Technical Papers
Jan 22, 2024

Interfacial Thickness Characterization and Tensile Properties of Calcium-Silicate-Hydrate/Calcium Hydroxide Composites via Molecular Dynamics Simulations

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 4

Abstract

As the main hydration products, calcium-silicate-hydrate (C─ S─ H) and portlandite (CH) contribute significantly to the tensile strength of cementitious materials. However, the role of interface in the C─ S─ H/CH composites remains unexplored. This paper aims at elucidating the interfacial tensile properties of C─ S─ H/CH composites via molecular dynamics simulations with the ReaxFF forcefield. A method quantifying the thickness of the atomic-level interfacial transition zone in composites through potential energy analysis was proposed, with the value of 1.753.38  nm. Results showed that all models had damages at or near the interfaces. The tensile strength of composites relied highly upon material orientations. Elevated loading speed enhanced the tensile strength of composites, and their strain rate sensitivity was more significant than either C─ S─ H or CH. Failure mechanisms were revealed via chemical bond evolution. A nanoscopic tensile constitutive model was formulated based on Morse potential function. This research sheds light on the role of the interfacial area in two-phase composites at the atomic scale, which provides essential inputs for further multiscale studies.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This work was supported by the National Key Research and Development Program of China (No. 2017YFC0404902), the National Natural Science Foundation of China (No. 52079047), the Fundamental Research Funds for the Central Universities (No. B200203082), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX20_0437). We acknowledge the use of High Performance Computing Platform provided by Hohai University.

References

Abdolhosseini Qomi, M. J., et al. 2014. “Combinatorial molecular optimization of cement hydrates.” Nat. Commun. 5 (1): 4960. https://doi.org/10.1038/ncomms5960.
Al-Ostaz, A., W. Wu, A. H. D. Cheng, and C. R. Song. 2010. “A molecular dynamics and microporomechanics study on the mechanical properties of major constituents of hydrated cement.” Composites, Part B 41 (7): 543–549. https://doi.org/10.1016/j.compositesb.2010.06.005.
Bauchy, M., H. Laubie, M. J. Abdolhosseini Qomi, C. G. Hoover, F. J. Ulm, and R. J. M. Pellenq. 2015. “Fracture toughness of calcium-silicate-hydrate from molecular dynamics simulations.” J. Non-Cryst. Solids 419 (Jul): 58–64. https://doi.org/10.1016/j.jnoncrysol.2015.03.031.
Brochard, L., G. Hantal, H. Laubie, F. J. Ulm, and R. J.-M. Pellenq. 2013. “Fracture mechanisms in organic-rich shales: Role of Kerogen.” In Poromechanics V, 2471–2480. Reston, VA: ASCE.
Chen, J. J., L. Sorelli, M. Vandamme, F. J. Ulm, and G. Chanvillard. 2010. “A coupled nanoindentation/SEM-EDS study on low water/cement ratio portland cement paste: Evidence for CSH/Ca(OH)2 nanocomposites.” J. Am. Ceram. Soc. 93 (5): 1484–1493. https://doi.org/10.1111/j.1551-2916.2009.03599.x.
Christensen, R. 1990. “A critical evaluation for a class of micromechanics models.” J. Mech. Phys. Solids 38 (3): 379–404. https://doi.org/10.1016/0022-5096(90)90005-O.
Cong, X., and R. James Kirkpatrick. 1996. “29Si MAS NMR study of the structure of calcium silicate hydrate.” Adv. Cem. Based Mater. 3 (3–4): 144–156. https://doi.org/10.1016/S1065-7355(96)90046-2.
Constantinides, G., and F. J. Ulm. 2007. “The nanogranular nature of C─ S─ H.” J. Mech. Phys. Solids 55 (1): 64–90. https://doi.org/10.1016/j.jmps.2006.06.003.
Desgranges, L., D. Grebille, G. Calvarin, G. Chevrier, N. Floquet, and J. C. Niepce. 1993. “Hydrogen thermal motion in calcium hydroxide: Ca(OH)2.” Acta Crystallogr., Sect. B: Struct. Sci. 49 (5): 812–817. https://doi.org/10.1107/S0108768193003556.
Diamond, S. 2001. “Considerations in image analysis as applied to investigations of the ITZ in concrete.” Cem. Concr. Compos. 23 (2–3): 171–178. https://doi.org/10.1016/S0958-9465(00)00085-8.
Fan, D., and S. Yang. 2018. “Mechanical properties of C─ S─ H globules and interfaces by molecular dynamics simulation.” Constr. Build. Mater. 176 (Jul): 573–582. https://doi.org/10.1016/j.conbuildmat.2018.05.085.
Fu, J., S. Kamali-Bernard, F. Bernard, and M. Cornen. 2018. “Comparison of mechanical properties of C─ S─ H and portlandite between nano-indentation experiments and a modeling approach using various simulation techniques.” Composites, Part B 151 (May): 127–138. https://doi.org/10.1016/j.compositesb.2018.05.043.
Galmarini, S., A. Kunhi Mohamed, and P. Bowen. 2016. “Atomistic simulations of silicate species interaction with portlandite surfaces.” J. Phys. Chem. C 120 (39): 22407–22413. https://doi.org/10.1021/acs.jpcc.6b07044.
Gardner, D. W., J. Li, M. Kunz, C. Zhu, P. J. M. Monteiro, R. Maboudian, and C. Carraro. 2021. “Plastic deformation mechanism of calcium-silicate hydrates determined by deviatoric-stress Raman spectroscopy.” Cem. Concr. Res. 146 (Aug): 106476. https://doi.org/10.1016/j.cemconres.2021.106476.
Gardner, D. W., J. Li, A. Morshedifard, S. Masoumi, M. J. Abdolhosseini Qom, P. J. Monteiro, and C. Carraro. 2020. “Silicate bond characteristics in calcium–silicate–hydrates determined by high pressure raman spectroscopy.” J. Phys. Chem. C. 124 (33): 18335–18345. https://doi.org/10.1021/acs.jpcc.0c04563.
Geng, G., R. N. Vasin, J. Li, M. J. A. Qomi, J. Yan, H. R. Wenk, and P. J. Monteiro. 2018. “Preferred orientation of calcium aluminosilicate hydrate induced by confined compression.” Cem. Concr. Res. 113 (Nov): 186–196. https://doi.org/10.1016/j.cemconres.2018.09.002.
Girifalco, L. A., and V. G. Weizer. 1959. “Application of the Morse potential function to cubic metals.” Phys. Rev. 114 (3): 687. https://doi.org/10.1103/PhysRev.114.687.
Goyal, A., I. Palaia, K. Ioannidou, F. J. Ulm, H. van Damme, R. J. M. Pellenq, E. Trizac, and E. Del Gado. 2021. “The physics of cement cohesion.” Sci. Adv. 7 (32): 1–12. https://doi.org/10.1126/sciadv.abg5882.
Haile, B. F., D. W. Jin, B. Yang, S. Park, and H. K. Lee. 2019. “Multi-level homogenization for the prediction of the mechanical properties of ultra-high-performance concrete.” Constr. Build. Mater. 229 (Dec): 116797. https://doi.org/10.1016/j.conbuildmat.2019.116797.
Hajilar, S., and B. Shafei. 2016. “Assessment of structural, thermal, and mechanical properties of portlandite through molecular dynamics simulations.” J. Solid State Chem. 244 (Sep): 164–174. https://doi.org/10.1016/j.jssc.2016.09.026.
Hantal, G., L. Brochard, R. J. M. Pellenq, F. J. Ulm, and B. Coasne. 2017. “Role of interfaces in elasticity and failure of clay-organic nanocomposites: Toughening upon interface weakening?” Langmuir 33 (42): 11457–11466. https://doi.org/10.1021/acs.langmuir.7b01071.
Hou, D., H. Ma, Y. Zhu, and Z. Li. 2014a. “Calcium silicate hydrate from dry to saturated state: Structure, dynamics and mechanical properties.” Acta Mater. 67 (Apr): 81–94. https://doi.org/10.1016/j.actamat.2013.12.016.
Hou, D., Q. Yang, Z. Jin, P. Wang, M. Wang, X. Wang, and Y. Zhang. 2021. “Enhancing interfacial bonding between epoxy and CSH using graphene oxide: An atomistic investigation.” Appl. Surf. Sci. 568 (Jun): 150896. https://doi.org/10.1016/j.apsusc.2021.150896.
Hou, D., J. Yu, Q. F. Liu, B. Dong, X. Wang, P. Wang, and M. Wang. 2020. “Nanoscale insight on the epoxy-cement interface in salt solution: A molecular dynamics study.” Appl. Surf. Sci. 509 (Dec): 145322. https://doi.org/10.1016/j.apsusc.2020.145322.
Hou, D., J. Zhang, Z. Li, and Y. Zhu. 2015a. “Uniaxial tension study of calcium silicate hydrate (C–S–H): Structure, dynamics and mechanical properties.” Mater. Struct. 48 (Nov): 3811–3824. https://doi.org/10.1617/s11527-014-0441-1.
Hou, D., T. Zhao, H. Ma, and Z. Li. 2015b. “Reactive molecular simulation on water confined in the nanopores of the calcium silicate hydrate gel: Structure, reactivity, and mechanical properties.” J. Phys. Chem. C 119 (3): 1346–1358. https://doi.org/10.1021/jp509292q.
Hou, D., Y. Zhu, Y. Lu, and Z. Li. 2014b. “Mechanical properties of calcium silicate hydrate (C─ S─ H) at nano-scale: A molecular dynamics study.” Mater. Chem. Phys. 146 (3): 503–511. https://doi.org/10.1016/j.matchemphys.2014.04.001.
Jennings, H. M., J. J. Thomas, J. S. Gevrenov, G. Constantinides, and F. J. Ulm. 2007. “A multi-technique investigation of the nanoporosity of cement paste.” Cem. Concr. Res. 37 (3): 329–336. https://doi.org/10.1016/j.cemconres.2006.03.021.
Ju, J. W., and T. M. Chen. 1994. “Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal inhomogeneities.” Acta Mech. 103 (1): 103–121. https://doi.org/10.1007/BF01180221.
Kai, M. F., and J. G. Dai. 2021. “Understanding geopolymer binder-aggregate interfacial characteristics at molecular level.” Cem. Concr. Res. 149 (Aug): 106582. https://doi.org/10.1016/j.cemconres.2021.106582.
Kai, M. F., W. M. Ji, and J. G. Dai. 2022. “Atomistic insights into the debonding of Epoxy–Concrete interface with water presence.” Eng. Fract. Mech. 271 (Jul): 108668. https://doi.org/10.1016/j.engfracmech.2022.108668.
Kai, M. F., F. Sanchez, D. S. Hou, and J. G. Dai. 2023. “Nanoscale insights into the interfacial characteristics between calcium silicate hydrate and silica.” Appl. Surf. Sci. 616 (Nov): 156478. https://doi.org/10.1016/j.apsusc.2023.156478.
Komanduri, R., N. Chandrasekaran, and L. M. Raff. 2001. “Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal cubic metals at nanolevel.” Int. J. Mech. Sci. 43 (10): 2237–2260. https://doi.org/10.1016/S0020-7403(01)00043-1.
Laugesen, J. L. 2005. “Density functional calculations of elastic properties of portlandite, Ca(OH)2.” Cem. Concr. Res. 35 (2): 199–202. https://doi.org/10.1016/j.cemconres.2004.07.036.
Li, J., W. Zhang, and P. J. M. Monteiro. 2020a. “Structure and intrinsic mechanical properties of nanocrystalline calcium silicate hydrate.” ACS Sustainable Chem. Eng. 8 (33): 12453–12461. https://doi.org/10.1021/acssuschemeng.0c03230.
Li, J., W. Zhang, and P. J. M. Monteiro. 2020b. “Synchrotron X-ray Raman scattering shows the changes of the Ca environment in C─ S─ H exposed to high pressure.” Cem. Concr. Res. 143 (Apr): 106066. https://doi.org/10.1016/j.cemconres.2020.106066.
Li, J., W. Zhang, and P. J. M. Monteiro. 2021. “Preferred orientation of calcium aluminosilicate hydrate compacts: Implications for creep and indentation.” Cem. Concr. Res. 143 (Jul): 106371. https://doi.org/10.1016/j.cemconres.2021.106371.
Manzano, H., S. Moeini, F. Marinelli, A. C. T. Van Duin, F. J. Ulm, and R. J. M. Pellenq. 2012a. “Confined water dissociation in microporous defective silicates: Mechanism, dipole distribution, and impact on substrate properties.” J. Am. Chem. Soc. 134 (4): 2208–2215. https://doi.org/10.1021/ja209152n.
Manzano, H., R. J. M. Pellenq, F. J. Ulm, M. J. Buehler, and A. C. T. Van Duin. 2012b. “Hydration of calcium oxide surface predicted by reactive force field molecular dynamics.” Langmuir 28 (9): 4187–4197. https://doi.org/10.1021/la204338m.
Mehta, P. K., and P. J. M. Monteiro. 2014. Concrete: Microstructure, properties, and materials. New York: McGraw-Hill.
Monteiro, P. J. M., and C. T. Chang. 1995. “The elastic moduli of calcium hydroxide.” Cem. Concr. Res. 25 (8): 1605–1609. https://doi.org/10.1016/0008-8846(95)00154-9.
Mori, T., and K. Tanaka. 1973. “Average stress in matrix and average elastic energy of materials with misfitting inclusions.” Acta Metall. 21 (5): 571–574. https://doi.org/10.1016/0001-6160(73)90064-3.
Němeček, J., V. Králík, V. Šmilauer, L. Polívka, and A. Jäger. 2016. “Tensile strength of hydrated cement paste phases assessed by micro-bending tests and nanoindentation.” Cem. Concr. Compos. 73 (Oct): 164–173. https://doi.org/10.1016/j.cemconcomp.2016.07.010.
Pellenq, R. J. M., A. Kushima, R. Shahsavari, K. J. Van Vliet, M. J. Buehler, S. Yip, and F. J. Ulm. 2009. “A realistic molecular model of cement hydrates.” Proc. Natl. Acad. Sci. 106 (38): 16102–16107. https://doi.org/10.1073/pnas.0902180106.
Pichler, B., and C. Hellmich. 2011. “Upscaling quasi-brittle strength of cement paste and mortar: A multi-scale engineering mechanics model.” Cem. Concr. Res. 41 (5): 467–476. https://doi.org/10.1016/j.cemconres.2011.01.010.
Pichler, B., C. Hellmich, J. Eberhardsteiner, J. Wasserbauer, P. Termkhajornkit, R. Barbarulo, and G. Chanvillard. 2013. “Effect of gel-space ratio and microstructure on strength of hydrating cementitious materials: An engineering micromechanics approach.” Cem. Concr. Res. 45 (1): 55–68. https://doi.org/10.1016/j.cemconres.2012.10.019.
Pitman, M. C., and A. C. T. Van Duin. 2012. “Dynamics of confined reactive water in smectite clay-zeolite composites.” J. Am. Chem. Soc. 134 (6): 3042–3053. https://doi.org/10.1021/ja208894m.
Plimpton, S. 1995. “Short-range molecular dynamics.” J. Comput. Phys. 117 (1): 1–19. https://doi.org/10.1006/jcph.1995.1039.
Sadat, M. R., K. Muralidharan, and L. Zhang. 2018. “Reactive molecular dynamics simulation of the mechanical behavior of sodium aluminosilicate geopolymer and calcium silicate hydrate composites.” Comput. Mater. Sci. 150 (Apr): 500–509. https://doi.org/10.1016/j.commatsci.2018.04.041.
Senftle, T. P., et al. 2016. “The ReaxFF reactive force-field: Development, applications and future directions.” npj Comput. Mater. 2 (1): 15011. hhttps://doi.org/10.1038/npjcompumats.2015.11.
Shahsavari, R., M. J. Buehler, R. J. M. Pellenq, and F. J. Ulm. 2009. “First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: Case study of tobermorite and jennite.” J. Am. Ceram. Soc. 92 (10): 2323–2330. https://doi.org/10.1111/j.1551-2916.2009.03199.x.
Skinner, L. B., S. R. Chae, C. J. Benmore, H. R. Wenk, and P. J. M. Monteiro. 2010. “Nanostructure of calcium silicate hydrates in cements.” Phys. Rev. Lett. 104 (19): 195502. https://doi.org/10.1103/PhysRevLett.104.195502.
Speziale, S., H. J. Reichmann, F. R. Schilling, H. R. Wenk, and P. J. M. Monteiro. 2008. “Determination of the elastic constants of portlandite by Brillouin spectroscopy.” Cem. Concr. Res. 38 (10): 1148–1153. https://doi.org/10.1016/j.cemconres.2008.05.006.
Wittmann, F. H. 1986. “Estimation of the modulus of elasticity of calcium hydroxide.” Cem. Concr. Res. 16 (6): 971–972. https://doi.org/10.1016/0008-8846(86)90021-9.
Wu, S., X. Chen, and J. Zhou. 2012. “Influence of strain rate and water content on mechanical behavior of dam concrete.” Constr. Build. Mater. 36 (Nov): 448–457. https://doi.org/10.1016/j.conbuildmat.2012.06.046.
Zhang, N., and R. Shahsavari. 2016. “Balancing strength and toughness of calcium-silicate-hydrate via random nanovoids and particle inclusions: Atomistic modeling and statistical analysis.” J. Mech. Phys. Solids 96 (Nov): 204–222. https://doi.org/10.1016/j.jmps.2016.07.021.
Zhang, Q., and G. Ye. 2012. “Dehydration kinetics of portland cement paste at high temperature.” J. Therm. Anal. Calorim. 110 (1): 153–158. https://doi.org/10.1007/s10973-012-2303-9.
Zhang, Y., Q. Zhou, J. W. Ju, and M. Bauchy. 2021. “New insights into the mechanism governing the elasticity of calcium silicate hydrate gels exposed to high temperature: A molecular dynamics study.” Cem. Concr. Res. 141 (Mar): 106333. https://doi.org/10.1016/j.cemconres.2020.106333.
Zheng, D., and Q. Li. 2004. “An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity.” Eng. Fract. Mech. 71 (16–17): 2319–2327. https://doi.org/10.1016/j.engfracmech.2004.01.012.
Zheng, Q., J. Jiang, G. Xu, J. Yu, L. Tang, and S. Li. 2020. “New insights into the role of portlandite in the cement system: Elastic anisotropy, thermal stability, and structural compatibility with C─ S─ H.” Cryst. Growth Des. 20 (4): 2477–2488. https://doi.org/10.1021/acs.cgd.9b01644.
Zhou, J., S. Jin, and L. Sun. 2021. “Experimental investigation on the influence of multiscale pores on the static and dynamic splitting tensile strength of cementitious materials based on the virtual pore method.” Constr. Build. Mater. 266 (Jan): 120956. https://doi.org/10.1016/j.conbuildmat.2020.120956.
Zhou, J., and Y. Liang. 2019. “Effect of water on the dynamic tensile mechanical properties of calcium silicate hydrate: Based on molecular dynamics simulation.” Materials 12 (17): 2837. https://doi.org/10.3390/ma12172837.
Zhou, Y., D. Hou, G. Geng, P. Feng, J. Yu, and J. Jiang. 2018. “Insights into the interfacial strengthening mechanisms of calcium-silicate-hydrate/polymer nanocomposites.” Phys. Chem. Chem. Phys. 20 (12): 8247–8266. https://doi.org/10.1039/C8CP00328A.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 4April 2024

History

Received: Mar 28, 2023
Accepted: Sep 20, 2023
Published online: Jan 22, 2024
Published in print: Apr 1, 2024
Discussion open until: Jun 22, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, College of Civil and Transportation Engineering, Hohai Univ., Nanjing 210024, China. Email: [email protected]
Professor, College of Civil and Transportation Engineering, Hohai Univ., Nanjing 210024, China (corresponding author). ORCID: https://orcid.org/0000-0002-5192-4532. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share