve the rheological and mechanical properties of asphalt binders and mixtures: A review.” J. Cleaner Prod. 231 (Sep): 171–182. https://doi.org/10.1016/j.jclepro.2019.05.209.
CEN (European Committee for Standardization). 2018. Bituminous mixtures–test methods, Part 24: Resistance to fatigue. BS EN 12697-24. Brussels, Belgium: CEN.
Chen, Y., Q. Wang, Z. Li, and S. Ding. 2020. “Rhysiological properties of graphene nanoplatelets/rubber crowd composite modified asphalt.” Constr. Build. Mater. 261 (Nov): 120505. https://doi.org/10.1016/j.conbuildmat.2020.120505.
Eisa, M. S., A. Mohamady, M. E. Basiouny, A. Abdulhamid, and J. R. Kim. 2021. “Laboratory evaluation of mechanical properties of modified asphalt and mixture using graphene platelets (GnPs).” Materials 14 (19): 5599. https://doi.org/10.3390/ma14195599.
Gao, Y., Y. Xie, M. Liao, Y. Li, J. Zhu, and W. Tian. 2023. “Study on the mechanism of the effect of graphene on the rheological properties of rubber-modified asphalt based on size effect.” Constr. Build. Mater. 364 (2): 129815. https://doi.org/10.1016/j.conbuildmat.2022.129815.
Han, L., M. Zheng, J. Li, Y. Li, Y. Zhu, and Q. Ma. 2017. “Effect of nano silica and pretreated rubber on the properties of terminal blend crumb rubber modified asphalt.” Constr. Build. Mater. 157 (Dec): 277–291. https://doi.org/10.1016/j.conbuildmat.2017.08.187.
Han, L., M. Zheng, and C. Wang. 2016. “Current status and development of terminal blend tyre rubber modified asphalt.” Constr. Build. Mater. 128 (Dec): 399–409. https://doi.org/10.1016/j.conbuildmat.2016.10.080.
Han, M., J. Li, Y. Muhamma, D. Hou, F. Zhang, Y. Yin, and S. Duan. 2018. “Effect of polystyrene grafted graphene nanoplatelets on the physical and chemical properties of asphalt binder.” Constr. Build. Mater. 174 (Jun): 108–119. https://doi.org/10.1016/j.conbuildmat.2018.04.082.
Hong, R. B., J. R. Wu, and H. B. Cai. 2020. “Low-temperature crack resistance of coal gangue powder and polyester fibre asphalt mixture.” Constr. Build. Mater. 238 (Mar): 117678. https://doi.org/10.1016/j.conbuildmat.2019.117678.
Huang, G., J. He, X. Zhang, M. Feng, Y. Tan, C. Lv, H. Huang, and Z. Jin. 2021. “Applications of Lambert-Beer law in the preparation and performance evaluation of graphene modified asphalt.” Constr. Build. Mater. 273 (Mar): 121582. https://doi.org/10.1016/j.conbuildmat.2020.121582.
Le, J. L., M. O. Marasteanu, and M. Turos. 2020. “Mechanical and compaction properties of graphite nanoplatelet-modified asphalt binders and mixtures.” Road Mater. Pavement Des. 21 (7): 1799–1814. https://doi.org/10.1080/14680629.2019.1567376.
Li, A., C. Zhang, and Y. F. Zhang. 2017. “Thermal conductivity of graphene-polymer composites: Mechanisms, properties, and applications.” Polymers 9 (9): 437. https://doi.org/10.3390/polym9090437.
Li, X., Y. M. Wang, Y. L. Wu, H. R. Wang, M. Chen, H. D. Sun, and L. Fan. 2021. “Properties and modification mechanism of asphalt with graphene as modifier.” Constr. Build. Mater. 272 (Feb): 121919. https://doi.org/10.1016/j.conbuildmat.2020.121919.
Liu, J., P. Hao, Z. Dou, J. Wang, and L. Ma. 2021. “Rheological, healing and microstructural properties of unmodified and crumb rubber modified asphalt incorporated with graphene/carbon black composite.” Constr. Build. Mater. 305 (Aug): 124512. https://doi.org/10.1016/j.conbuildmat.2021.124512.
Liu, J., P. Hao, B. Sun, Y. Li, and Y. Wang. 2022a. “Rheological properties and mechanism of asphalt modified with polypropylene and graphene and carbon black composites.” J. Mater. Civ. Eng. 34 (12): 1–16. https://doi.org/10.1061/(asce)mt.1943-5533.0004513.
Liu, Y., M. Zheng, X. Liu, F. Wang, and S. Liu. 2022b. “Conventional, thermal, and rheological properties of asphalt binder modified by carbon nanotubes and crumb rubber.” J. Mater. Civ. Eng. 34 (2): 1–17. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004085.
Lo Presti, D. 2013. “Recycled tyre rubber modified bitumens for road asphalt mixtures: A literature review.” Constr. Build. Mater. 49 (Dec): 863–881. https://doi.org/10.1016/j.conbuildmat.2013.09.007.
Lushinga, N., Z. Dong, L. Cao, C. Yang, and S. Ullah. 2022. “Fatigue characteristics and environmental sustainability of rubber asphalt composite modified asphalt mixtures incorporating nanosilica.” Constr. Build. Mater. 346 (July): 128382. https://doi.org/10.1016/j.conbuildmat.2022.128382.
Mamuye, Y., M. C. Liao, and N. D. Do. 2022. “Nano-Al2O3 composite on intermediate and high temperature properties of neat and modified asphalt binders and their effect on hot mix asphalt mixtures.” Constr. Build. Mater. 331 (March): 127304. https://doi.org/10.1016/j.conbuildmat.2022.127304.
Motevalizadeh, S. M., R. Sedghi, and H. Rooholamini. 2020. “Fracture properties of asphalt mixtures containing electric arc furnace slag at low and intermediate temperatures.” Constr. Build. Mater. 240 (Apr): 117965. https://doi.org/10.1016/j.conbuildmat.2019.117965.
Norouzi, N., A. Ameli, and R. Babagoli. 2021. “Investigation of fatigue behaviour of warm modified binders and warm-stone matrix asphalt (WSMA) mixtures through binder and mixture tests.” Int. J. Pavement Eng. 22 (8): 1042–1051. https://doi.org/10.1080/10298436.2019.1659262.
Palit, S. K., K. S. Reddy, and B. B. Pandey. 2004. “Laboratory evaluation of crumb rubber modified asphalt mixes.” J. Mater. Civ. Eng. 16 (1): 45–53. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:1(45).
Picado-Santos, L. G., S. D. Capitão, and J. M. C. Neves. 2020. “Crumb rubber asphalt mixtures: A literature review.” Constr. Build. Mater. 247 (Jun): 118577. https://doi.org/10.1016/j.conbuildmat.2020.118577.
Polaczyk, P., S. C. Weaver, Y. Ma, M. Zhang, X. Jiang, and B. Huang. 2023. “Laboratory investigation of graphene modified asphalt efficacy to pavement performance.” Road Mater. Pavement Des. 24 (Mar): 587–607. https://doi.org/10.1080/14680629.2023.2181013.
Rezaie Moghaddam, F., M. Kari, A. Ameli, and R. Babagoli. 2023. “Evaluation of the effect of SBS on performance behavior of stone matrix asphalt mixture containing mineral fiber.” J. Mater. Civ. Eng. 35 (10): 1–19. https://doi.org/10.1061/JMCEE7.MTENG-15999.
Saboo, N., and P. Kumar. 2016. “Performance characterization of polymer modified asphalt binders and mixes.” Adv. Civ. Eng. 2016 (Feb): 5938270. https://doi.org/10.1155/2016/5938270.
Saha, G., and K. P. Biligiri. 2016. “Fracture properties of asphalt mixtures using semi-circular bending test: A state-of-the-art review and future research.” Constr. Build. Mater. 105 (Feb): 103–112. https://doi.org/10.1016/j.conbuildmat.2015.12.046.
Subhy, A., D. Lo Presti, G. Airey, and P. Edwards. 2022. “Rubberised stone mastic asphalt mixtures: A performance-related evaluation.” Road Mater. Pavement Des. 24 (9): 2280–2300. https://doi.org/10.1080/14680629.2022.2136580.
Titi, H. H., and M. G. Matar. 2018. “Estimating resilient modulus of base aggregates for mechanistic-empirical pavement design and performance evaluation.” Transp. Geotech. 17 (May): 141–153. https://doi.org/10.1016/j.trgeo.2018.09.014.
Vamegh, M., M. Ameri, and S. F. Chavoshian Naeni. 2019. “Performance evaluation of fatigue resistance of asphalt mixtures modified by SBR/PP polymer blends and SBS.” Constr. Build. Mater. 209 (Jun): 202–214. https://doi.org/10.1016/j.conbuildmat.2019.03.111.
Wang, H., X. Liu, P. Apostolidis, and T. Scarpas. 2018. “Review of warm mix rubberized asphalt concrete: Towards a sustainable paving technology.” J. Cleaner Prod. 177 (Mar): 302–314. https://doi.org/10.1016/j.jclepro.2017.12.245.
Wang, R., Y. Xiong, M. Yue, M. Hao, and J. Yue. 2020. “Investigating the effectiveness of carbon nanomaterials on asphalt binders from hot storage stability, thermodynamics, and mechanism perspectives.” J. Cleaner Prod. 276 (Dec): 124180. https://doi.org/10.1016/j.jclepro.2020.124180.
Wang, Y., P. Polaczyk, J. He, H. Lu, R. Xiao, and B. Huang. 2022. “Dispersion, compatibility, and rheological properties of graphene-modified asphalt binders.” Constr. Build. Mater. 350 (Apr): 128886. https://doi.org/10.1016/j.conbuildmat.2022.128886.
Wu, S., and O. Tahri. 2021. “State-of-art carbon and graphene family nanomaterials for asphalt modification.” Road Mater. Pavement Des. 22 (4): 735–756. https://doi.org/10.1080/14680629.2019.1642946.
Xuan, D., H. H. Bui, and M. Saleh. 2021. “Effects of specimen size and loading conditions on the fracture behaviour of asphalt concretes in the SCB test.” Eng. Fract. Mech. 242 (Jul): 107452. https://doi.org/10.1016/j.engfracmech.2020.107452.
Yan, K., S. Wang, D. Ge, J. Chen, S. Tian, and H. Sun. 2022. “Laboratory performance of asphalt mixture with waste tyre rubber and APAO modified asphalt binder.” Int. J. Pavement Eng. 23 (1): 59–69. https://doi.org/10.1080/10298436.2020.1730837.
Yousefi, A. A., H. F. Haghshenas, B. Shane Underwood, J. Harvey, and P. Blankenship. 2023. “Performance of warm asphalt mixtures containing reclaimed asphalt pavement, an anti-stripping agent, and recycling agents: A study using a balanced mix design approach.” Constr. Build. Mater. 363 (Aug): 129633. https://doi.org/10.1016/j.conbuildmat.2022.129633.
Yusoff, N. I. M., A. A. S. Breem, H. N. M. Alattug, A. Hamim, and J. Ahmad. 2014. “The effects of moisture susceptibility and ageing conditions on nano-silica/polymer-modified asphalt mixtures.” Constr. Build. Mater. 72 (Dec): 139–147. https://doi.org/10.1016/j.conbuildmat.2014.09.014.
Zamanian, M., M. Mortezaei, B. Salehnia, and J. E. Jam. 2013. “Fracture toughness of epoxy polymer modified with nanosilica particles: Particle size effect.” Eng. Fract. Mech. 97 (1): 193–206. https://doi.org/10.1016/j.engfracmech.2012.10.027.
Zhang, J., W. Huang, Y. Zhang, C. Yan, Q. Lv, and W. Guan. 2021. “Evaluation of the terminal blend crumb rubber/SBS composite modified asphalt.” Constr. Build. Mater. 278 (Apr): 122377. https://doi.org/10.1016/j.conbuildmat.2021.122377.
Zhu, J., B. Birgisson, and N. Kringos. 2014. “Polymer modification of bitumen: Advances and challenges.” Eur. Polym. J. 54 (May): 18–38. https://doi.org/10.1016/j.eurpolymj.2014.02.005.
Zhu, J., K. Zhang, K. Liu, and X. Shi. 2019. “Performance of hot and warm mix asphalt mixtures enhanced by nano-sized graphene oxide.” Constr. Build. Mater. 217 (Aug): 273–282. https://doi.org/10.1016/j.conbuildmat.2019.05.054.
Ziari, H., M. R. M. Aliha, A. Moniri, and Y. Saghafi. 2020. “Crack resistance of hot mix asphalt containing different percentages of reclaimed asphalt pavement and glass fiber.” Constr. Build. Mater. 230 (Jan): 117015. https://doi.org/10.1016/j.conbuildmat.2019.117015.
Ziari, H., A. Moniri, R. Imaninasab, and M. Nakhaei. 2019. “Effect of copper slag on performance of warm mix asphalt.” Int. J. Pavement Eng. 20 (7): 775–781. https://doi.org/10.1080/10298436.2017.1339884.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 12December 2024

History

Received: Jan 9, 2024
Accepted: Apr 29, 2024
Published online: Sep 25, 2024
Published in print: Dec 1, 2024
Discussion open until: Feb 25, 2025

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Abbas Mukhtar Adnan, M.ASCE [email protected]
Research Associate, College of Civil Engineering and Architecture, Zhejiang Univ., Hangzhou 310058, China; Research Associate, Zhejiang Provincial Engineering Research Center for Digital & Smart Maintenance of Highway, Hangzhou 310030, China; Research Scientist, Hangzhou Zhongdui Technology Co. Ltd., 859 Shixiang West Rd., Hangzhou, Zhejiang 310030, China. Email: [email protected]
Jinchang Wang [email protected]
Associate Professor, College of Civil Engineering and Architecture, Zhejiang Univ., Hangzhou 310058, China; Associate Professor, Center for Balance Architecture, Zhejiang Univ., Hangzhou 310058, China; Associate Professor, Zhejiang Provincial Engineering Research Center for Digital & Smart Maintenance of Highway, Hangzhou 310030, China (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share