Technical Papers
Jul 17, 2024

Geotechnical Performance of Alkali-Activated Uncalcined Clayey Soils with Hydroxide- and Aluminate-Based Activators

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 10

Abstract

This research evaluates the performance of two low- and high-plasticity clays as the sole precursors to develop alkaline activation at ambient temperature. NaOH solutions with different concentrations of 2 to 10  mol/L along with binary solutions with NaAlO2/NaOH mass ratios of 1 and 0.75 for CL and CH clays, respectively, have been used as alkaline activators. Unconfined compressive strength (UCS), indirect tensile strength (ITS), ultrasonic pulse velocity (UPV) and Atterberg limits tests have all been conducted to thoroughly assess the geotechnical properties of alkali-activated clays. The experimental results show that CL with the best performance when mixed with 8 M NaOH activator renders higher mechanical strength and stiffness compared to CH showing a peak at 4 M NaOH. This observation is primarily attributed to the higher amorphous content and a weak interlayer force in CL that in turn contributes to more reactive silicate phases and gel products. Moreover, binary solution considerably enhances the mechanical performance of parent clays by modifying the Si/Al ratio in the mixture. Another important observation is the vulnerability of the alkali-activated clays to cracks and expansion due to alkali–silica reactions, leading to a significant drop in their mechanical strength and stiffness. Microstructural analyses also reveal the increase in amorphous content and the formation of flocculated particles covered by aluminosilicate gels, especially in CL-based samples where the layer-like structure of clay changes to sponge-like with globular units. More importantly, uncalcined clay-based samples are observed to be prone to the curing time-dependent cracking associated with expanding phases due to alkali–silica reactions or flocculated particles. These observations could be useful in geotechnical engineering practice for a variety of field applications in terms of both safety and performance because not only natural clays have been used as the sole precursors but also a relatively low alkali concentration has contributed to the optimum improvement of the composite material.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.

References

Abdeldjouad, L., A. Asadi, R. J. Ball, H. Nahazanan, and B. B. Huat. 2019. “Application of alkali-activated palm oil fuel ash reinforced with glass fibers in soil stabilization.” Soils Found. 59 (5): 1552–1561. https://doi.org/10.1016/j.sandf.2019.07.008.
Ali, M. A., H. A. Ahmed, H. M. Ahmed, and M. Hefni. 2021. “Pyrophyllite: An economic mineral for different industrial applications.” Appl. Sci. 11 (23): 11357. https://doi.org/10.3390/app112311357.
Alshaaer, M. 2013. “Two-phase geopolymerization of kaolinite-based geopolymers.” Appl. Clay Sci. 86 (Dec): 162–168. https://doi.org/10.1016/j.clay.2013.10.004.
Álvarez-Ayuso, E., et al. 2008. “Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-) combustion fly ashes.” J. Hazard. Mater. 154 (1–3): 175–183. https://doi.org/10.1016/j.jhazmat.2007.10.008.
Aslin, J., E. Mariani, K. Dawson, and M. W. Barsoum. 2019. “Ripplocations provide a new mechanism for the deformation of phyllosilicates in the lithosphere.” Nat. Commun. 10 (1): 1–9. https://doi.org/10.1038/s41467-019-08587-2.
ASTM. 1975. Tensile strength and Young’s modulus for high-modulus single filament materials. ASTM D3379. West Conshohocken, PA: ASTM.
ASTM. 2000a. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318. West Conshohocken, PA: ASTM.
ASTM. 2000b. Standard test method for unconfined compressive strength of cohesive soil. ASTM D2166. West Conshohocken, PA: ASTM.
ASTM. 2002a. Standard test method for particle-size analysis of soils. ASTM D422. West Conshohocken, PA: ASTM.
ASTM. 2002b. Standard test method for pulse velocity through concrete. ASTM C597. West Conshohocken, PA: ASTM.
ASTM. 2007. Standard test methods for laboratory compaction characteristics of soil using Standard effort. ASTM D698. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854. West Conshohocken, PA: ASTM.
Bae, S. J., S. Park, and H. K. Lee. 2020. “Role of Al in the crystal growth of alkali-activated fly ash and slag under a hydrothermal condition.” Constr. Build. Mater. 239 (Mar): 117842. https://doi.org/10.1016/j.conbuildmat.2019.117842.
Barrer, R. M., J. F. Cole, and H. Sticher. 1968. “Chemistry of soil minerals. Part V. Low temperature hydrothermal transformations of kaolinite.” J. Chem. Soc. A 2475–2485. https://doi.org/10.1039/j19680002475.
Buchwald, A., H. D. Zellmann, and C. Kaps. 2011. “Condensation of aluminosilicate gels—Model system for geopolymer binders.” J. Non-Cryst. Solids 357 (5): 1376–1382. https://doi.org/10.1016/j.jnoncrysol.2010.12.036.
Chindaprasirt, P., P. De Silva, K. Sagoe-Crentsil, and S. Hanjitsuwan. 2012. “Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems.” J. Mater. Sci. 47 (12): 4876–4883. https://doi.org/10.1007/s10853-012-6353-y.
Criado, M., A. Fernández-Jiménez, and A. Palomo. 2010. “Alkali activation of fly ash. Part III: Effect of curing conditions on reaction and its graphical description.” Fuel 89 (11): 3185–3192. https://doi.org/10.1016/j.fuel.2010.03.051.
Davidovits, J. 1998. “Geopolymer chemistry and properties.” Geopolymer 88 (1): 25–48. https://doi.org/10.1021/ja00030a008.
D’Elia, A., D. Pinto, G. Eramo, R. Laviano, A. Palomo, and A. Fernández-Jiménez. 2020. “Effect of alkali concentration on the activation of carbonate-high illite clay.” Appl. Sci. 10 (7): 2203. https://doi.org/10.3390/app10072203.
De Silva, P., K. Sagoe-Crenstil, and V. Sirivivatnanon. 2007. “Kinetics of geopolymerization: Role of Al2O3 and SiO2.” Cem. Concr. Res. 37 (4): 512–518. https://doi.org/10.1016/j.cemconres.2007.01.003.
Duxson, P., A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. van Deventer. 2007. “Geopolymer technology: The current state of the art.” J. Mater. Sci. 42 (9): 2917–2933. https://doi.org/10.1007/s10853-006-0637-z.
Engelhardt, G., J. Felsche, and P. Sieger. 1992. “The hydrosodalite system Na6+ x [SiAlO4] 6 (OH) x. cntdot. nH2O: Formation, phase composition, and de-and rehydration studied by 1H, 23Na, and 29Si MAS-NMR spectroscopy in tandem with thermal analysis, x-ray diffraction, and IR spectroscopy.” J. Am. Chem. Soc. 114 (4): 1173–1182. https://doi.org/10.1021/ja00030a008.
Essalhi, A., M. Essalhi, A. Toummite, A. E. Mostadi, and Y. Raddi. 2017. “Mineralogical and textural arguments for a metasomatic origin of the Ougnat pyrophyllite, Eastern Anti-Atlas, Morocco.” J. Mater. Environ. Sci. 8 (1): 22–32.
Fasihnikoutalab, M. H., A. Asadi, B. K. Huat, R. J. Ball, S. Pourakbar, and P. Singh. 2017. “Utilisation of carbonating olivine for sustainable soil stabilisation.” Environ. Geotech. 4 (3): 184–198. https://doi.org/10.1680/jenge.15.00018.
Fernández-Jiménez, A., A. Palomo, I. Sobrados, and J. Sanz. 2006a. “The role played by the reactive alumina content in the alkaline activation of fly ashes.” Microporous Mesoporous Mater. 91 (1–3): 111–119. https://doi.org/10.1016/j.micromeso.2005.11.015.
Fernández-Jiménez, A. M., A. Palomo, and C. Lopez-Hombrados. 2006b. “Engineering properties of alkali-activated fly ash concrete.” ACI Mater. J. 103 (2): 106. https://doi.org/10.14359/15261.
Garcia-Lodeiro, I., N. Cherfa, F. Zibouche, A. Fernández-Jiménez, and A. Palomo. 2015. “The role of aluminium in alkali-activated bentonites.” Mater. Struct. 48 (3): 585–597. https://doi.org/10.1617/s11527-014-0447-8.
Garcia-Lodeiro, I., A. Fernández-Jiménez, P. Pena, and A. Palomo. 2014. “Alkaline activation of synthetic aluminosilicate glass.” Ceram. Int. 40 (4): 5547–5558. https://doi.org/10.1016/j.ceramint.2013.10.146.
Ghaffarpour Jahromi, S., M. Payan, and Z. Amraee. 2023. “The effect of zeolite and cement additives on the mechanical behavior and dispersive index of clay soil.” Amirkabir J. Civ. Eng. 55 (8): 1645–1660. https://doi.org/10.22060/ceej.2023.22162.7916.
Heah, C. Y., H. Kamarudin, A. M. Al Bakri, M. Bnhussain, M. Luqman, I. K. Nizar, C. M. Ruzaidi, and Y. M. Liew. 2012. “Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers.” Constr. Build. Mater. 35 (Oct): 912–922. https://doi.org/10.1016/j.conbuildmat.2012.04.102.
Heah, C. Y., H. Kamarudin, A. M. Mustafa Al Bakri, M. Bnhussain, M. Luqman, I. Khairul Nizar, C. M. Ruzaidi, and Y. M. Liew. 2013. “Kaolin-based geopolymers with various NaOH concentrations.” Int. J. Miner. Metall. Mater. 20 (3): 313–322. https://doi.org/10.1007/s12613-013-0729-0.
Heller-Kallai, L., and I. Lapides. 2007. “Reactions of kaolinites and metakaolinites with NaOH—Comparison of different samples (Part 1).” Appl. Clay Sci. 35 (1–2): 99–107. https://doi.org/10.1016/j.clay.2006.06.006.
Hodhod, O. A., S. E. Alharthy, and S. M. Bakr. 2020. “Physical and mechanical properties for metakaolin geopolymer bricks.” Constr. Build. Mater. 265 (Feb): 120217. https://doi.org/10.1016/j.conbuildmat.2020.120217.
Kása, E., K. Baán, Z. Kása, Z. Kónya, Á. Kukovecz, I. Pálinkó, P. Sipos, and M. Szabados. 2022. “The effect of mechanical and thermal treatments on the dissolution kinetics of kaolinite in alkaline sodium aluminate solution under conditions typical to Bayer desilication.” Appl. Clay Sci. 229 (Nov): 106671. https://doi.org/10.1016/j.clay.2022.106671.
Ke, X., J. L. Provis, and S. A. Bernal. 2018. “Structural ordering of aged and hydrothermally cured metakaolin based potassium geopolymers.” In Calcined clays for sustainable concrete, 232–237. New York: Springer.
Khajeh, A., S. A. Ebrahimi, H. MolaAbasi, R. Jamshidi Chenari, and M. Payan. 2021. “Effect of EPS beads in lightening a typical zeolite and cement-treated sand.” Bull. Eng. Geol. Environ. 80 (11): 8615–8632. https://doi.org/10.1007/s10064-021-02458-1.
Khajeh, A., R. Jamshidi Chenari, H. MolaAbasi, and M. Payan. 2022. “An experimental investigation on geotechnical properties of a clayey soil stabilised with lime and zeolite in base and subbase courses.” Road Mater. Pavement Des. 23 (12): 2924–2941. https://doi.org/10.1080/14680629.2021.1997789.
Khajeh, A., R. Jamshidi Chenari, and M. Payan. 2020. “A simple review of cemented non-conventional materials: Soil composites.” Geotech. Geol. Eng. 38 (Jun): 1019–1040. https://doi.org/10.1007/s10706-019-01090-x.
Khajeh, A., R. Jamshidi Chenari, M. Payan, and H. MolaAbasi. 2023. “Application of expanded polystyrene beads inclusion in lightening lime-zeolite treated clays: Strength and stiffness assessment.” In Environment, development and sustainability, 1–29. Berlin: Springer. https://doi.org/10.1007/s10668-023-03535-z.
Khaksar Najafi, E. 2022. “Sustainable sodium hydroxide concentration for the synthesis of alkali-activated clay-fly ash in road subgrades.” Adv. Cem. Res. 34 (11): 518–528. https://doi.org/10.1680/jadcr.21.00198.
Khaksar Najafi, E., R. Jamshidi Chenari, M. Payan, and M. Arabani. 2021a. “A sustainable landfill liner material: Clay-fly ash geopolymers.” Bull. Eng. Geol. Environ. 80 (5): 4111–4124. https://doi.org/10.1007/s10064-021-02185-7.
Khaksar Najafi, E., R. Jamshidi Chenari, M. Payan, and M. Arabani. 2021b. “Compositional effects of clay–fly ash geopolymers on the sorption process of lead and zinc.” Environ. Qual. 50 (3): 768–781. https://doi.org/10.1002/jeq2.20207.
Khalifa, A. Z., Ö. Cizer, Y. Pontikes, A. Heath, P. Patureau, S. A. Bernal, and A. T. Marsh. 2020. “Advances in alkali-activation of clay minerals.” Cem. Concr. Res. 132 (Mar): 106050. https://doi.org/10.1016/j.cemconres.2020.106050.
Kuwahara, Y. 2006. “In-situ AFM study of smectite dissolution under alkaline conditions at room temperature.” Am. Mineral. 91 (7): 1142–1149. https://doi.org/10.2138/am.2006.2078.
Lemougna, P. N., A. B. Madi, E. Kamseu, U. C. Melo, M. P. Delplancke, and H. Rahier. 2014. “Influence of the processing temperature on the compressive strength of Na activated lateritic soil for building applications.” Constr. Build. Mater. 65 (Mar): 60–66. https://doi.org/10.1016/j.conbuildmat.2014.04.100.
Marsh, A. 2019. “Alkali activated earth construction materials.” Ph.D. thesis, Dept. of Architecture and Civil Engineering, Univ. of Bath.
Marsh, A., A. Heath, P. Patureau, M. Evernden, and P. Walker. 2018. “Alkali activation behavior of un-calcined montmorillonite and illite clay minerals.” Appl. Clay Sci. 166 (Jun): 250–261. https://doi.org/10.1016/j.clay.2018.09.011.
Mitchell, J. K. 1976. “Fabric, structure, and property relationships.” In Fundamentals of soil behavior, 222–252. Hoboken, NJ: Wiley.
Mohammadi, E. L., E. K. Najafi, P. Z. Ranjbar, M. Payan, R. J. Chenari, and B. Fatahi. 2023. “Recycling industrial alkaline solutions for soil stabilization by low-concentrated fly ash-based alkali cements.” Constr. Build. Mater. 393 (Aug): 132083. https://doi.org/10.1016/j.conbuildmat.2023.132083.
Mukhopadhyay, T. K., S. Ghatak, and H. S. Maiti. 2010. “Pyrophyllite as raw material for ceramic applications in the perspective of its pyro-chemical properties.” Ceram. Int. 36 (3): 909–916. https://doi.org/10.1016/j.ceramint.2009.10.026.
Muñoz, J. F., T. Easton, and J. Dahmen. 2015. “Using alkali-activated natural aluminosilicate minerals to produce compressed masonry construction materials.” Constr. Build. Mater. 95 (Oct): 86–95. https://doi.org/10.1016/j.conbuildmat.2015.07.144.
Naeini, S. A., B. Naderinia, and E. Izadi. 2012. “Unconfined compressive strength of clayey soils stabilized with waterborne polymer.” KSCE J. Civ. Eng. 16 (6): 943–949. https://doi.org/10.1007/s12205-012-1388-9.
Ojo, E. B., K. Mustapha, R. S. Teixeira, and H. Savastano Jr. 2019. “Development of unfired earthen building materials using muscovite rich soils and alkali activators.” Case Stud. Constr. Mater. 11 (Dec): e00262. https://doi.org/10.1016/j.cscm.2019.e00262.
Peirce, S., L. Santoro, S. Andini, F. Montagnaro, C. Ferone, and R. Cioffi. 2015. “Clay sediment geopolymerization by means of alkali metal aluminate activation.” RSC Adv. 5 (130): 107662–107669. https://doi.org/10.1039/C5RA22140D.
Pimraksa, K., P. Chindaprasirt, A. Rungchet, K. Sagoe-Crentsil, and T. Sato. 2011. “Lightweight geopolymer made of highly porous siliceous materials with various Na2O/Al2O3 and SiO2/Al2O3 ratios.” Mater. Sci. Eng., A 528 (21): 6616–6623. https://doi.org/10.1016/j.msea.2011.04.044.
Pourakbar, S., A. Asadi, B. B. Huat, and M. H. Fasihnikoutalab. 2015. “Soil stabilisation with alkali-activated agro-waste.” Environ. Geotech. 2 (6): 359–370. https://doi.org/10.1680/envgeo.15.00009.
Pourakbar, S., and B. K. Huat. 2017. “A review of alternatives traditional cementitious binders for engineering improvement of soils.” Int. J. Geotech. Eng. 11 (2): 206–216. https://doi.org/10.1080/19386362.2016.1207042.
Provis, J. L., and J. S. Van Deventer. 2009. Geopolymers: Structures, processing, properties and industrial applications. Amsterdam, Netherlands: Elsevier.
Provis, J. L., and J. S. Van Deventer. 2014. Alkali activated materials: State-of-the-art report. RILEM TC 224-AAM. New York: Springer.
Prud’Homme, E., P. Michaud, E. Joussein, C. Peyratout, A. Smith, and S. Rossignol. 2011. “In situ inorganic foams prepared from various clays at low temperature.” Appl. Clay Sci. 51 (1–2): 15–22. https://doi.org/10.1016/j.clay.2010.10.016.
Prusinski, J. R., and S. Bhattacharja. 1999. “Effectiveness of Portland cement and lime in stabilizing clay soils.” Transp. Res. Rec. 1652 (1): 215–227. https://doi.org/10.3141/1652-28.
Puertas, F., T. Amat, A. Fernández-Jiménez, and T. Vázquez. 2003. “Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres.” Cem. Concr. Res. 33 (12): 2031–2036. https://doi.org/10.1016/S0008-8846(03)00222-9.
Richardson, C. K., R. Markuszewski, K. S. Durham, and D. D. Bluhm. 1986. “Effect of caustic and microwave treatment on clay minerals associated with coal.” In Proc., ACS Symp. Series, 513–523. Washington, DC: American Chemical Society.
Rowles, M., and B. O’Connor. 2003. “Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite.” J. Mater. Chem. 13 (5): 1161–1165. https://doi.org/10.1039/b212629j.
Sedira, N., and J. Castro-Gomes. 2020. “Effect of activators on hybrid alkaline binder based on tungsten mining waste and ground granulated blast furnace slag.” Constr. Build. Mater. 232 (Jan): 117176. https://doi.org/10.1016/j.conbuildmat.2019.117176.
Sedmale, G., A. Korovkins, V. Seglins, and L. Lindina. 2013. “Application of chemical trated illite clay for development of ceramics products.” IOP Conf. Ser.: Mater. Sci. Eng. 47 (1): 012056. https://doi.org/10.1088/1757-899X/47/1/012056.
Shirmohammadi, S., S. Ghaffarpour Jahromi, M. Payan, and K. Senetakis. 2021. “Effect of lime stabilization and partial clinoptilolite zeolite replacement on the behavior of a silt-sized low-plasticity soil subjected to freezing–thawing cycles.” Coatings 11 (8): 994. https://doi.org/10.3390/coatings11080994.
Slaty, F., H. Khoury, H. Rahier, and J. Wastiels. 2015. “Durability of alkali activated cement produced from kaolinitic clay.” Appl. Clay Sci. 104 (Feb): 229–237. https://doi.org/10.1016/j.clay.2014.11.037.
Slaty, F., H. Khoury, J. Wastiels, and H. Rahier. 2013. “Characterization of alkali activated kaolinitic clay.” Appl. Clay Sci. 75 (May): 120–125. https://doi.org/10.1016/j.clay.2013.02.005.
Subear, S. 2004. “The influence of aggregates on the microstructure of geopolymer.” Ph.D. thesis, Dept. of Applied Physics, Curtin Univ. of Technology.
Wang, Y., X. Liu, W. Zhang, Z. Li, Y. Zhang, Y. Li, and Y. Ren. 2020. “Effects of Si/Al ratio on the efflorescence and properties of fly ash based geopolymer.” J. Cleaner Prod. 244 (Jan): 118852. https://doi.org/10.1016/j.jclepro.2019.118852.
Weng, L., and K. Sagoe-Crentsil. 2007. “Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I—Low Si/Al ratio systems.” J. Mater. Sci. 42 (May): 2997–3006. https://doi.org/10.1007/s10853-006-0820-2.
Yesiller, N., J. L. Hanson, and M. Usmen. 2001. “Ultrasonic assessment of stabilized soils.” In Proc. ASCE Geo–Institute Soft Ground Technology Conf., 170–181. Reston, VA: ASCE.
Yesiller, N., G. Inci, and C. J. Miller. 2000. “Ultrasonic testing for compacted clayey soils.” In Advances in Unsaturated Geotechnics, Geotechnical Special Publication 99. 54–68. Reston, VA: ASCE.
Yi, Y., M. Liska, and A. Al-Tabbaa. 2014. “Properties of two model soils stabilized with different blends and contents of GGBS, MgO, lime, and PC.” J. Mater. Civ. Eng. 26 (2): 267–274. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000806.
Zamanian, M., M. Salimi, M. Payan, A. Noorzad, and M. Hassanvandian. 2023. “Development of high-strength rammed earth walls with alkali-activated ground granulated blast furnace slag (GGBFS) and waste tire textile fiber (WTTF) as a step towards low-carbon building materials.” Constr. Build. Mater. 394 (Aug): 132180. https://doi.org/10.1016/j.conbuildmat.2023.132180.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 10October 2024

History

Received: Apr 6, 2023
Accepted: Mar 1, 2024
Published online: Jul 17, 2024
Published in print: Oct 1, 2024
Discussion open until: Dec 17, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Master’s Student, Dept. of Civil Engineering, Faculty of Engineering, Univ. of Guilan, Rasht 4199613776, Iran. Email: [email protected]
Elmira Khaksar Najafi [email protected]
Postdoctoral Research Fellow, Dept. of Civil Engineering, Faculty of Engineering, Univ. of Guilan, Rasht 4199613776, Iran. Email: [email protected]
Assistant Professor, Dept. of Civil Engineering, Faculty of Engineering, Univ. of Guilan, Rasht 4199613776, Iran (corresponding author). ORCID: https://orcid.org/0000-0002-9866-3528. Email: [email protected]
Assistant Professor, Dept. of Civil Engineering, Faculty of Engineering, Univ. of Guilan, Rasht 4199613776, Iran. ORCID: https://orcid.org/0000-0002-1942-7915. Email: [email protected]
Reza Jamshidi Chenari [email protected]
Postdoctoral Research Fellow, Dept. of Civil Engineering, GeoEngineering Centre at Queen’s RMC, Royal Military College of Canada, Kingston, ON, Canada. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share