Technical Papers
Nov 16, 2023

Steelmaking Slag Recycling as Raw Material and Its Effect on Burning Temperature of Portland Cement Clinker Production

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 2

Abstract

The valorization of industrial wastes plays a significant aspect in decreasing the environmental pollution. The discussed study concerns the recovery of steelmaking slag (SS), produced by a local steel plant, to make this by-product a raw material for portland cement clinker production. A lab study looks at this slag’s influence on the raw meal reaction capacity and technological parameters (temperature and burning time). Two clinkers were tested, the first is representative of portland cement clinker made in a cement plant, while the second is a clinker made in our laboratory in which SS replaces the pyrites residue used in the first. The raw meals were determined for the second clinker using different lime saturation factors from 0.89 to 0.95, while in the first clinker, lime saturation was 0.89. Chemical and mineralogical analysis and microscopic examination revealed that the usage of SS did not affect the resulting portland cement clinker. This slag enables a gain of 100°C on the clinkering temperature, usually 1,450°C, and shortens the burning time by 10 min. The main clinker phases (C3S, C2S, C3A, and C4AF) are present, with very few free-CaO, about 0.3%. The results of the physico-mechanical tests showed that adding SS had no impact on the cement’s quality. With a final compressive strength at 28-day of 43.5 MPa, the cement obtained satisfies the requirements for inclusion in Algeria’s CEM I 42.5 strength class.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The data used and obtained during the current study are available from the corresponding author on reasonable request.

Acknowledgments

The authors wish to express their thanks to the staff of the laboratory of LGCGM-INSA in Rennes (France), El-Hadjar steel company (Algeria), Algeria’s Hamma Bouziane cement plant, and the University of Constantine (Algeria); for their assistance in the realization, i.e., XRD for steelmaking slag, chemical compositions, SEM observations, and XRD for clinkers, respectively.

References

Adolfsson, D., N. Menad, E. Viggh, and B. Björkman. 2007. “Hydraulic properties of sulphoaluminate belite cement based on steelmaking slags.” Adv. Cem. Res. 19 (3): 133–138. https://doi.org/10.1680/adcr.2007.19.3.133.
Ahmad, F. 2020. “Industrial scale kiln problems and their solution with controlling different operating parameters.” Austin Chem. Eng. 7 (1): 1073.
Ali, M. B., R. Saidur, and M. S. Hossain. 2011. “A review on emission analysis in cement industries.” Renewable Sustainable Energy Rev. 15 (5): 2252–2261. https://doi.org/10.1016/j.rser.2011.02.014.
Altun, I. A. 1999. “Influence of heating rate on the burning of cement clinker.” Cem. Concr. Res. 29 (4): 599–602. https://doi.org/10.1016/S0008-8846(98)00196-3.
Antunes, M., R. L. Santos, J. Pereira, P. Rocha, R. B. Horta, and R. Colaço. 2022. “Alternative clinker technologies for reducing carbon emissions in cement industry: A critical review.” Materials 15 (1): 209. https://doi.org/10.3390/ma15010209.
Arabi, N., R. Jauberthie, and A. Sellami. 2013. “Autoclaved sand-lime bricks: Influence of addition of blast furnace slag on the formation of phases.” Mater. Struct. 46 (Jan): 181–190. https://doi.org/10.1617/s11527-012-9893-3.
AS (Algerian Standard). 2003. Cement: Composition, specifications and conformity criteria for common cements. NA 442. El Djazair, Algiers: Institut Algérien de Normalisation (Algerian Institute of Standardization).
Behim, M., M. Cyr, and P. Clastres. 2011. “Physical and chemical effects of El Hadjar slag used as an additive in cement-based materials.” Eur. J. Environ. Civ. Eng. 15 (10): 1413–1432. https://doi.org/10.1080/19648189.2011.9723352.
Belhadj, E., C. Diliberto, and A. Lecomte. 2012. “Characterization and activation of basic oxygen furnace slag.” Cem. Concr. Compos. 34 (1): 34–40. https://doi.org/10.1016/j.cemconcomp.2011.08.012.
Biskri, Y., D. Achoura, N. Chelghoum, and M. Mouret. 2017. “Mechanical and durability characteristics of high performance concrete containing steel slag and crystalized slag as aggregates.” Constr. Build. Mater. 150 (Sep): 167–178. https://doi.org/10.1016/j.conbuildmat.2017.05.083.
Bogue, R. H. 1947. The chemistry of Portland cement. 1st ed. New York: Reinhold Publishing Corporation.
Borgholm, H., D. Herfort, and S. Rasmussen. 1995. “A new blended cement based on mineralised clinker.” World Cem. 8: 27–33.
Bougara, A., C. Lynsdale, and K. Ezziane. 2009. “Activation of Algerian slag in mortars.” Constr. Build. Mater. 23 (1): 542–547. https://doi.org/10.1016/j.conbuildmat.2007.10.012.
Campbell, D. H. 1999. Microscopical examination and interpretation of Portland cement and clinker. 2nd ed. Washington, DC: Portland Cement Association.
Cao, L., W. Shen, J. Huang, Y. Yang, D. Zhang, X. Huang, Z. Lv, and X. Ji. 2019. “Process to utilize crushed steel slag in cement industry directly: Multiphased clinker sintering technology.” J. Cleaner Prod. 217 (Apr): 520–529. https://doi.org/10.1016/j.jclepro.2019.01.260.
Carvalho, S. Z., F. Vernilli, B. Almeida, M. D. Oliveira, and S. N. Silva. 2018. “Reducing environmental impacts: The use of basic oxygen furnace slag in Portland cement.” J. Cleaner Prod. 172 (Jan): 385–390. https://doi.org/10.1016/j.jclepro.2017.10.130.
CEN (European Committee for Standardization). 1984. Method for determination of free lime in cement. NE-2-1-015-1984. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2011. Composition, specifications and conformity criteria for common cements. Cement—Part 1. EN 197-1. Brussels, Belgium: CEN.
Chen, L., H. Wang, K. Zheng, J. Zhou, F. He, and Q. Yuan. 2022. “The mechanism of basic oxygen furnace steel slag retarding early-age hydration of Portland cement and mitigating approach towards higher utilization rate.” J. Cleaner Prod. 362 (Aug): 132493. https://doi.org/10.1016/j.jclepro.2022.132493.
Elmrabet, R., A. El Harfi, and M. S. El Youbi. 2019. “Study of properties of fly ash cements.” Mater. Today: Proc. 13 (3): 850–856. https://doi.org/10.1016/j.matpr.2019.04.048.
Elmrabet, R., Y. Hmidani, R. Mariouch, A. Elharfi, and M. S. Elyoubi. 2021. “Influence of raw meal composition on clinker reactivity and cement proprieties.” Mater. Today: Proc. 45 (Jan): 7680–7684. https://doi.org/10.1016/j.matpr.2021.03.178.
El-Sokkary, T. M., K. A. Khalil, and I. A. Ahmed. 2012. “Preparation of β-dicalcium silicate (β-C2S) and calcium sulfoaluminate (C4A3S) phases using non-traditional nano-materials.” HBRC J. 8 (2): 91–98. https://doi.org/10.1016/j.hbrcj.2012.09.004.
Fang, K., J. Zhao, D. Wang, H. Wang, and Z. Dong. 2022. “Use of ladle furnace slag as supplementary cementitious material before and after modification by rapid air cooling: A comparative study of influence on the properties of blended cement paste.” Constr. Build. Mater. 314 (Jan): 125434. https://doi.org/10.1016/j.conbuildmat.2021.125434.
Ferreira Neto, J. B., J. O. Faria, C. Fredericci, F. F. Chotoli, A. N. Silva, B. B. Ferraro, T. R. Ribeiro, A. Malynowskyj, V. A. Quarcioni, and A. A. Lotto. 2016. “Modification of molten steelmaking slag for cement application.” J. Sustainable Metall. 2 (1): 13–27. https://doi.org/10.1007/s40831-015-0031-7.
Fisher, L. V., and A. R. Barron. 2019. “The recycling and reuse of steelmaking slags—A review.” Resour. Conserv. Recycl. 146 (Jul): 244–255. https://doi.org/10.1016/j.resconrec.2019.03.010.
Guo, J., Y. Bao, and M. Wang. 2018. “Steel slag in China: Treatment, recycling, and management.” Waste Manage. 78 (Aug): 318–330. https://doi.org/10.1016/j.wasman.2018.04.045.
Hao, X., Z. Zhang, Q. Xu, G. Huang, and K. Wang. 2022. “Prediction of f-CaO content in cement clinker: A novel prediction method based on LightGBM and Bayesian optimization.” Chemom. Intell. Lab. Syst. 220 (Jan): 104461. https://doi.org/10.1016/j.chemolab.2021.104461.
Hewlett, P. C., and M. Liska. 2019. Lea’s chemistry of cement and concrete. 5th ed. Oxford, UK: Butterworth-Heinemann.
ICDD (International Centre for Diffraction Data). 1997. ICDD California, USA. Newtown Square, PA: ICCD.
Jelidi, A., and S. Bouslama. 2015. “Use effects of blast furnace slag aggregates in hydraulic concrete.” Mater. Constr. 48 (Nov): 3627–3633. https://doi.org/10.1617/s11527-014-0427-z.
Kacimi, L., A. Simon-Masseron, A. Ghomari, and Z. Derriche. 2006. “Reduction of clinkerization temperature by using phosphogypsum.” J. Hazard. Mater. 137 (1): 129–137. https://doi.org/10.1016/j.jhazmat.2005.12.053.
Khalil, T. K., J. Bossert, and H. F. Aly. 1998. “Characterization of iron and steel industry slags to be recycled under ecological aspects as a recycling concept for waste treatment.” In Proc., Int. Conf. on Hazardous Waste Sources, Effects, and Management. Vienna, Austria: International Atomic Energy Agency.
Kim, H. S., K. S. Kim, S. S. Jung, J. I. Hwang, J.-S. Choi, and I. Sohn. 2015. “Valorization of electric arc furnace primary steelmaking slags for cement applications.” Waste Manage. 41 (Jul): 85–93. https://doi.org/10.1016/j.wasman.2015.03.019.
Kohlhaas, B. 1983. Cement engineers’ handbook. 4th ed. Berlin: Bauverlag.
Kolovos, K. G., S. Tsivilis, and G. Kakali. 2004. “Study of clinker dopped with P and S compounds.” J. Therm. Anal. Calorim. 77 (3): 759–766. https://doi.org/10.1023/B:JTAN.0000041655.82776.09.
Kondo, R., S. Goto, and M. Fukuhara. 1978. “Studies on the hydration of cement with fly ash.” In Vol. 32 of Proc., General Meeting of the Technical Sessions of the Cement Association of Japan, 786–791. Tokyo: Cement Association of Japan.
Kourounis, S., S. Tsivilis, P. E. Tsakiridis, G. D. Papadimitriou, and Z. Tsibouki. 2007. “Properties and hydration of blended cements with steelmaking slag.” Cem. Concr. Res. 37 (6): 815–822. https://doi.org/10.1016/j.cemconres.2007.03.008.
Kurdowski, W. 2014. Cement and concrete chemistry. New York: Springer.
Lecomte, A., P. L. Dao, C. Diliberto, M. Sommier, and P. Basso. 2011. “Valorisation des LAC dans les mélanges granulaires.” Eur. J. Environ. Civ. Eng. 15 (6): 889–913. https://doi.org/10.1080/19648189.2011.9695279.
Li, J., Q. Yu, J. Wei, and T. Piatak. 2011. “Structural characteristics and hydration kinetics of modified steel slag.” Cem. Concr. Res. 41 (3): 324–329. https://doi.org/10.1016/j.cemconres.2010.11.018.
Li, X., W. Xu, S. Wang, M. Tang, and X. Shen. 2014. “Effect of SO3 and MgO on Portland cement clinker: Formation of clinker phases and alite polymorphism.” Constr. Build. Mater. 58 (May): 182–192. https://doi.org/10.1016/j.conbuildmat.2014.02.029.
Monshia, A., and M. K. Asgaranib. 1999. “Producing Portland cement from iron and steel slags and limestone.” Cem. Concr. Res. 29 (9): 1373–1377. https://doi.org/10.1016/S0008-8846(99)00028-9.
Motz, H., and J. Geiseler. 2001. “Products of steel slags an opportunity to save natural resources.” Waste Manage. 21 (3): 285–293. https://doi.org/10.1016/S0956-053X(00)00102-1.
Nuhu, S., S. Ladan, and A. U. Muhammad. 2020. “Effects and control of chemical composition of clinker for cement production.” Int. J. Control Sci. Eng. 10 (1): 16–21. https://doi.org/10.5923/j.control.20201001.03.
Ortega-Lopez, V., V. Revilla-Cuesta, A. Santamaría, A. Orbe, and M. Skaf. 2022. “Microstructure and dimensional stability of slag-based high-workability concrete with steelmaking slag aggregate and fibers.” J. Mater. Civ. Eng. 34 (9): 04022224. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004372.
Popescu, C. D., M. Muntean, and J. H. Sharp. 2003. “Industrial trial production of low energy belite cement.” Cem. Concr. Compos. 25 (7): 689–693. https://doi.org/10.1016/S0958-9465(02)00097-5.
Qiang, W., and Y. Peiyu. 2010. “Hydration properties of basic oxygen furnace steel slag.” Constr. Build. Mater. 24 (7): 1134–1140. https://doi.org/10.1016/j.conbuildmat.2009.12.028.
Rao, D. S., T. V. Vijayakumar, S. Prabhakar, and G. Bhaskar Raju. 2011. “Geochemical assessment of a siliceous limestone sample for cement making.” Chin. J. Geochem. 30 (1): 33–39. https://doi.org/10.1007/s11631-011-0484-8.
Rikoto, I. I., and S. Nuhu. 2019. “Effect of free lime and lime saturation factor on grindability of cement clinker.” Int. J. Eng. Res. Rev. 7 (1): 61–66.
Salem, S., H. Khelafi, D. Kerdal, and S. Ait-Soura. 2001. “Use of slags taken from blast furnaces for the improvement of petroleum cements of type «G».” Mater. Struct. 34 (4): 253–256. https://doi.org/10.1007/BF02480597.
Sharma, R., J. Pei, and J. G. Jang. 2023. “Microstructural evolution of belite-rich cement mortar subjected to water, carbonation, and hybrid curing regime.” Cem. Concr. Compos. 139 (May): 105028. https://doi.org/10.1016/j.cemconcomp.2023.105028.
Staněk, T. 2016. “The influence of SO3 and MgO on kinetics of alite formation.” Procedia Eng. 151 (Jan): 26–33. https://doi.org/10.1016/j.proeng.2016.07.353.
Tavakolli, H., A. Azari, K. Ashrafi, and M. S. Pour. 2013. “Cementitious properties of steelmaking slags.” Tech. J. Eng. Appl. Sci. 3 (12): 1071–1073.
Taylor, H. F. W. 1990. Cement chemistry. London: Academic Press.
Tsakiridis, P. E., G. D. Papadimitriou, S. Tsivilis, and C. Koroneos. 2008. “Utilization of steel slag for Portland cement clinker production.” J. Hazard. Mater. 152 (2): 805–811. https://doi.org/10.1016/j.jhazmat.2007.07.093.
Vouk, D., M. Serdar, D. Nakić, and A. Anić-Vučinić. 2016. “Use of sludge generated at WWTP in the production of cement mortar and concrete.” GRAĐEVINAR 68 (3): 199–210. https://doi.org/10.14256/JCE.1374.2015.
Waligora, J., D. Bulteel, P. Degrugilliers, D. Damidot, J. L. Potdevin, and M. Measson. 2010. “Chemical and mineralogical characterizations of LD converter steel slags: A multi-analytical techniques approach.” Mater. Charact. 61 (1): 39–48. https://doi.org/10.1016/j.matchar.2009.10.004.
Wang, X., M. Z. Guo, G. Yue, Q. Li, and T. C. Ling. 2022. “Synthesis of high belite sulfoaluminate cement with high volume of mixed solid wastes.” Cem. Concr. Res. 158 (Aug): 106845. https://doi.org/10.1016/j.cemconres.2022.106845.
Yamashita, M., and H. Tanaka. 2011. “Low–temperature burnt Portland cement clinker using mineralizer.” Cem. Sci. Concr. Technol. 65 (1): 82–87. https://doi.org/10.14250/cement.65.82.
Yi, H., G. Xu, H. Cheng, J. Wang, Y. Wan, and H. Chen. 2012. “An overview of utilization of steel slag.” Procedia Environ. Sci. 16 (Jan): 791–801. https://doi.org/10.1016/j.proenv.2012.10.108.
Zhou, Q., N. B. Milestone, and M. Hayes. 2006. “An alternative to Portland cement for waste encapsulation—The calcium sulfoaluminate cement system.” J. Hazard. Mater. 136 (1): 120–129. https://doi.org/10.1016/j.jhazmat.2005.11.038.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 2February 2024

History

Received: Feb 6, 2023
Accepted: Jul 13, 2023
Published online: Nov 16, 2023
Published in print: Feb 1, 2024
Discussion open until: Apr 16, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Nacima Hacini-Chikh
Associate Professor, Dept. of Architecture, Badji Mokhtar-Annaba Univ., P.O. Box 12, Annaba 23000, Algeria.
Professor, Materials, Geomaterials and Environment Laboratory, Badji Mokhtar-Annaba Univ., P.O. Box 12, Annaba 23000, Algeria (corresponding author). ORCID: https://orcid.org/0000-0001-5381-2422. Email: [email protected]; [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Hydration Hardening of Early Strength Low-Heat Cement under a Low-Pressure Environment, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-17345, 36, 7, (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share