Technical Papers
Jun 19, 2024

Effect of Thermal Oxygen Aging on Rheological Properties and Chemical Structure of Lignin-Modified Asphalt

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 9

Abstract

In recent years, lignin has received increasing attention due to its wide availability, low cost, renewability, and potential for improving the performance of asphalt pavement. The purpose of this study is to investigate the rheological properties and microscopic mechanism of modified asphalt by using different types of lignin. The effects of different aging durations on the rheological properties, as well as the chemical and morphological changes of different lignin-modified asphalts, were analyzed using dynamic shear rheometer (DSR), Fourier transform infrared spectroscopy (FTIR), and gel permeation chromatography (GPC). The results of the rheological tests demonstrated that the addition of lignin had a positive effect on the permanent deformation of the asphalt matrix and significantly improved the rutting resistance of the asphalt at high temperatures, with the most significant change observed in enzymatic lignin. The addition of lignin improves certain fatigue resistance and good fatigue life. The chemical test results indicate that lignin, as a blending agent, can compensate for the molecular weight changes caused by the aging of the matrix asphalt when degrading, maintaining a balanced distribution of molecular weight, which is the main mechanism of resistance to thermal oxidation aging of lignin-modified asphalt.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available in a repository online in accordance with funder data retention policies; some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This research was funded by Science and Technology Planning Project of Yun Nan Science and Technology Department (Joint Agricultural Project) (Grant No. 202101BD070001-060); Science and Technology Project of Gui Zhou Highway Bureau (Grant No. 2021QLM06); and Yunnan Provincial Department of Education Science Research Fund Project (Grant No. 2023Y0773). Meng Cai: methodology; visualization; investigation; and writing–original draft. Cheng Cheng: project administration and writing–review and editing. Jianwei Luo: validation and formal analysis. Xi Ma: supervision and funding acquisition. Tao Wang: data curation and methodology. Xiaolong Li: conceptualization and writing–review and editing.

References

AASHTO. 2012. Standard method of test for estimating fatigue resistance of asphalt binders using the linear amplitude sweep. AASHTO TP101-12. Washington, DC: AASHTO.
AASHTO. 2018. Standard method of test for multiple stress creep recovery (MSCR) test of asphalt binder using a dynamic shear rheometer (DSR). AASHTO T350. Washington, DC: AASHTO.
Arafat, S., N. Kumar, N. M. Wasiuddin, E. O. Owhe, and J. G. Lynam. 2019. “Sustainable lignin to enhance asphalt binder oxidative aging properties and mix properties.” J. Cleaner Prod. 217 (Apr): 456–468. https://doi.org/10.1016/j.jclepro.2019.01.238.
Arshanitsa, A., L. Krumina, G. Telysheva, and T. Dizhbite. 2016. “Exploring the application potential of incompletely soluble organosolv lignin as a macromonomer for polyurethane synthesis.” Ind. Crops Prod. 92 (Dec): 1–12. https://doi.org/10.1016/j.indcrop.2016.07.050.
Ashish, P. K., D. Singh, and S. Bohm. 2016. “Evaluation of rutting, fatigue and moisture damage performance of nanoclay modified asphalt binder.” Constr. Build. Mater. 113 (Jun): 341–350. https://doi.org/10.1016/j.conbuildmat.2016.03.057.
Banu, D., A. El-Aghoury, and D. Feldman. 2006. “Contributions to characterization of poly (vinyl chloride)–lignin blends.” J. Appl. Polym. Sci. 101 (5): 2732–2748. https://doi.org/10.1002/app.23026.
Batista, K. B., R. D. Padilha, T. O. Castro, C. F. Silva, M. F. Araújo, L. F. Leite, and V. D. Lins. 2018. “High-temperature, low-temperature and weathering aging performance of lignin modified asphalt binders.” Ind. Crops Prod. 111 (Jan): 107–116. https://doi.org/10.1016/j.indcrop.2017.10.010.
Cai, M., X. Zhao, X. Han, P. Du, Y. Su, and C. Cheng. 2022. “Effect of thermal oxygen aging mode on rheological properties and compatibility of lignin-modified asphalt binder by dynamic shear rheometer.” Polymers 14 (17): 3572. https://doi.org/10.3390/polym14173572.
Cheng, C., C. Pang, and B. Hu. 2019. “Short-term aging properties of lignin modified asphalt.” J. Southwest For. Univ. 39 (3): 149–154. https://doi.org/10.11929/j.swfu.201811057.
Cheng, C., W. Sun, B. Hu, G. Tao, C. Peng, Y. Tian, and S. Wu. 2020. “Analysis of the mechanism and effectiveness of lignin in improving the high-temperature thermal stability of asphalt.” J. Renewable Mater. 8 (10): 1243–1255. https://doi.org/10.32604/jrm.2020.012054.
Cheng, Z. S. 2005. Demand for oil will exceed supply after 2007, 53. Beijing: China Petroleum & Chemical Corporation.
Cheraghian, G., and M. P. Wistuba. 2020. “Ultraviolet aging study on bitumen modified by a composite of clay and fumed silica nanoparticles.” Sci. Rep. 10 (1): 11216. https://doi.org/10.1038/s41598-020-68007-0.
Chinese Standard. 2004. Technical specification for construction of highway asphalt pavements. JTG F40-2004. Beijing: Chinese Standard.
Chung, H., and N. R. Washburn. 2013. “Chemistry of lignin-based materials.” Green Mater. 1 (3): 137–160. https://doi.org/10.1680/gmat.12.00009.
Gao, J., H. Wang, C. Liu, D. Ge, Z. You, and M. Yu. 2020. “High-temperature rheological behavior and fatigue performance of lignin modified asphalt binder.” Constr. Build. Mater. 230 (Jan): 117063. https://doi.org/10.1016/j.conbuildmat.2019.117063.
Higuera Sandoval, C. H., X. V. Camargo Amaya, and E. A. Suárez Molano. 2015. “Effect of aging on the properties of asphalt and asphalt mixtures.” Ingeniería y Universidad 19 (2): 335–349. https://doi.org/10.11144/Javeriana.iyu19-2.eapa.
Ibrahim, M., M. Y. Nor Nadiah, and H. Azian. 2006. “Comparison studies between soda lignin and soda-anthraquinone lignin in terms of physico-chemical properties and structural features.” J. Appl. Sci. 6 (2): 292–296. https://doi.org/10.3923/jas.2006.292.296.
Liu, Q., S. Wang, Y. Zheng, Z. Luo, and K. Cen. 2008. “Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis.” J. Anal. Appl. Pyrolysis 82 (1): 170–177. https://doi.org/10.1016/j.jaap.2008.03.007.
Lu, X., and U. Isacsson. 1998. “Chemical and rheological evaluation of ageing properties of SBS polymer modified bitumens.” Fuel 77 (9–10): 961–972. https://doi.org/10.1016/S0016-2361(97)00283-4.
Luo, B., Z. Jia, H. Jiang, S. Wang, and D. Min. 2020. “Improving the reactivity of sugarcane bagasse Kraft lignin by a combination of fractionation and phenolation for phenol–formaldehyde adhesive applications.” Polymers 12 (8): 1825. https://doi.org/10.3390/polym12081825.
Ma, F., Z. Fu, and Y. Luan. 2014. “Mechanism of high temperature performance of natural asphalt based on gel permeation chromatography.” J. Funct. Mater. 45 (23): 23065–23069. https://doi.org/10.1002/marc.202000492.
Ma, X., J. Chen, J. Zhu, and N. Yan. 2021. “Lignin-based polyurethane: Recent advances and future perspectives.” Macromol. Rapid Commun. 42 (3): 2000492. https://doi.org/10.1002/marc.202000492.
Mai, C., O. Milstein, and A. Hüttermann. 2000. “Chemoenzymatical grafting of acrylamide onto lignin.” J. Biotechnol. 79 (2): 173–183. https://doi.org/10.1016/S0168-1656(00)00230-3.
Mainka, H., O. Täger, E. Körner, L. Hilfert, S. Busse, F. T. Edelmann, and A. S. Herrmann. 2015. “Lignin–an alternative precursor for sustainable and cost-effective automotive carbon fiber.” J. Mater. Res. Technol. 4 (3): 283–296. https://doi.org/10.1016/j.jmrt.2015.03.004.
McNichol, D. 2005. Paving the way: Asphalt in America. 1st ed. Lanham, MD: National Asphalt Pavement Association.
Mousavinezhad, S. H., G. H. Shafabakhsh, and O. J. Ani. 2019. “Nano-clay and styrene-butadiene-styrene modified bitumen for improvement of rutting performance in asphalt mixtures containing steel slag aggregates.” Constr. Build. Mater. 226 (Nov): 793–801. https://doi.org/10.1016/j.conbuildmat.2019.07.252.
Murugan, P., N. Mahinpey, K. E. Johnson, and M. Wilson. 2008. “Kinetics of the pyrolysis of lignin using thermogravimetric and differential scanning calorimetry methods.” Energy Fuels 22 (4): 2720–2724. https://doi.org/10.1021/ef700730u.
Pan, T. 2013. “RETRACTED: Coniferyl-alcohol lignin as a bio-antioxidant for petroleum asphalt: A quantum chemistry based atomistic study.” Fuel 113 (2): 454–466. https://doi.org/10.1016/j.fuel.2013.06.003.
Pei, W., W. Shang, C. Liang, X. Jiang, C. Huang, and Q. Yong. 2020. “Using lignin as the precursor to synthesize Fe3O4@lignin composite for preparing electromagnetic wave absorbing lignin-phenol-formaldehyde adhesive.” Ind. Crops Prod. 154 (Oct): 112638. https://doi.org/10.1016/j.indcrop.2020.112638.
Pellinen, T. K., M. W. Witczak, M. Marasteanu, G. Chehab, S. Alavi, and R. Dongré. 2002. “Stress dependent master curve construction for dynamic (complex) modulus.” J. Assoc. Asphalt Paving Technol. 71: 281–309.
Polo-Mendoza, R., G. Martinez-Arguelles, L. F. Walubita, F. Moreno-Navarro, F. Giustozzi, L. Fuentes, and T. Navarro-Donado. 2022. “Ultraviolet ageing of bituminous materials: A comprehensive literature review from 2011 to 2022.” Constr. Build. Mater. 350 (Oct): 128889. https://doi.org/10.1016/j.conbuildmat.2022.128889.
Rico-García, D., L. Ruiz-Rubio, L. Pérez-Alvarez, S. L. Hernández-Olmos, G. L. Guerrero-Ramírez, and J. L. Vilas-Vilela. 2020. “Lignin-based hydrogels: Synthesis and applications.” Polymers 12 (1): 81. https://doi.org/10.3390/polym12010081.
Singh, J., A. Sharma, P. Sharma, S. Singh, D. Das, G. Chawla, and L. Nain. 2020. “Valorization of jute (Corchorus sp.) biomass for bioethanol production.” Biomass Convers. Biorefin. 12 (Aug): 5209–5220. https://doi.org/10.1007/s13399-020-00937-1.
Su, Y., S. Tang, M. Cai, Y. Nie, B. Hu, S. Wu, and C. Cheng. 2023. “Thermal oxidative aging mechanism of lignin modified bitumen.” Constr. Build. Mater. 363 (Jan): 129863. https://doi.org/10.1016/j.conbuildmat.2022.129863.
Thives, L. P., and E. Ghisi. 2017. “Asphalt mixtures emission and energy consumption: A review.” Renewable Sustainable Energy Rev. 72 (May): 473–484. https://doi.org/10.1016/j.rser.2017.01.087.
Van Vliet, D., T. Slaghek, C. Giezen, and I. Haaksman. 2016. “Lignin as a green alternative for bitumen.” In Proc., 6th Euroasphalt and Eurobitume Congress, Prague, Czech, 1–3. Zagreb, Croatia: Hrvatsko asfaltersko društvo.
Walubita, L. F., M. Ling, L. M. R. Pianeta, L. Fuentes, J. J. Komba, and G. M. Mabrouk. 2022. “Correlating the asphalt-binder MSCR test results to the HMA HWTT and field rutting performance.” J. Transp. Eng. Part B Pavements 148 (3): 04022047. https://doi.org/10.1061/JPEODX.0000386.
Wang, H., and K. Derewecki. 2013. “Rheological properties of asphalt binder partially substituted with wood lignin.” In Airfield and highway pavement 2013: Sustainable and efficient pavements, 977–986. Reston, VA: ASCE.
Watkins, D., M. Nuruddin, M. Hosur, A. Tcherbi-Narteh, and S. Jeelani. 2015. “Extraction and characterization of lignin from different biomass resources.” J. Mater. Res. Technol. 4 (1): 26–32. https://doi.org/10.1016/j.jmrt.2014.10.009.
Wess, J., L. D. Olsen, and M. H. Sweeney. 2004. Asphalt (bitumen), concise international chemical assessment document 59. Geneva: World Health Organization.
Wu, J., Y. Jin, J. Wu, and Y. Zhang. 2019. “Analysis of lignin modified asphalt by infrared spectrum.” J. Jiangsu Univ. 40 (1): 120–124. https://doi.org/10.3969/j.issn.1671-7775.2019.01.020.
Wu, J., Q. Liu, C. Wang, W. Wu, and W. Han. 2021. “Investigation of lignin as an alternative extender of bitumen for asphalt pavements.” J. Cleaner Prod. 283 (Feb): 124663. https://doi.org/10.1016/j.jclepro.2020.124663.
Xiao, R., and B. Huang. 2022. “Moisture damage mechanism and thermodynamic properties of hot-mix asphalt under aging conditions.” ACS Sustainable Chem. Eng. 10 (45): 14865–14887. https://doi.org/10.1021/acssuschemeng.2c04786.
Xie, S., Q. Li, P. Karki, F. Zhou, and J. S. Yuan. 2017. “Lignin as renewable and superior asphalt binder modifier.” ACS Sustainable Chem. Eng. 5 (4): 2817–2823. https://doi.org/10.1021/acssuschemeng.6b03064.
Xu, C., D. Wang, S. Zhang, E. Guo, H. Luo, Z. Zhang, and H. Yu. 2021. “Effect of lignin modifier on engineering performance of bituminous binder and mixture.” Polymers 13 (7): 1083. https://doi.org/10.3390/polym13071083.
Xu, G., H. Wang, and H. Zhu. 2017. “Rheological properties and anti-aging performance of asphalt binder modified with wood lignin.” Constr. Build. Mater. 151 (Oct): 801–808. https://doi.org/10.1016/j.conbuildmat.2017.06.151.
Yang, L., W. Luo, Y. Muhammad, F. Meng, J. Li, Z. Zhao, and J. Li. 2024. “Surface modification of bagasse fibers based on polyphenol-induced self-supplied lignin for the creation of composite SBS-modified asphalt.” Ind. Crops Prod. 208 (Feb): 117835. https://doi.org/10.1016/j.indcrop.2023.117835.
Yu, J., M. Vaidya, G. Su, S. Adhikari, E. Korolev, and S. Shekhovtsova. 2021. “Experimental study of soda lignin powder as an asphalt modifier for a sustainable pavement material.” Constr. Build. Mater. 298 (Sep): 123884. https://doi.org/10.1016/j.conbuildmat.2021.123884.
Zhang, H. Y., G. Xu, X. H. Chen, R. Wang, and W. B. Zhou. 2020. “Fatigue property of aged asphalt using different experimental methods.” J. Build. Mater. 23: 168–175. https://doi.org/10.3969/j.issn.1007-9629.2020.01.026.
Zhang, X., P. Tong, X. Lin, J. Li, and B. Li. 2021. “Fatigue characterization of hard petroleum asphalt based on the linear amplitude sweep test.” Mater. Rep. 35 (18): 18083–18089. https://doi.org/10.11896/cldb.20060221.
Zhang, Y., M. Qin, W. Xu, Y. Fu, Z. Wang, Z. Li, and Q. Hou. 2018. “Structural changes of bamboo-derived lignin in an integrated process of autohydrolysis and formic acid inducing rapid delignification.” Ind. Crops Prod. 115 (May): 194–201. https://doi.org/10.1016/j.indcrop.2018.02.025.
Zhao, Z. D., Y. Xie, X. S. Cheng, Y. Q. Jin, and M. Y. Xu. 2011. “Research on enzymatic hydrolysis lignin modified petroleum asphalt.” Adv. Mater. Res. 306 (Sep): 1080–1083. https://doi.org/10.4028/www.scientific.net/AMR.306-307.1080.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 9September 2024

History

Received: Nov 16, 2023
Accepted: Feb 2, 2024
Published online: Jun 19, 2024
Published in print: Sep 1, 2024
Discussion open until: Nov 19, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Master’s Student, School of Civil Engineering, Southwest Forestry Univ., Kunming 650224, China. Email: [email protected]
Cheng Cheng [email protected]
Professor, School of Civil Engineering, Southwest Forestry Univ., Kunming 650224, China (corresponding author). Email: [email protected]
Jianwei Luo [email protected]
Master’s Student, School of Civil Engineering, Southwest Forestry Univ., Kunming 650224, China. Email: [email protected]
Master’s Student, School of Civil Engineering, Southwest Forestry Univ., Kunming 650224, China. Email: [email protected]
Tao Wang, Ph.D. [email protected]
Professor, Dept. of Highway and Railway Engineering, School of Civil Engineering, Beijing Jiaotong Univ., Beijing 100044, China. Email: [email protected]
Professor, Yunnan Institute of Highway Science and Technology, Kunming 650000, China. ORCID: https://orcid.org/0000-0002-7501-5042. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share