Technical Papers
Nov 24, 2023

Reaction Kinetics and Fresh State Properties of Alkali-Activated Slag Mixtures with Secondary Precursors

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 2

Abstract

In this study, the effects of the incorporation of various supplementary materials such as fly ash, limestone powder, silica fume, and portland cement as the secondary precursor on the early age reaction, structural buildup, rheology, and microstructure of alkali-activated slag cements (AAC) in the presence of two different activators (sodium hydroxide and sodium silicate) have been investigated. Test results showed that the activator type influenced the reaction process and the setting time of AAC pastes could be estimated by the specific cumulative heat release or ultrasonic pulse velocity range. AAC pastes containing the investigated secondary precursors showed Bingham fluid behavior. Early structural buildup tests suggested that the silica fume or portland cement addition seems beneficial for 3D printing applications, while the fly ash or limestone addition could be preferred for multilayer casting. The main reaction products for the AAC pastes incorporating various secondary precursors were characterized as a chain-like C-(N)-A-S-H/C-(A)-S-H or C-S-H using SEM/EDX analyses.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This paper is a scientific output of the research actions performed in the framework of the FWO-EOS Project 30439691 “INTERdisciplinary multiscale Assessment of a new generation of Concrete with alkali-activated maTerials” (INTERACT). The financial support by FWO-EOS is gratefully acknowledged.
Author contributions: Xiaodi Dai: methodology, conceptualization, investigation, and writing of original draft; Mert Yücel Yardimci: methodology, validation, writing, and review editing; Serdar Aydin: methodology, conceptualization, writing, and review editing; and Geert De Schutter: funding acquisition, supervision, writing, review, and editing.

References

Acevedo-Martinez, E., L. Y. Gomez-Zamorano, and J. I. Escalante-Garcia. 2012. “Portland cement-blast furnace slag mortars activated using waterglass:–Part 1: Effect of slag replacement and alkali concentration.” Constr. Build. Mater. 37 (Dec): 462–469. https://doi.org/10.1016/j.conbuildmat.2012.07.041.
Al Makhadmeh, W. A., and A. Soliman. 2020. “Effect of activator nature on property development of alkali-activated slag binders.” J. Sustainable Cem.-Based Mater. 10 (4): 240–256. https://doi.org/10.1080/21650373.2020.1833256.
Alnahhal, M. F., A. Hamdan, A. Hajimohammadi, and T. Kim. 2021a. “Effect of rice husk ash-derived activator on the structural build-up of alkali activated materials.” Cem. Concr. Res. 150 (May): 106590. https://doi.org/10.1016/j.cemconres.2021.106590.
Alnahhal, M. F., T. Kim, and A. Hajimohammadi. 2021b. “Distinctive rheological and temporal viscoelastic behaviour of alkali-activated fly ash/slag pastes: A comparative study with cement paste.” Cem. Concr. Res. 144 (Mar): 106441. https://doi.org/10.1016/j.cemconres.2021.106441.
Angulo-Ramírez, D. E., R. Mejía de Gutiérrez, and F. Puertas. 2017. “Alkali-activated portland blast-furnace slag cement: Mechanical properties and hydration.” Constr. Build. Mater. 140 (Jun): 119–128. https://doi.org/10.1016/j.conbuildmat.2017.02.092.
Aupoil, J., J. B. Champenois, J. B. D. E. de Lacaillerie, and A. Poulesquen. 2019. “Interplay between silicate and hydroxide ions during geopolymerization.” Cem. Concr. Res. 115 (May): 426–432. https://doi.org/10.1016/j.cemconres.2018.09.012.
BSI (British Standards Institution). 2003. +A1:2008 methods of testing cement—Part 3: Determination of setting times and soundness. BS EN 196-3:2005. London: BSI.
Buchwald, A., R. Tatarin, and D. Stephan. 2009. “Reaction progress of alkaline-activated metakaolin-ground granulated blast furnace slag blends.” J. Mater. Sci. 44 (20): 5609–5617. https://doi.org/10.1007/s10853-009-3790-3.
Cao, M., X. Ming, H. Yin, and Li Li. 2019. “Influence of high temperature on strength, ultrasonic velocity and mass loss of calcium carbonate whisker reinforced cement paste.” Composites, Part B 163 (Jan): 438–446. https://doi.org/10.1016/j.compositesb.2019.01.030.
Cao, R., S. Zhang, N. Banthia, Y. Zhang, and Z. Zhang. 2020. “Interpreting the early-age reaction process of alkali-activated slag by using combined embedded ultrasonic measurement, thermal analysis, XRD, FTIR and SEM.” Composites, Part B 186 (Nov): 107840. https://doi.org/10.1016/j.compositesb.2020.107840.
Chen, W., Y. Li, P. Shen, and Z. Shui. 2013. “Microstructural development of hydrating portland cement paste at early ages investigated with non-destructive methods and numerical simulation.” J. Nondestr. Eval. 32 (3): 228–237. https://doi.org/10.1007/s10921-013-0175-y.
Chithiraputhiran, S., and N. Neithalath. 2013. “Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends.” Constr. Build. Mater. 45 (Aug): 233–242. https://doi.org/10.1016/j.conbuildmat.2013.03.061.
Collins, F., and J. G. Sanjayan. 1999. “Effects of ultra-fine materials on workability and strength of concrete containing alkali-activated slag as the binder.” Cem. Concr. Res. 29 (3): 459–462. https://doi.org/10.1016/S0008-8846(98)00237-3.
Criado, M., A. Fernández-Jiménez, A. Palomo, I. Sobrados, and J. Sanz. 2008. “Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR survey.” Microporous Mesoporous Mater. 109 (1–3): 525–534. https://doi.org/10.1016/j.micromeso.2007.05.062.
Dai, X., S. Aydin, M. Y. Yardimci, and G. De Schutter. 2022a. “Early structural build-up, setting behavior, reaction kinetics and microstructure of sodium silicate-activated slag mixtures with different retarder chemicals.” Cem. Concr. Res. 159 (Sep): 106872. https://doi.org/10.1016/j.cemconres.2022.106872.
Dai, X., S. Aydin, M. Y. Yardimci, and G. De Schutter. 2022b. “Rheology and structural build-up of sodium silicate-and sodium hydroxide-activated GGBFS mixtures.” Cem. Concr. Compos. 131 (Aug): 104570. https://doi.org/10.1016/j.cemconcomp.2022.104570.
Dai, X., S. Aydin, M. Y. Yardimci, K. Lesage, and G. De Schutter. 2020b. “Influence of water to binder ratio on the rheology and structural build-up of alkali-activated slag/fly ash mixtures.” Constr. Build. Mater. 264 (Dec): 120253. https://doi.org/10.1016/j.conbuildmat.2020.120253.
Dai, X., S. Aydin, M. Y. Yardimci, K. Lesage, and G. De Schutter. 2022c. “Early age reaction, rheological properties and pore solution chemistry of NaOH-activated slag mixtures.” Cem. Concr. Compos. 133 (Oct): 104715. https://doi.org/10.1016/j.cemconcomp.2022.104715.
Dai, X., S. Aydin, M. Y. Yardimci, R. E. N. Qiang, K. Lesage, and G. De Schutter. 2021a. “Rheology, early-age hydration and microstructure of alkali-activated GGBFS-fly ash-limestone mixtures.” Cem. Concr. Compos. 124 (May): 104244. https://doi.org/10.1016/j.cemconcomp.2021.104244.
Dai, X., S. Aydın, M. Y. Yardımcı, K. Lesage, and G. De Schutter. 2020a. “Effects of activator properties and GGBFS/FA ratio on the structural build-up and rheology of AAC.” Cem. Concr. Res. 138 (Oct): 106253. https://doi.org/10.1016/j.cemconres.2020.106253.
Dai, X., S. Aydın, M. Y. Yardımcı, K. Lesage, and G. De Schutter. 2022d. “Rheology and microstructure of alkali-activated slag cements produced with silica fume activator.” Cem. Concr. Compos. 125 (Jan): 104303. https://doi.org/10.1016/j.cemconcomp.2021.104303.
Dai, X., Q. Ren, S. Aydin, M. Y. Yardimci, and G. De Schutter. 2023a. “Accelerating the reaction process of sodium carbonate-activated slag mixtures with the incorporation of a small addition of sodium hydroxide/sodium silicate.” Cem. Concr. Compos. 141 (Aug): 105118. https://doi.org/10.1016/j.cemconcomp.2023.105118.
Dai, X., Q. Ren, S. Aydın, M. Y. Yardımcı, K. Lesage, and G. De Schutter. 2021b. “Enhancing thixotropy and structural build-up of alkali- activated slag/fly ash pastes with nano clay.” Mater. Struct. 54 (4): 163. https://doi.org/10.1617/s11527-021-01760-4.
Dai, X., Y. Tao, K. Van Tittelboom, and G. De Schutter. 2023b. “Rheological and mechanical properties of 3D printable alkali-activated slag mixtures with addition of nano clay.” Cem. Concr. Compos. 139 (May): 104995. https://doi.org/10.1016/j.cemconcomp.2023.104995.
Deraemaeker, A., and C. Dumoulin. 2019. “Embedding ultrasonic transducers in concrete: A lifelong monitoring technology.” Constr. Build. Mater. 194 (Jan): 42–50. https://doi.org/10.1016/j.conbuildmat.2018.11.013.
Dongyu, X., Q. L. Huang Shifeng, L. Lingchao, and C. Xin. 2012. “Monitoring of cement hydration reaction process based on ultrasonic technique of piezoelectric composite transducer.” Constr. Build. Mater. 35 (Oct): 220–226. https://doi.org/10.1016/j.conbuildmat.2012.02.094.
Fang, G., and G. Zhang. 2020. “Multiscale micromechanical analysis of alkali-activated fly ash-slag paste.” Cem. Concr. Res. 135 (May): 106141. https://doi.org/10.1016/j.cemconres.2020.106141.
Fernandez-Jimenez, A., and F. Puertas. 2001. “Setting of alkali-activated slag cement: Influence of activator nature.” Adv. Cem. Res. 13 (3): 115–121. https://doi.org/10.1680/adcr.13.3.115.39288.
Feys, D., J. E. Wallevik, A. Yahia, K. H. Khayat, and O. H. Wallevik. 2013. “Extension of the Reiner–Riwlin equation to determine modified Bingham parameters measured in coaxial cylinders rheometers.” Mater. Struct. 46 (1–2): 289–311. https://doi.org/10.1617/s11527-012-9902-6.
Fu, Q., M. Bu, Z. Zhang, W. Xu, Q. Yuan, and D. Niu. 2021. “Hydration characteristics and microstructure of alkali-activated slag concrete: A review.” Engineering 20 (Jan): 162–179. https://doi.org/10.1016/j.eng.2021.07.026.
Gao, X., Q. L. Yu, and H. J. H. Brouwers. 2015a. “Properties of alkali activated slag-fly ash blends with limestone addition.” Cem. Concr. Compos. 59 (Mar): 119–128. https://doi.org/10.1016/j.cemconcomp.2015.01.007.
Gao, X., Q. L. Yu, and H. J. H. Brouwers. 2015b. “Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag-fly ash blends.” Constr. Build. Mater. 80 (May): 105–115. https://doi.org/10.1016/j.conbuildmat.2015.01.065.
Garcia-Lodeiro, I., A. Palomo, A. Fernández-Jiménez, and D. E. MacPhee. 2011. “Compatibility studies between N-A-S-H and C-A-S-H Gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O.” Cem. Concr. Res. 41 (9): 923–931. https://doi.org/10.1016/j.cemconres.2011.05.006.
Gebregziabiher, B. S., R. Thomas, and S. Peethamparan. 2015. “Very early-age reaction kinetics and microstructural development in alkali-activated slag.” Cem. Concr. Compos. 55 (Jan): 91–102. https://doi.org/10.1016/j.cemconcomp.2014.09.001.
Hartmann, F. A., and J. Plank. 2020. “Impact of aging on the hydration of tricalcium aluminate (C3A)/gypsum blends and the effectiveness of retarding admixtures.” Z. Naturforsch. 75 (8): 739–753. https://doi.org/10.1515/znb-2020-0087.
Higgins, D. 2007. “Briefing: GGBS and sustainability.” Proc. Inst. Civ. Eng. Constr. Mater. 160 (3): 99–101. https://doi.org/10.1680/coma.2007.160.3.99.
Ismail, I., S. A. Bernal, J. L. Provis, R. San Nicolas, S. Hamdan, and J. S. van Deventer. 2014. “Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash.” Cem. Concr. Compos. 45 (Jan): 125–135. https://doi.org/10.1016/j.cemconcomp.2013.09.006.
Jansson, H., D. Bernin, and K. Ramser. 2015. “Silicate species of water glass and insights for alkali-activated green cement.” AIP Adv. 5 (6): 1–9. https://doi.org/10.1063/1.4923371.
Kashani, A., J. L. Provis, G. G. Qiao, and J. S. van Deventer. 2014. “The interrelationship between surface chemistry and rheology in alkali activated slag paste.” Constr. Build. Mater. 65 (Aug): 583–591. https://doi.org/10.1016/j.conbuildmat.2014.04.127.
Kawashima, S., M. Chaouche, D. J. Corr, and S. P. Shah. 2013. “Rate of thixotropic rebuilding of cement pastes modified with highly purified attapulgite clays.” Cem. Concr. Res. 53 (Nov): 112–118. https://doi.org/10.1016/j.cemconres.2013.05.019.
Krizan, D., and B. Zivanovic. 2002. “Effects of dosage and modulus of water glass on early hydration of alkali-slag cements.” Cem. Concr. Res. 32 (8): 1181–1188. https://doi.org/10.1016/S0008-8846(01)00717-7.
Lee, N. K., G. H. An, K. T. Koh, and G. S. Ryu. 2016. “Improved reactivity of fly ash-slag geopolymer by the addition of silica fume.” Adv. Mater. Sci. Eng. 2016 (Mar): 2192053. https://doi.org/10.1155/2016/2192053.
Mahmood, A. H., M. Babaee, S. J. Foster, and A. Castel. 2021. “Continuous monitoring of the early-age properties of activated GGBFS with alkaline solutions of different concentrations.” J. Mater. Civ. Eng. 33 (12): 1–10. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003997.
Meier, M. R., M. Sarigaphuti, P. Sainamthip, and J. Plank. 2015. “Early hydration of portland cement studied under microgravity conditions.” Constr. Build. Mater. 93: 877–883. https://doi.org/10.1016/j.conbuildmat.2015.05.074.
Mohamed, R., R. Abd Razak, M. M. A. B. Abdullah, S. Z. Abd Abd Rahim, L. Yuan-Li, A. V. Sandu, and J. J. Wysłocki. 2022. “Heat evolution of alkali-activated materials: A review on influence factors.” Constr. Build. Mater. 314 (Nov): 125651. https://doi.org/10.1016/j.conbuildmat.2021.125651.
Mounanga, P., V. Baroghel-Bouny, A. Loukili, and A. Khelidj. 2006. “Autogenous deformations of cement pastes: Part I. Temperature effects at early age and micro-macro correlations.” Cem. Concr. Res. 36 (1): 110–122. https://doi.org/10.1016/j.cemconres.2004.10.019.
Myers, R. J., S. A. Bernal, and J. L. Provis. 2017. “Phase diagrams for alkali-activated slag binders.” Cem. Concr. Res. 95 (May): 30–38. https://doi.org/10.1016/j.cemconres.2017.02.006.
Nedeljković, M., Y. Z. Branko Šavija, M. Luković, and G. Ye. 2018. “Effect of natural carbonation on the pore structure and elastic modulus of the alkali-activated fly ash and slag pastes.” Constr. Build. Mater. 161 (1): 687–704. https://doi.org/10.1016/j.conbuildmat.2017.12.005.
Perez-Cortes, P., and J. I. Escalante-Garcia. 2020. “Gel composition and molecular structure of alkali-activated metakaolin-limestone cements.” Cem. Concr. Res. 137 (Aug): 106211. https://doi.org/10.1016/j.cemconres.2020.106211.
Provis, J. L., and S. A. Bernal. 2014. “Geopolymers and related alkali-activated materials.” Annu. Rev. Mater. Res. 44 (1): 299–327. https://doi.org/10.1146/annurev-matsci-070813-113515.
Puertas, F., A. Fernández-Jiménez, and M. T. Blanco-Varela. 2004. “Pore solution in alkali-activated slag cement pastes: Relation to the composition and structure of calcium silicate hydrate.” Cem. Concr. Res. 34 (1): 139–148. https://doi.org/10.1016/S0008-8846(03)00254-0.
Rahman, M. K., M. H. Baluch, and M. A. Malik. 2014. “Thixotropic behavior of self compacting concrete with different mineral admixtures.” Constr. Build. Mater. 50 (May): 710–717. https://doi.org/10.1016/j.conbuildmat.2013.10.025.
Ravikumar, D., and N. Neithalath. 2012. “Reaction kinetics in sodium silicate powder and liquid activated slag binders evaluated using isothermal calorimetry.” Thermochim. Acta 546 (Oct): 32–43. https://doi.org/10.1016/j.tca.2012.07.010.
Roy, S., S. Chanda, S. K. Bandopadhyay, and S. N. Ghosh. 1998. “Investigation of portland slag cement activated by waterglass.” Cem. Concr. Res. 28 (7): 1049–1056. https://doi.org/10.1016/S0008-8846(98)00069-6.
Sánchez-Herrero, M. J., A. Fernández-Jiménez, Á. Palomo, and L. Klein. 2016. “Alkaline hydration of C2S and C3S.” J. Am. Ceram. Soc. 99 (2): 604–611. https://doi.org/10.1111/jace.13985.
Shi, C., and R. L. Day. 1995. “A calorimetric study of early hydration of alkali-slag cements.” Cem. Concr. Res. 25 (6): 1333–1346. https://doi.org/10.1016/0008-8846(95)00126-W.
Shi, C., D. Roy, and P. Krivenko. 2006. Alkali-activated cements and concretes. Boca Raton, FL: CRC Press.
Snellings, R. et al. 2019. “RILEM TC-238 SCM recommendation on hydration stoppage by solvent exchange for the study of hydrate assemblages.” Mater. Struct. 51 (Dec): 1–4. https://doi.org/10.1617/s11527-018-1298-5.
Song, S., and H. M. Jennings. 1999. “Pore solution chemistry of alkali-activated ground granulated blast-furnace slag.” Cem. Concr. Res. 29 (2): 159–170. https://doi.org/10.1016/S0008-8846(98)00212-9.
Sun, R., C. Fang, Y. Ling, J. Feng, H. Qi, and Z. Ge. 2021. “Chemo-mechanical properties of alkali-activated slag/fly ash paste incorporating white mud.” Constr. Build. Mater. 291 (May): 123312. https://doi.org/10.1016/j.conbuildmat.2021.123312.
Tavares, L. R. C., J. F. T. Junior, L. M. Costa, A. C. da Silva Bezerra, P. R. Cetlin, and M. T. P. Aguilar. 2020. “Influence of quartz powder and silica fume on the performance of portland cement.” Sci. Rep. 10 (1): 21461. https://doi.org/10.1038/s41598-020-78567-w.
Uppalapati, S., L. Vandewalle, and Ö. Cizer. 2021. “Monitoring the setting process of alkali-activated slag-fly ash cements with ultrasonic P-wave velocity.” Constr. Build. Mater. 271 (Feb): 121592. https://doi.org/10.1016/j.conbuildmat.2020.121592.
Walkley, B., A. Kashani, M. A. Sani, T. D. Ngo, and P. Mendis. 2018. “Examination of alkali-activated material nanostructure during thermal treatment.” J. Mater. Sci. 53 (13): 9486–9503. https://doi.org/10.1007/s10853-018-2270-z.
Walkley, B., R. San Nicolas, M. A. Sani, G. J. Rees, J. V. Hanna, J. S. van Deventer, and J. L. Provis. 2016. “Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors.” Cem. Concr. Res. 89 (Nov): 120–135. https://doi.org/10.1016/j.cemconres.2016.08.010.
Wang, D., and H. Zhu. 2011. “Monitoring of the strength gain of concrete using embedded PZT impedance transducer.” Constr. Build. Mater. 25 (9): 3703–3708. https://doi.org/10.1016/j.conbuildmat.2011.04.020.
Wang, S. D., and K. L. Scrivener. 1995. “Hydration products of alkali activated slag cement.” Cem. Concr. Res. 25 (3): 561–571. https://doi.org/10.1016/0008-8846(95)00045-E.
Wetzel, A., and B. Middendorf. 2019. “Influence of silica fume on properties of fresh and hardened ultra-high performance concrete based on alkali-activated slag.” Cem. Concr. Compos. 100 (Mar): 53–59. https://doi.org/10.1016/j.cemconcomp.2019.03.023.
Xiao, R., X. Jiang, M. Zhang, P. Polaczyk, and B. Huang. 2020. “Analytical investigation of phase assemblages of alkali-activated materials in CaO-SiO2-Al2O3 systems: The management of reaction products and designing of precursors.” Mater. Des. 194 (Sep): 108975. https://doi.org/10.1016/j.matdes.2020.108975.
Xie, F., Z. Liu, D. Zhang, J. Wang, T. Huang, and D. Wang. 2020. “Reaction kinetics and kinetics models of alkali activated phosphorus slag.” Constr. Build. Mater. 237 (Mar): 117728. https://doi.org/10.1016/j.conbuildmat.2019.117728.
Xu, W., Y. Zhang, X. Zuo, and M. Hong. 2020. “Time-dependent rheological and mechanical properties of silica fume modified cemented tailings backfill in low temperature environment.” Cem. Concr. Compos. 114 (Nov): 103804. https://doi.org/10.1016/j.cemconcomp.2020.103804.
Yang, T., H. Zhu, Z. Zhang, X. Gao, C. Zhang, and Q. Wu. 2018. “Effect of fly ash microsphere on the rheology and microstructure of alkali-activated fly ash/slag pastes.” Cem. Concr. Res. 109 (Jan): 198–207. https://doi.org/10.1016/j.cemconres.2018.04.008.
Yuan, Q., D. Zhou, K. H. Khayat, D. Feys, and C. Shi. 2017. “On the measurement of evolution of structural build-up of cement paste with time by static yield stress test vs. small amplitude oscillatory shear test.” Cem. Concr. Res. 99 (Sep): 183–189. https://doi.org/10.1016/j.cemconres.2017.05.014.
Yuan, Q., D. Zhou, B. Li, H. Huang, and C. Shi. 2018. “Effect of mineral admixtures on the structural build-up of cement paste.” Constr. Build. Mater. 160 (Jan): 117–126. https://doi.org/10.1016/j.conbuildmat.2017.11.050.
Zhang, S., Z. Li, B. Ghiassi, S. Yin, and G. Ye. 2020. “Fracture properties and microstructure formation of hardened alkali-activated slag/fly ash paste.” Cem. Concr. Res. 144 (Apr): 106447. https://doi.org/10.1016/j.cemconres.2021.106447.
Zuo, Y., M. Nedeljković, and G. Ye. 2019. “Pore solution composition of alkali-activated slag/fly ash pastes.” Cem. Concr. Res. 115 (Oct): 230–250. https://doi.org/10.1016/j.cemconres.2018.10.010.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 2February 2024

History

Received: Mar 10, 2023
Accepted: Jul 21, 2023
Published online: Nov 24, 2023
Published in print: Feb 1, 2024
Discussion open until: Apr 24, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Xiaodi Dai, Ph.D. [email protected]
Magnel-Vandepitte Laboratory, Dept. of Structural Engineering and Building Materials, Ghent Univ., Zwijnaarde, Ghent 9052, Belgium; Postdoctoral Scholar, Laboratory for the Chemistry of Construction Materials (LC2), Dept. of Civil and Environmental Engineering, Univ. of California, Los Angeles, CA 90095 (corresponding author). Email: [email protected]; [email protected]
Postdoctoral Scholar, Magnel-Vandepitte Laboratory, Dept. of Structural Engineering and Building Materials, Ghent Univ., Zwijnaarde, Ghent 9052, Belgium; Associate Professor, Dept. of Civil Engineering, Istanbul Okan Univ., Tuzla, Istanbul 34959, Turkey. ORCID: https://orcid.org/0000-0003-0713-0361. Email: [email protected]; [email protected]
Professor, Dept. of Civil Engineering, Dokuz Eylül Univ., Buca, Izmir 35160, Turkey. ORCID: https://orcid.org/0000-0002-0830-5357. Email: [email protected]
Professor, Magnel-Vandepitte Laboratory, Dept. of Structural Engineering and Building Materials, Ghent Univ., Zwijnaarde, Ghent 9052, Belgium. ORCID: https://orcid.org/0000-0001-5603-2616. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share