Abstract

The transport process electroosmosis (EO) has been suggested to be used for dewatering damp brick masonry for decades. Still, it is debated whether EO can be obtained in bricks. By use of an advanced EO laboratory cell, this paper reports that an EO flow can be generated in two types of Danish bricks. The electroosmotic permeability coefficient was shown to be dependent on both intrinsic properties of bricks, such as pore size distribution, and extrinsic properties, such as zeta potential. Results showed that the brick with a higher pore volume but with a lower surface charge has a lower EO permeability coefficient.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some of the data and models that support the findings of this study are available from the corresponding author upon reasonable request.

References

Asadi, A., B. B. Huat, H. Nahazanan, and H. A. Keykhah. 2013. “Electrochemical science theory of electroosmosis in soil.” Int. J. Electrochem. Sci. 8 (1): 1016–1025. https://doi.org/10.1016/S1452-3981(23)14076-4.
Ayoubi, S., M. Khatibi, and S. N. Ashrafizadeh. 2021. “A variational approach applied to reduce fouling with the electroosmotic flow in porous-wall microchannels.” Microfluid. Nanofluid. 25 (12): 1–13. https://doi.org/10.1007/s10404-021-02501-3.
Barbieri, E., F. Trevisiol, C. Pizzigatti, G. Bitelli, and E. Franzoni. 2022. “Evaluating water-repellents applied to brick masonry: An experimental study by thermal imaging and water transport properties’ characterization.” Constr. Build. Mater. 356 (Nov): 129319. https://doi.org/10.1016/j.conbuildmat.2022.129319.
Bertolini, L., L. Coppola, M. Gastaldi, and E. Redaelli. 2009. “Electroosmotic transport in porous construction materials and dehumidification of masonry.” Constr. Build. Mater. 23 (1): 254–263. https://doi.org/10.1016/j.conbuildmat.2007.12.013.
Biscombe, C. J. C. 2017. “The discovery of electrokinetic phenomena: Setting the record straight.” Angew. Chem. Int. Ed. 56 (29): 8338–8340. https://doi.org/10.1002/anie.201608536.
Cacciotti, R., J. Valach, and B. Wolf. 2018. “Innovative and easy-to-implement moisture monitoring system for brick units.” Constr. Build. Mater. 186 (Oct): 598–614. https://doi.org/10.1016/j.conbuildmat.2018.07.125.
Charola, A. E., and C. Bläuer. 2015. “Salts in masonry: An overview of the problem.” Restor. Build. Monuments 21 (4–6): 119–135. https://doi.org/10.1515/rbm-2015-1005.
Delgado, A. V., F. González-Caballero, R. J. Hunter, L. K. Koopal, and J. Lyklema. 2007. “Measurement and interpretation of electrokinetic phenomena.” J. Colloid Interface Sci. 309 (2): 194–224. https://doi.org/10.1016/j.jcis.2006.12.075.
Długołecki, P., B. Anet, S. J. Metz, K. Nijmeijer, and M. Wessling. 2010. “Transport limitations in ion exchange membranes at low salt concentrations.” J. Membr. Sci. 346 (1): 163–171. https://doi.org/10.1016/j.memsci.2009.09.033.
Elert, K., and C. Rodriguez-Navarro. 2022. “Degradation and conservation of clay-containing stone: A review.” Constr. Build. Mater. 330 (May): 127226. https://doi.org/10.1016/j.conbuildmat.2022.127226.
Feijoo, J., X. R. Nóvoa, T. Rivas, M. J. Mosquera, J. Taboada, C. Montojo, and F. Carrera. 2013. “Granite desalination using electromigration. Influence of type of granite and saline contaminant.” J. Cult. Heritage 14 (5): 365–376. https://doi.org/10.1016/j.culher.2012.09.004.
Fort, R., J. Feijoo, M. J. Varas–Muriel, M. A. Navacerrada, M. M. Barbero-Barrera, and D. De la Prida. 2022. “Appraisal of non-destructive in situ techniques to determine moisture- and salt crystallization-induced damage in dolostones.” J. Build. Eng. 53 (Apr): 104525. https://doi.org/10.1016/j.jobe.2022.104525.
Franzoni, E. 2014. “Rising damp removal from historical masonries: A still open challenge.” Constr. Build. Mater. 54 (Mar): 123–136. https://doi.org/10.1016/j.conbuildmat.2013.12.054.
Franzoni, E. 2018. “State-of-the-art on methods for reducing rising damp in masonry.” Supplement, J. Cult. Heritage 31 (Jun): S3–S9. https://doi.org/10.1016/j.culher.2018.04.001.
Grundl, T., and P. Michalski. 1996. “Electroosmotically driven water flow in sediments.” Water Res. 30 (4): 811–818. https://doi.org/10.1016/0043-1354(95)00224-3.
Guyader, J., and A. Denis. 1986. “Propagation des ondes dans les roches anisotropes sous contrainte évaluation de la qualité des schistes ardoisiers.” Bull. Int. Assoc. Eng. Geol. 33 (1): 49–55. https://doi.org/10.1007/BF02594705.
Heister, K., P. J. Kleingeld, T. J. S. Keijzer, and J. P. Gustav Loch. 2005. “A new laboratory set-up for measurements of electrical, hydraulic, and osmotic fluxes in clays.” Eng. Geol. 77 (3–4): 295–303. https://doi.org/10.1016/j.enggeo.2004.07.020.
Horiuchi, K., and C. F. I. Prashanta Dutta. 2007. “Electroosmosis with step changes in zeta potential in microchannels.” AIChE J. 53 (10): 2521–2533. https://doi.org/10.1002/aic.11275.
Hu, L., L. Zhang, and H. Wu. 2019. “Experimental study of the effects of soil pH and ionic species on the electro-osmotic consolidation of kaolin.” J. Hazard. Mater. 368 (Apr): 885–893. https://doi.org/10.1016/j.jhazmat.2018.09.015.
Karagiannis, N., M. Karoglou, A. Bakolas, and A. Moropoulou. 2016. “Effect of temperature on water capillary rise coefficient of building materials.” Build. Environ. 106 (Sep): 402–408. https://doi.org/10.1016/j.buildenv.2016.07.008.
Kaya, A., and Y. Yukselen. 2005. “Zeta potential of clay minerals and quartz contaminated by heavy metals.” Can. Geotech. J. 42 (5): 1280–1289. https://doi.org/10.1139/t05-048.
Laursen, S. 1997. “Laboratory investigation of electroosmosis in bentonites and natural clays.” Can. Geotech. J. 34 (5): 664–671. https://doi.org/10.1139/t97-043.
Ling, J., B. Han, Y. Xie, Q. Dong, Y. Sun, and B. Huang. 2017. “Laboratory and field study of electroosmosis dewatering for pavement subgrade soil.” J. Cold Reg. Eng. 31 (4): 1–16. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000136.
Lo, K. Y., K. S. Ho, and I. I. Inculet. 1991. “Field test of electroosmotic strengthening of soft sensitive clay.” Can. Geotech. J. 28 (1): 74–83. https://doi.org/10.1139/t91-008.
Melada, J., M. Gargano, I. Veronese, and N. Ludwig. 2018. “Does electro-osmosis work in moisture damage prevention? Applicability of infrared-based methods to verify water distribution under electric fields.” Supplement, J. Cult. Heritage 31 (Jun): S38–S45. https://doi.org/10.1016/j.culher.2018.04.009.
Mele, L., S. Lirer, and A. Flora. 2020. “Geotechnical research for land protection and development.” Accessed March 5, 2023. http://www.springer.com/series/15087%0Ahttp://link.springer.com/10.1007/978-3-030-21359-6.
Mitchell, J. K. 1993. Fundamentals of soil behavior. 2nd ed. Hoboken, NJ: Wiley.
O’Brien, R. W. 1986. “Electroosmosis in porous materials.” J. Colloid Interface Sci. 110 (2): 477–487. https://doi.org/10.1016/0021-9797(86)90401-7.
Ottosen, L. M., and I. Rörig-Dalgaard. 2006. “Drying brick masonry by electro-osmosis.” In Vol. 2 of Proc., 7th Int. Masonry Conf. Whyteleafe, UK: International Masonry Society.
Philip, H. R. 1935. Electrochemistry. 2nd ed. London: Chapman and Hall.
Phillipson, M. C., P. H. Baker, M. Davies, Z. Ye, A. McNaughtan, G. H. Galbraith, and R. C. McLean. 2007. “Moisture measurement in building materials: An overview of current methods and new approaches.” Build. Serv. Eng. Res. Technol. 28 (4): 303–316. https://doi.org/10.1177/0143624407084184.
Rastogi, R. P., M. L. Srivastava, and S. N. Singh. 1970. “Cross-phenomenological coefficients. XIII. Electroosmotic transport in membranes.” J. Phys. Chem. 74 (15): 2960–2965. https://doi.org/10.1021/j100709a021.
Sandrolini, F., and E. Franzoni. 2006. “An operative protocol for reliable measurements of moisture in porous materials of ancient buildings.” Build. Environ. 41 (10): 1372–1380. https://doi.org/10.1016/j.buildenv.2005.05.023.
Steiger, M., A. E. Charola, and K. Sterflinger. 2011. Stone in architecture: Properties, durability. Berlin: Springer. https://doi.org/10.1007/978-3-642-14475-2_4.
Tao, D., L. Jiang, and M. Jin. 2018. “A method of preparation of Ag/AgCl chloride selective electrode.” J. Wuhan Univ. Tech. Mater. Sci. Ed. 33 (4): 767–771. https://doi.org/10.1007/s11595-018-1890-0.
Thanh, L. D., R. Sprik, P. Van Do, A. Nguyen Van Nghia, and P. T. T. Nga. 2021. “Drying of fluid saturated porous materials by electroosmosis.” Curr. Appl. Sci. Tech. 21 (1): 26–35. https://doi.org/10.14456/cast.2021.6.
Vijh, A. K., and J. P. Novak. 1997. “A new theoretical approach to electroosmotic dewatering (EOD) based on non-equilibrium thermodynamics.” Drying Technol. 15 (2): 699–709. https://doi.org/10.1080/07373939708917255.
Wall, S. 2010. “The history of electrokinetic phenomena.” Curr. Opin. Colloid Interface Sci. 15 (3): 119–124. https://doi.org/10.1016/j.cocis.2009.12.005.
Warscheid, T., and J. Braams. 2000. “Biodeterioration of stone: A review.” Int. Biodeterior. Biodegrad. 46 (4): 343–368. https://doi.org/10.1016/S0964-8305(00)00109-8.
Wiley, D., and G. Fimbres Weihs. 2016. “Electroosmosis, overview of.” In Encyclopedia of membranes, 650–652. Berlin: Springer. https://doi.org/https://doi.org/10.1007/978-3-662-44324-8_2079.
Winkler, E. M. 1968. “Frost damage to stone and concrete: Geological considerations.” Eng. Geol. 2 (5): 315–323. https://doi.org/10.1016/0013-7952(68)90010-0.
Yukselen, Y., and A. Kaya. 2003. “Zeta potential of kaolinite in the presence of alkali, alkaline earth and hydrolyzable metal ions.” Water Air Soil Pollut. 145 (1–4): 155–168. https://doi.org/10.1023/A:1023684213383.
Zhou, H., Y. Fang, M. Chen, R. Gu, and W. Li. 2021. “Experimental and analytical study on electro-osmosis in low-permeability soil considering the pore size effect.” Géotechnique 71 (2): 141–152. https://doi.org/10.1680/jgeot.18.P.362.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 10October 2024

History

Received: Oct 4, 2023
Accepted: Mar 12, 2024
Published online: Jul 26, 2024
Published in print: Oct 1, 2024
Discussion open until: Dec 26, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Ph.D. Student, Dept. DTU Sustain, Technical Univ. of Denmark, Lyngby 2800, Denmark (corresponding author). ORCID: https://orcid.org/0009-0009-9706-9437. Email: [email protected]
Associate Professor, Defense University Center at Spanish Naval Academy, Univ. of Vigo, Vigo 36920, Spain. ORCID: https://orcid.org/0000-0003-3820-5127. Email: [email protected]
Associate Professor, Dept. of Chemical Engineering, Univ. of Malaga, Malaga 29010, Spain. ORCID: https://orcid.org/0000-0002-1464-6975. Email: [email protected]
Elisa Franzoni, Ph.D. [email protected]
Associate Professor, Dept. of Civil, Chemical, Environmental, and Materials Engineering, Univ. of Bologna, Bologna 40136, Italy. Email: [email protected]
Professor, Dept. DTU Sustain, Technical Univ. of Denmark, Lyngby 2800, Denmark. ORCID: https://orcid.org/0000-0001-7756-382X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share