Abstract

The slow formation of magnesium silicate hydrate (M-S-H) results in insufficient early strength of M-S-H cement, restricting its wide application. In this study, nanosilica (NS) was applied to modify the performance of M-S-H cement. The influence of NS on the mechanical performance and microstructure was investigated through compressive strength measurements, X-ray diffraction (XRD), derivative thermogravimetry (TG-DTG), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Mercury intrusion porosimetry (MIP). Subsequently, the hydration mechanism of the M-S-H cement was illustrated after adding NS. The results showed that NS could effectively improve the early strength of M-S-H cement. The compressive strength after 3 days of reaction increased by 59.8%, 130.7%, and 25.7% for 1.5%, 3.0%, and 4.5% NS addition, respectively. After curing for 28 days, the addition of 1.5% NS resulted in a 25.7% increase in compressive strength, whereas the enhancements for samples with 3.0% and 4.5% NS were minimal. NS quickly dissolved to form HSiO43-, H2SiO42-, and H3SiO4-, accelerating the formation of M-S-H and resulting in a higher early compressive strength of the sample. In this study, the novel concept of the addition of NS to M-S-H cement was proposed, which has significant value for the wider application of M-S-H cement in civil engineering.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors are thankful for the financial support from the National Natural Science Foundation of China (52078453) and the Key R&D Program of Zhejiang (2022C04025).
Author contributions: Dawang Dai: conceptualization, methodology, software, formal analysis, investigation, date curation, writing–original draft, writing–review and editing, and visualization; Zhejie Lai: writing–review and editing; Haiying Yu: writing–review and editing; Tao Meng: conceptualization, methodology, supervision, writing–review and editing, and funding acquisition; Qinglei Xu: writing–review and editing; Jiabin Li: review and editing; Brecht Vandevyvere: review and editing; and Haiqiang Shen: review and editing.

References

s
Abhilash, P. P., D. K. Nayak, B. Sangoju, R. Kumar, and V. Kumar. 2021. “Effect of nano-silica in concrete; A review.” Constr. Build. Mater. 278 (Aug): 122347. https://doi.org/10.1016/j.conbuildmat.2021.122347.
Bernard, E., B. Lothenbach, C. Cau-Dit-Coumes, I. Pochard, and D. Rentsch. 2020. “Aluminum incorporation into magnesium silicate hydrate (M-S-H).” Cem. Concr. Res. 128 (Sep): 105931. https://doi.org/10.1016/j.cemconres.2019.105931.
Bernard, E., B. Lothenbach, C. Chlique, M. Wyrzykowski, A. Dauzères, and I. Pochard. 2019. “Characterization of magnesium silicate hydrate (M-S-H).” Cem. Concr. Res. 116 (Mar): 309–330. https://doi.org/10.1016/j.cemconres.2018.09.007.
Bernard, E., B. Lothenbach, D. Rentsch, I. Pochard, and A. Dauzeres. 2017. “Formation of magnesium silicate hydrates (M-S-H).” Phys. Chem. Earth 99 (Sep): 142–157. https://doi.org/10.1016/j.pce.2017.02.005.
Bonen, D. 1992. “Composition and appearance of magnesium-silicate hydrate and its relation to deterioration of cement-based materials.” J. Am. Ceram. Soc. 75 (10): 2904–2906. https://doi.org/10.1111/j.1151-2916.1992.tb05530.x.
Brew, D. R. M., and F. P. Glasser. 2005. “Synthesis and characterisation of magnesium silicate hydrate gels.” Cem. Concr. Res. 35 (1): 85–98. https://doi.org/10.1016/j.cemconres.2004.06.022.
Chen, J., S. C. Kou, and C. S. Poon. 2012. “Hydration and properties of nano-TiO2 blended cement composites.” Cem. Concr. Compos. 34 (5): 642–649. https://doi.org/10.1016/j.cemconcomp.2012.02.009.
Chen, X., and S. Wu. 2013. “Influence of water-to-cement ratio and curing period on pore structure of cement mortar.” Constr. Build. Mater. 38 (Apr): 804–812. https://doi.org/10.1016/j.conbuildmat.2012.09.058.
Chinese Standard. 2019. Standard for test method of mechanical properties on ordinary concrete. Beijing: Chinese Standard.
Chithra, S., S. Kumar, and K. Chinnaraju. 2016. “The effect of colloidal nano-silica on workability, mechanical and durability properties of high performance concrete with copper slag as partial fine aggregate.” Constr. Build. Mater. 113 (Apr): 794–804. https://doi.org/10.1016/j.conbuildmat.2016.03.119.
Cole, W. F. 1953. “Crystalline hydrated magnesium silicate formed in the breakdown of a concrete sea-wall.” Nature 171 (4347): 354–355. https://doi.org/10.1038/171354a0.
Cui, P., C. R. Wu, J. Chen, F. M. Luo, and S. C. Kou. 2021. “Preparation of magnesium oxysulfate cement as a 3D printing material.” Constr. Build. Mater. 282 (Aug): 122677. https://doi.org/10.1016/j.conbuildmat.2021.122677.
Damtoft, J. S., J. Lukasik, D. Herfort, D. Sorrentino, and E. M. Gartner. 2008. “Sustainable development and climate change initiatives.” Cem. Concr. Res. 38 (2): 115–127. https://doi.org/10.1016/j.cemconres.2007.09.008.
Daniyal, M., S. Akhtar, and A. Azam. 2019. “Effect of nano-TiO2 on the properties of cementitious composites under different exposure environments.” J. Mater. Res. Technol. 8 (6): 6158–6172. https://doi.org/10.1016/j.jmrt.2019.10.010.
Elkady, H., M. Serag, and M. Elfeky. 2013. “Effect of nano silica de-agglomeration, and methods of adding super-plasticizer on the compressive strength, and workability of nano silica concrete.” Civ. Environ. Res. 3 (Aug): 21–35.
Feng, H., S. Shen, Y. Pang, D. Gao, Z. Wang, and M. N. Sheikh. 2021. “Mechanical properties of fiber and nano-Al2O3 reinforced magnesium phosphate cement composite.” Constr. Build. Mater. 270 (Aug): 121861. https://doi.org/10.1016/j.conbuildmat.2020.121861.
Hao, Y., and Y. Li. 2021. “Study on preparation and properties of modified magnesium oxychloride cement foam concrete.” Constr. Build. Mater. 282 (Apr): 122708. https://doi.org/10.1016/j.conbuildmat.2021.122708.
Hosseinpourpia, R., A. Varshoee, M. Soltani, and P. Tabari. 2012. “Production of waste bio-fiber cement-based composites reinforced with nano-SiO2 particles as a substitute for asbestos cement composites.” Constr. Build. Mater. 31 (Aug): 105–111. https://doi.org/10.1016/j.conbuildmat.2011.12.102.
Huang, K., J. Xie, R. Wang, Y. Feng, and R. Rao. 2021. “Effects of the combined usage of nanomaterials and steel fibers on the workability, compressive strength, and microstructure of ultra-high performance concrete.” Nanotechnol. Rev. 10 (1): 304–317. https://doi.org/10.1515/ntrev-2021-0029.
Jia, Y., B. Wang, Z. Wu, J. Han, T. Zhang, and L. J. Vandeperre. 2016. “Role of sodium hexametaphosphate in MgO/SiO2 cement pastes.” Cem. Concr. Res. 89 (Feb): 63–71. https://doi.org/10.1016/j.cemconres.2016.08.003.
Jiang, J. Y., W. Sun, and J. C. Zhang. 2016. “Passive behaviour of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions with different pH.” Appl. Surf. Sci. 389 (Mar): 1126–1136. https://doi.org/10.1016/j.apsusc.2016.07.142.
Jose, N., H. Ahmed, B. Miguel, E. Luis, and B. Jorge de. 2020. “Magnesia (MgO) production and characterization, and its influence on the performance of cementitious materials: A review.” Materials 13 (21): 4752. https://doi.org/10.3390/ma13214752.
Juenger, M. C. G., F. Winnefeld, J. L. Provis, and J. H. Ideker. 2011. “Advances in alternative cementitious binders.” Cem. Concr. Res. 41 (12): 1232–1243. https://doi.org/10.1016/j.cemconres.2010.11.012.
Khaloo, A., M. Mobini, and P. Hosseini. 2016. “Influence of different types of nano-SiO2 particles on properties of high-performance concrete.” Constr. Build. Mater. 113 (Apr): 188–201. https://doi.org/10.1016/j.conbuildmat.2016.03.041.
Kong, D., Y. Su, X. Du, Y. Yang, S. Wei, and S. Shah. 2013. “Influence of nano-silica agglomeration on fresh properties of cement pastes.” Constr. Build. Mater. 43 (Mar): 557–562. https://doi.org/10.1016/j.conbuildmat.2013.02.066.
Li, S., H. Ren, Q. Wu, and Y. Ye. 2020. “Preparation and mechanical properties of modified magnesium oxysulfate cement incorporating alkali conditioner.” Sci. Adv. Mater. 12 (10): 1558–1567. https://doi.org/10.1166/sam.2020.3853.
Li, Z., Y. Xu, T. Zhang, J. Hu, J. Wei, and Q. Yu. 2019. “Effect of MgO calcination temperature on the reaction products and kinetics of MgOSiO2H2O system.” J. Am. Ceram. 102 (6): 3269–3285. https://doi.org/10.1111/jace.16201.
Li, Z., T. Zhang, J. Hu, Y. Tang, Y. Niu, and J. Wei. 2014. “Characterization of reaction products and reaction process of MgOSiO2H2O system at room temperature.” Constr. Build. Mater. 61 (Jan): 252–259. https://doi.org/10.1016/j.conbuildmat.2014.03.004.
Li, Z. P., and X. M. Shi. 2022. “Effects of nanomaterials on engineering performance of a potassium methyl siliconate-based sealer for cementitious composite.” J. Mater. Civ. Eng. 34 (4): 04022006. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004148.
Liu, C., X. Huang, Y. Y. Wu, X. Deng, Z. Zheng, and Z. Xu. 2021. “Advance on the dispersion treatment of graphene oxide and the graphene oxide modified cement-based materials.” Nanotechnol. Rev. 10 (1): 34–49. https://doi.org/10.1515/ntrev-2021-0003.
Liu, Y., B. Chen, and Z. Qin. 2020. “Effect of nano-silica on properties and microstructures of magnesium phosphate cement.” Constr. Build. Mater. 264 (Aug): 120728. https://doi.org/10.1016/j.conbuildmat.2020.120728.
Marmol, G., and H. Savastano. 2022. “High-toughness M-S-H cement composites reinforced with cellulose fibers through CO2 curing.” Cem. Concr. Compos. 134 (Jun): 104759. https://doi.org/10.1016/j.cemconcomp.2022.104759.
Marsiske, M. R., C. Debus, F. Di Lorenzo, E. Bernard, S. V. Churakov, and C. Ruiz-Agudo. 2021. “Immobilization of (aqueous) cations in low pH M-S-H cement.” Appl. Sci. 11 (7): 2968. https://doi.org/10.3390/app11072968.
Meng, T., Y. Hong, K. Ying, and Z. Wang. 2021a. “Comparison of technical properties of cement pastes with different activated recycled powder from construction and demolition waste.” Cem. Concr. Compos. 120 (1): 104065. https://doi.org/10.1016/j.cemconcomp.2021.104065.
Meng, T., K. Ying, X. Yang, and Y. Hong. 2021b. “Comparative study on mechanisms for improving mechanical properties and microstructure of cement paste modified by different types of nanomaterials.” Nanotechnol. Rev. 10 (1): 370–384. https://doi.org/10.1515/ntrev-2021-0027.
Miller, S. A., V. M. John, S. A. Pacca, and A. Horvath. 2018. “Carbon dioxide reduction potential in the global cement industry by 2050.” Cem. Concr. Res. 114 (Feb): 115–124. https://doi.org/10.1016/j.cemconres.2017.08.026.
Monteiro, P. J. M., G. Geng, D. Marchon, J. Li, P. Alapati, and K. E. Kurtis. 2019. “Advances in characterizing and understanding the microstructure of cementitious materials.” Cem. Concr. Res. 124 (Mar): 105806. https://doi.org/10.1016/j.cemconres.2019.105806.
Mukharjee, B., and S. Barai. 2020. “Influence of incorporation of colloidal nano-silica on behaviour of concrete.” Iran. J. Sci. Technol. Trans. Civ. Eng. 44 (2): 657–668. https://doi.org/10.1007/s40996-020-00382-0.
Nazari, A., and S. Riahi. 2010. “Microstructural, thermal, physical and mechanical behavior of the self compacting concrete containing SiO2 nanoparticles.” Mater. Sci. Eng., A 527 (29–30): 7663–7672. https://doi.org/10.1016/j.msea.2010.08.095.
Nied, D., K. Enemark-Rasmussen, E. L’Hopital, J. Skibsted, and B. Lothenbach. 2016. “Properties of magnesium silicate hydrates (M-S-H).” Cem. Concr. Res. 79 (Feb): 323–332. https://doi.org/10.1016/j.cemconres.2015.10.003.
Ocaiia, M., V. Fornis, and C. J. Serna. 1989. “The variability of the infrared powder spectrum of amorphous SiO2J. Non-Cryst. Solids 107 (2–3): 187–192. https://doi.org/10.1016/0022-3093(89)90461-4.
Rong, Z., W. Sun, H. Xiao, and G. Jiang. 2015. “Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites.” Cem. Concr. Compos. 56 (Apr): 25–31. https://doi.org/10.1016/j.cemconcomp.2014.11.001.
Roosz, C., S. Grangeon, P. Blanc, V. Montouillout, B. Lothenbach, and P. Henocq. 2015. “Crystal structure of magnesium silicate hydrates (M-S-H): The relation with 2:1 Mg-Si phyllosilicates.” Cem. Concr. Res. 73 (Apr): 228–237. https://doi.org/10.1016/j.cemconres.2015.03.014.
Sanchez, F., and K. Sobolev. 2010. “Nanotechnology in concrete—A review.” Constr. Build. Mater. 24 (11): 2060–2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014.
Sargam, Y., K. Wang, A. Tsyrenova, F. Liu, and S. Jiang. 2021. “Effects of anionic and nonionic surfactants on the dispersion and stability of nanoSiO2 in aqueous and cement pore solutions.” Cem. Concr. Res. 144 (Feb): 106417. https://doi.org/10.1016/j.cemconres.2021.106417.
Shaikh, F. U. A., S. W. M. Supit, and S. Barbhuiya. 2017. “Microstructure and nanoscaled characterization of HVFA cement paste containing nano-SiO2 and nano-CaCO3.” J. Mater. Civ. Eng. 29 (8): 04017063. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001898.
Singer, A., K. Stahr, and M. Zarei. 1998. “Characteristics and origin of sepiolite (Meerschaum) from Central Somalia.” Clay Miner. 33 (2): 349–362. https://doi.org/10.1180/000985598545525.
Singh, L., D. Ali, and U. Sharma. 2016. “Studies on optimization of silica nanoparticles dosage in cementitious system.” Cem. Concr. Compos. 70 (Mar): 60–68. https://doi.org/10.1016/j.cemconcomp.2016.03.006.
Sonat, C., S. He, J. Li, C. Unluer, and E. H. Yang. 2021. “Strain hardening magnesium-silicate-hydrate composites (SHMSHC) reinforced with short and randomly oriented polyvinyl alcohol microfibers.” Cem. Concr. Res. 142 (Feb): 106354. https://doi.org/10.1016/j.cemconres.2021.106354.
Sonat, C., and C. Unluer. 2019. “Development of magnesium-silicate-hydrate (M-S-H) cement with rice husk ash.” J. Cleaner Prod. 211 (Dec): 787–803. https://doi.org/10.1016/j.jclepro.2018.11.246.
Szczerba, J., R. Prorok, E. Śnieżek, D. Madej, and K. Maślona. 2013. “Influence of time and temperature on ageing and phases synthesis in the MgoSiO2H2O system.” Thermochim. Acta 567 (Nov): 57–64. https://doi.org/10.1016/j.tca.2013.01.018.
Viani, A., M. Peréz-Estébanez, S. Pollastri, and A. F. Gualtieri. 2016. “In situ synchrotron powder diffraction study of the setting reaction kinetics of magnesium-potassium phosphate cements.” Cem. Concr. Res. 79 (Feb): 344–352. https://doi.org/10.1016/j.cemconres.2015.10.007.
Walling, S. A., H. Kinoshita, S. A. Bernal, N. C. Collier, and J. L. Provis. 2015. “Structure and properties of binder gels formed in the system Mg(OH)2SiO2H2O for immobilisation of Magnox sludge.” Dalton Trans. 44 (17): 8126–8137. https://doi.org/10.1039/C5DT00877H.
Walling, S. A., and J. L. Provis. 2016. “Magnesia-based cements: A journey of 150 years, and cements for the future?” Chem. Rev. 116 (7): 4170–4204. https://doi.org/10.1021/acs.chemrev.5b00463.
Wang, D., S. Di, X. Gao, R. Wang, and Z. Chen. 2020a. “Strength properties and associated mechanisms of magnesium oxychloride cement-solidified urban river sludge.” Constr. Build. Mater. 250 (Nov): 118933. https://doi.org/10.1016/j.conbuildmat.2020.118933.
Wang, F., X. Kong, L. Jiang, and D. Wang. 2020b. “The acceleration mechanism of nano–C-S-H particles on OPC hydration.” Constr. Build. Mater. 249 (Mar): 118734. https://doi.org/10.1016/j.conbuildmat.2020.118734.
Wang, L., D. Zhang, S. Zhang, D. Cui, and D. Li. 2016. “Effect of nano-SiO2 on the hydration and microstructure of portland cement.” Nanomaterials 6 (12): 241. https://doi.org/10.3390/nano6120241.
Wei, J., Y. Chen, and L. Yongxin. 2006. “The reaction mechanism between MgO and microsilica at room temperature.” J. Wuhan Univ. Technol. Mater. Sci. Ed. 21 (2): 88–91. https://doi.org/10.1007/BF02840848.
Weng, Y., S. Ruan, M. Li, L. Mo, C. Unluer, and M. J. Tan. 2019. “Feasibility study on sustainable magnesium potassium phosphate cement paste for 3D printing.” Constr. Build. Mater. 221 (Apr): 595–603. https://doi.org/10.1016/j.conbuildmat.2019.05.053.
Wu, J. Y., H. X. Chen, B. W. Guan, Y. Xia, Y. P. Sheng, and J. H. Fang. 2019. “Effect of fly ash on rheological properties of magnesium oxychloride cement.” J. Mater. Civ. Eng. 31 (3): 04018405. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002597.
Wu, Z., and H. Lian. 1999. High performance concrete. Beijing: China Railway Publishing House.
Xu, Z., Z. Bai, J. Wu, H. Long, H. Deng, and Z. Chen. 2022. “Microstructural characteristics and nano-modification of interfacial transition zone in concrete: A review.” Nanotechnol. Rev. 11 (1): 2078–2100. https://doi.org/10.1515/ntrev-2022-0125.
Yang, T., B. Liu, L. Li, X. Gan, L. Lu, and Y. Li. 2023. “Agglomeration behavior of colloidal nano-silica and its effect on pore structure, mechanical properties and shrinkage of cement mortar.” Constr. Build. Mater. 409 (Dec): 133865. https://doi.org/10.1016/j.conbuildmat.2023.133865.
Zhang, T., C. R. Cheeseman, and L. J. Vandeperre. 2011. “Development of low pH cement systems forming magnesium silicate hydrate (M-S-H).” Cem. Concr. Res. 41 (4): 439–442. https://doi.org/10.1016/j.cemconres.2011.01.016.
Zhang, T., T. Li, Z. Zhou, M. Li, Y. Jia, and C. Cheeseman. 2020a. “A novel magnesium hydroxide sulfate hydrate whisker-reinforced magnesium silicate hydrate composites.” Composites, Part B 198 (Dec): 108203. https://doi.org/10.1016/j.compositesb.2020.108203.
Zhang, T., T. Li, J. Zou, Y. Li, S. Zhi, and Y. Jia. 2020b. “Immobilization of radionuclide Cs-133 by magnesium silicate hydrate cement.” Materials 13 (1): 146. https://doi.org/10.3390/ma13010146.
Zhang, T., L. J. Vandeperre, and C. R. Cheeseman. 2012. “Magnesium-silicate-hydrate cements for encapsulating problematic aluminium containing wastes.” J. Sustainable Cem. Based Mater. 1 (1–2): 34–45. https://doi.org/10.1080/21650373.2012.727322.
Zhang, T., L. J. Vandeperre, and C. R. Cheeseman. 2014. “Formation of magnesium silicate hydrate (M-S-H) cement pastes using sodium hexametaphosphate.” Cem. Concr. Res. 65 (Jun): 8–14. https://doi.org/10.1016/j.cemconres.2014.07.001.
Zhao, J., B. Zhang, J. Xie, Y. Wu, Z. Wang, and P. Liu. 2022. “Effects of nano-SiO2 modification on rubberised mortar and concrete with recycled coarse aggregates.” Nanotechnol. Rev. 11 (1): 473–496. https://doi.org/10.1515/ntrev-2022-0024.
Zhao, Z., T. Qi, W. Zhou, D. Hui, C. Xiao, and J. Qi. 2020. “A review on the properties, reinforcing effects, and commercialization of nanomaterials for cement-based materials.” Nanotechnol. Rev. 9 (1): 303–322. https://doi.org/10.1515/ntrev-2020-0023.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 11November 2024

History

Received: Nov 16, 2023
Accepted: Apr 10, 2024
Published online: Aug 30, 2024
Published in print: Nov 1, 2024
Discussion open until: Jan 30, 2025

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Doctoral Student, College of Civil Engineering and Architecture, Zhejiang Univ., 866 Yuhangtang Rd., Xihu District, Hangzhou 310058, China. Email: [email protected]
Master’s Student, College of Civil Engineering and Architecture, Zhejiang Univ., 866 Yuhangtang Rd., Xihu District, Hangzhou 310058, China. Email: [email protected]
Master’s Student, College of Civil Engineering and Architecture, Zhejiang Univ., 866 Yuhangtang Rd., Xihu District, Hangzhou 310058, China. Email: [email protected]
Full Professor, College of Civil Engineering and Architecture, Zhejiang Univ., 866 Yuhangtang Rd., Xihu District, Hangzhou 310058, China (corresponding author). ORCID: https://orcid.org/0000-0002-4355-990X. Email: [email protected]
Master’s Student, Hangzhou Industrial and Commercial Trust Co., Ltd., No. 19, Dangui St., Hangzhou, Zhejiang 310016, China. Email: [email protected]
Full Professor, Dept. of Civil Engineering, KU Leuven Campus Brugge, Brugge 3000, Belgium. ORCID: https://orcid.org/0000-0002-7333-0321. Email: [email protected]
Doctor Assistant, Dept. of Civil Engineering, KU Leuven Campus Brugge, Brugge 3000, Belgium. ORCID: https://orcid.org/0000-0003-4883-5800. Email: [email protected]
Haiqiang Shen [email protected]
Engineer, Hangzhou Furlihua Building Materials Co., Ltd., Gongnong Village, Xiaoshan District, Hangzhou 311241, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share