Technical Papers
Sep 29, 2023

Distinct Effect of Hydration of Calcined Kaolinitic Clay–Limestone Blended Cement on Microstructure and Autogenous Shrinkage

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 12

Abstract

This paper investigates the microstructure and autogenous shrinkage of calcined kaolinitic clay-limestone (LC) blended cement paste composites up to 200 days. The calcined clay-limestone content ranged between 20% and 65%. The microstructural parameters were studied using X-ray diffraction (XRD), thermogravimetric analysis (TGA), nitrogen adsorption (NAD), and Fourier transform infrared (FTIR) spectroscopy. The results showed that calcined kaolinitic clay-limestone blends developed higher autogenous shrinkage, faster hydration, and finer pore structure compared to the reference cement mixture. Autogenous shrinkage was the highest at 27% cement replacement and then decreased with further increases in replacement level. Both hydration and pore size distribution led to the development of high autogenous shrinkage for all calcined kaolinitic clay-limestone (LC) blends.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This research was funded by CCAA and ARC Linkage project LP170100912 titled “Shrinkage, cracking, self-healing and corrosion in blended cement concrete.” The authors would like to thank the Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering and Mark Wainwright Analytical Centre of University of New South Wales (UNSW) for providing technical support.

References

Adu-Amankwah, S., L. Black, J. Skocek, M. Ben Haha, and M. Zajac. 2018. “Effect of sulfate additions on hydration and performance of ternary slag-limestone composite cements.” Constr. Build. Mater. 164 (Mar): 451–462. https://doi.org/10.1016/j.conbuildmat.2017.12.165.
Afroz, S., Q. D. Nguyen, Y. Zhang, T. Kim, and A. Castel. 2022a. “Evaluation of cracking potential parameters for low to high grade concrete with fly ash or slag.” Constr. Build. Mater. 350 (Oct): 128891. https://doi.org/10.1016/j.conbuildmat.2022.128891.
Afroz, S., Y. Zhang, Q. D. Nguyen, T. Kim, and A. Castel. 2022b. “Effect of limestone in general purpose cement on autogenous shrinkage of high strength GGBFS concrete and pastes.” Constr. Build. Mater. 327 (Apr): 126949. https://doi.org/10.1016/j.conbuildmat.2022.126949.
Afroz, S., Y. Zhang, Q. D. Nguyen, T. Kim, and A. Castel. 2023. “Shrinkage of blended cement concrete with fly ash or limestone calcined clay.” Mater. Struct. 56 (1): 1–20. https://doi.org/10.1617/S11527-023-02099-8.
Aili, A., and I. Maruyama. 2020. “Review of several experimental methods for characterization of micro-and nano-scale pores in cement-based material.” Int. J. Concr. Struct. Mater. 14 (Dec): 1–18. https://doi.org/10.1186/s40069-020-00431-y.
Alarcon-Ruiz, L., G. Platret, E. Massieu, and A. Ehrlacher. 2005. “The use of thermal analysis in assessing the effect of temperature on a cement paste.” Cem. Concr. Res. 35 (3): 609–613. https://doi.org/10.1016/j.cemconres.2004.06.015.
Alonso, M. D., M. Palacios, and F. Puertas. 2013. “Effect of polycarboxylate–ether admixtures on calcium aluminate cement pastes. Part 2: Hydration studies.” Ind. Eng. Chem. Res. 52 (49): 17330–17340. https://doi.org/10.1021/ie401616f.
Alujas, A., R. Fernández, R. Quintana, K. L. Scrivener, and F. Martirena. 2015. “Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration.” Appl. Clay Sci. 108 (May): 94–101. https://doi.org/10.1016/j.clay.2015.01.028.
Antoni, M., J. Rossen, F. Martirena, and K. Scrivener. 2012. “Cement substitution by a combination of metakaolin and limestone.” Cem. Concr. Res. 42 (12): 1579–1589. https://doi.org/10.1016/j.cemconres.2012.09.006.
AS (Australian Standards). 2010. General purpose and blended cements. AS 3972. Sydney, Australia: Australian Standards.
ASTM. 2019. Standard test method for autogenous strain of cement paste and mortar. ASTM C1698-19. West Conshohocken, PA: ASTM International.
ASTM. 2020a. Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency. ASTM C305-20. West Conshohocken, PA: ASTM International.
ASTM. 2020b. Standard test methods for measuring the reactivity of supplementary cementitious materials by isothermal calorimetry and bound water measurements. ASTM C1897-20. West Conshohocken, PA: ASTM International.
Avet, F., E. Boehm-Courjault, and K. Scrivener. 2019. “Investigation of CASH composition, morphology and density in Limestone Calcined Clay Cement (LC3).” Cem. Concr. Res. 115 (Jan): 70–79. https://doi.org/10.1016/j.cemconres.2018.10.011.
Avet, F., and K. Scrivener. 2018. “Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3).” Cem. Concr. Res. 107 (May): 124–135. https://doi.org/10.1016/j.cemconres.2018.02.016.
Avet, F., R. Snellings, A. A. Diaz, M. Ben Haha, and K. Scrivener. 2016. “Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays.” Cem. Concr. Res. 85 (Jul): 1–11. https://doi.org/10.1016/j.cemconres.2016.02.015.
Badmann, R., N. Stockhausen, and M. J. Setzer. 1981. “The statistical thickness and the chemical potential of adsorbed water films.” J. Colloid Interface Sci. 82 (2): 534–542. https://doi.org/10.1016/0021-9797(81)90395-7.
Balonis, M., and F. P. Glasser. 2009. “The density of cement phases.” Cem. Concr. Res. 39 (9): 733–739. https://doi.org/10.1016/j.cemconres.2009.06.005.
Baquerizo, L. G., T. Matschei, K. L. Scrivener, M. Saeidpour, and L. Wadsö. 2015. “Hydration states of AFm cement phases.” Cem. Concr. Res. 73 (Jul): 143–157. https://doi.org/10.1016/j.cemconres.2015.02.011.
Barnett, S. J., D. E. Macphee, E. E. Lachowski, and N. J. Crammond. 2002. “XRD, EDX and IR analysis of solid solutions between thaumasite and ettringite.” Cem. Concr. Res. 32 (5): 719–730. https://doi.org/10.1016/S0008-8846(01)00750-5.
Baroghel-Bouny, V., P. Mounanga, A. Khelidj, A. Loukili, and N. Rafaï. 2006. “Autogenous deformations of cement pastes: Part II. W/C effects, micro–macro correlations, and threshold values.” Cem. Concr. Res. 36 (1): 123–136. https://doi.org/10.1016/j.cemconres.2004.10.020.
Barrett, E. P., L. G. Joyner, and P. P. Halenda. 1951. “The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms.” J. Am. Chem. Soc. 73 (1): 373–380. https://doi.org/10.1021/ja01145a126.
Bentz, D. P. 2010. “Powder additions to mitigate retardation in high-volume fly ash mixtures.” ACI Mater. J. 107 (5): 508–514. https://doi.org/10.14359/51663971.
Bentz, D. P., A. Ardani, T. Barrett, S. Z. Jones, D. Lootens, M. A. Peltz, T. Sato, P. E. Stutzman, J. Tanesi, and W. J. Weiss. 2015. “Multi-scale investigation of the performance of limestone in concrete.” Constr. Build. Mater. 75 (Jan): 1–10. https://doi.org/10.1016/j.conbuildmat.2014.10.042.
Bentz, D. P., and O. M. Jensen. 2004. “Mitigation strategies for autogenous shrinkage cracking.” Cem. Concr. Compos. 26 (6): 677–685. https://doi.org/10.1016/S0958-9465(03)00045-3.
Berriel, S. S., A. Favier, E. R. Domínguez, I. R. S. Machado, U. Heierli, K. Scrivener, F. M. Hernández, and G. Habert. 2016. “Assessing the environmental and economic potential of limestone calcined clay cement in Cuba.” J. Cleaner Prod. 124 (Jun): 361–369. https://doi.org/10.1016/j.jclepro.2016.02.125.
Bjøntegaard, Ø., T. A. Hammer, and E. J. Sellevold. 2004. “On the measurement of free deformation of early age cement paste and concrete.” Cem. Concr. Compos. 26 (5): 427–435. https://doi.org/10.1016/S0958-9465(03)00065-9.
Brooks, J. J., and M. A. M. Johari. 2001. “Effect of metakaolin on creep and shrinkage of concrete.” Cem. Concr. Compos. 23 (6): 495–502. https://doi.org/10.1016/S0958-9465(00)00095-0.
Brunauer, S., R. S. Mikhail, and E. E. Bodor. 1967. “Pore structure analysis without a pore shape model.” J. Colloid Interface Sci. 24 (4): 451–463. https://doi.org/10.1016/0021-9797(67)90243-3.
Carmona-Quiroga, P. M., and M. T. Blanco-Varela. 2013. “Ettringite decomposition in the presence of barium carbonate.” Cem. Concr. Res. 52 (Oct): 140–148. https://doi.org/10.1016/j.cemconres.2013.05.021.
Chang-Wen, M., T. Qian, S. Wei, and L. Jia-Ping. 2007. “Water consumption of the early-age paste and the determination of ‘time-zero’ of self-desiccation shrinkage.” Cem. Concr. Res. 37 (11): 1496–1501. https://doi.org/10.1016/j.cemconres.2007.08.005.
Craeye, B., G. De Schutter, B. Desmet, J. Vantomme, G. Heirman, L. Vandewalle, Ö. Cizer, S. Aggoun, and E. H. Kadri. 2010. “Effect of mineral filler type on autogenous shrinkage of self-compacting concrete.” Cem. Concr. Res. 40 (6): 908–913. https://doi.org/10.1016/j.cemconres.2010.01.014.
Damidot, D., and F. P. Glasser. 1995. “Investigation of the CaO-Al2O3-SiO2-H2O system at 25 C by thermodynamic calculations.” Cem. Concr. Res. 25 (1): 22–28. https://doi.org/10.1016/0008-8846(94)00108-B.
De Belie, N., J. Kratky, and S. Van Vlierberghe. 2010. “Influence of pozzolans and slag on the microstructure of partially carbonated cement paste by means of water vapour and nitrogen sorption experiments and BET calculations.” Cem. Concr. Res. 40 (12): 1723–1733. https://doi.org/10.1016/j.cemconres.2010.08.014.
De Boer, J. H., B. C. Lippens, B. G. Linsen, J. C. P. Broekhoff, A. Van den Heuvel, and T. J. Osinga. 1966. “Thet-curve of multimolecular N2-adsorption.” J. Colloid Interface Sci. 21 (4): 405–414. https://doi.org/10.1016/0095-8522(66)90006-7.
Deboucha, W., N. Leklou, A. Khelidj, and M. N. Oudjit. 2017. “Hydration development of mineral additives blended cement using thermogravimetric analysis (TGA): Methodology of calculating the degree of hydration.” Constr. Build. Mater. 146 (Aug): 687–701. https://doi.org/10.1016/j.conbuildmat.2017.04.132.
Dhandapani, Y., T. Sakthivel, M. Santhanam, R. Gettu, and R. G. Pillai. 2018. “Mechanical properties and durability performance of concretes with limestone calcined clay cement (LC3).” Cem. Concr. Res. 107 (May): 136–151. https://doi.org/10.1016/j.cemconres.2018.02.005.
Dhandapani, Y., M. Santhanam, G. Kaladharan, and S. Ramanathan. 2021. “Towards ternary binders involving limestone additions—A review.” Cem. Concr. Res. 143 (May): 106396. https://doi.org/10.1016/j.cemconres.2021.106396.
Dhandapani, Y., and M. J. Santhanam. 2017. “Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance.” Cem. Concr. Compos. 84 (Nov): 36–47. https://doi.org/10.1016/j.cemconcomp.2017.08.012.
Du, H., and S. Dai Pang. 2020. “High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute.” Constr. Build. Mater. 264 (Dec): 120152. https://doi.org/10.1016/j.conbuildmat.2020.120152.
Elimbi, A., H. K. Tchakoute, and D. Njopwouo. 2011. “Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements.” Constr. Build. Mater. 25 (6): 2805–2812. https://doi.org/10.1016/j.conbuildmat.2010.12.055.
Esping, O. 2008. “Effect of limestone filler BET (H2O)-area on the fresh and hardened properties of self-compacting concrete.” Cem. Concr. Res. 38 (7): 938–944. https://doi.org/10.1016/j.cemconres.2008.03.010.
Feldman, R. F., and P. J. Sereda. 1968. “A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties.” Matér. Constr. 1 (Nov): 509–520. https://doi.org/10.1007/BF02473639.
Feldman, R. F., and P. J. Sereda. 1970. “A new model for hydrated Portland cement and its practical implications.” Eng. J. 53 (8–9): 53–59.
Fernandez, R., F. Martirena, and K. L. Scrivener. 2011. “The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite.” Cem. Concr. Res. 41 (1): 113–122. https://doi.org/10.1016/j.cemconres.2010.09.013.
Ferreiro, S., M. M. C. Canut, J. Lund, and D. Herfort. 2019. “Influence of fineness of raw clay and calcination temperature on the performance of calcined clay-limestone blended cements.” Appl. Clay Sci. 169 (Mar): 81–90. https://doi.org/10.1016/j.clay.2018.12.021.
Garcia-Lodeiro, I., G. Goracci, J. S. Dolado, and M. T. Blanco-Varela. 2021. “Mineralogical and microstructural alterations in a portland cement paste after an accelerated decalcification process.” Cem. Concr. Res. 140 (Feb): 106312. https://doi.org/10.1016/j.cemconres.2020.106312.
Ghafari, E., S. A. Ghahari, H. Costa, E. Júlio, A. Portugal, and L. Durães. 2016. “Effect of supplementary cementitious materials on autogenous shrinkage of ultra-high performance concrete.” Constr. Build. Mater. 127 (Nov): 43–48. https://doi.org/10.1016/j.conbuildmat.2016.09.123.
Gleize, P. J. P., M. Cyr, and G. Escadeillas. 2007. “Effects of metakaolin on autogenous shrinkage of cement pastes.” Cem. Concr. Compos. 29 (2): 80–87. https://doi.org/10.1016/j.cemconcomp.2006.09.005.
Hagymassy, J., Jr., S. Brunauer, and R. S. Mikhail. 1969. “Pore structure analysis by water vapor adsorption: I. t-curves for water vapor.” J. Colloid Interface Sci. 29 (3): 485–491. https://doi.org/10.1016/0021-9797(69)90132-5.
Harkins, W. D., and G. Jura. 1944. “Surfaces of solids. XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid.” J. Am. Chem. Soc. 66 (8): 1366–1373. https://doi.org/10.1021/ja01236a048.
Hu, J., Z. Ge, and K. Wang. 2014. “Influence of cement fineness and water-to-cement ratio on mortar early-age heat of hydration and set times.” Constr. Build. Mater. 50 (Jan): 657–663. https://doi.org/10.1016/j.conbuildmat.2013.10.011.
Jennings, H. M. 2008. “Refinements to colloid model of CSH in cement: CM-II.” Cem. Concr. Res. 38 (3): 275–289. https://doi.org/10.1016/j.cemconres.2007.10.006.
Jiang, C., Y. Yang, Y. Wang, Y. Zhou, and C. Ma. 2014. “Autogenous shrinkage of high performance concrete containing mineral admixtures under different curing temperatures.” Constr. Build. Mater. 61 (Jun): 260–269. https://doi.org/10.1016/j.conbuildmat.2014.03.023.
Juenger, M. C. G., R. Snellings, and S. A. Bernal. 2019. “Supplementary cementitious materials: New sources, characterization, and performance insights.” Cem. Concr. Res. 122 (Aug): 257–273. https://doi.org/10.1016/j.cemconres.2019.05.008.
Kapeluszna, E., Ł. Kotwica, A. Różycka, and Ł. Gołek. 2017. “Incorporation of Al in CASH gels with various Ca/Si and Al/Si ratio: Microstructural and structural characteristics with DTA/TG, XRD, FTIR and TEM analysis.” Constr. Build. Mater. 155 (Nov): 643–653. https://doi.org/10.1016/j.conbuildmat.2017.08.091.
Khan, M. S. H., Q. D. Nguyen, and A. Castel. 2020. “Performance of limestone calcined clay blended cement-based concrete against carbonation.” Adv. Cem. Res. 32 (11): 481–491. https://doi.org/10.1680/jadcr.18.00172.
Kim, T., and J. Olek. 2012. “Effects of sample preparation and interpretation of thermogravimetric curves on calcium hydroxide in hydrated pastes and mortars.” Transp. Res. Rec. 2290 (1): 10–18. https://doi.org/10.3141/2290-02.
Kinuthia, J. M., S. Wild, B. B. Sabir, and J. Bai. 2000. “Self-compensating autogenous shrinkage in Portland cement—metakaolin—fly ash pastes.” Adv. Cem. Res. 12 (1): 35–43. https://doi.org/10.1680/adcr.2000.12.1.35.
Krishnan, S., and S. Bishnoi. 2018. “Understanding the hydration of dolomite in cementitious systems with reactive aluminosilicates such as calcined clay.” Cem. Concr. Res. 108 (Jun): 116–128. https://doi.org/10.1016/j.cemconres.2018.03.010.
Krishnan, S., A. C. Emmanuel, and S. Bishnoi. 2019. “Hydration and phase assemblage of ternary cements with calcined clay and limestone.” Constr. Build. Mater. 222 (Oct): 64–72. https://doi.org/10.1016/j.conbuildmat.2019.06.123.
Kupwade-Patil, K., S. D. Palkovic, A. Bumajdad, C. Soriano, and O. Büyüköztürk. 2018. “Use of silica fume and natural volcanic ash as a replacement to Portland cement: Micro and pore structural investigation using NMR, XRD, FTIR and X-ray microtomography.” Constr. Build. Mater. 158 (Jan): 574–590. https://doi.org/10.1016/j.conbuildmat.2017.09.165.
Li, Y., J. Bao, and Y. Guo. 2010. “The relationship between autogenous shrinkage and pore structure of cement paste with mineral admixtures.” Constr. Build. Mater. 24 (10): 1855–1860. https://doi.org/10.1016/j.conbuildmat.2010.04.018.
Li, Y., and J. Li. 2014. “Capillary tension theory for prediction of early autogenous shrinkage of self-consolidating concrete.” Constr. Build. Mater. 53 (Feb): 511–516. https://doi.org/10.1016/j.conbuildmat.2013.12.010.
Lothenbach, B., G. Le Saout, E. Gallucci, and K. Scrivener. 2008. “Influence of limestone on the hydration of Portland cements.” Cem. Concr. Res. 38 (6): 848–860. https://doi.org/10.1016/j.cemconres.2008.01.002.
Lothenbach, B., K. Scrivener, and R. D. Hooton. 2011. “Supplementary cementitious materials.” Cem. Concr. Res. 41 (12): 1244–1256. https://doi.org/10.1016/j.cemconres.2010.12.001.
Lura, P., O. M. Jensen, and K. Van Breugel. 2003. “Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms.” Cem. Concr. Res. 33 (2): 223–232. https://doi.org/10.1016/S0008-8846(02)00890-6.
Lura, P., K. van Breugel, and I. Maruyama. 2001. “Effect of curing temperature and type of cement on early-age shrinkage of high-performance concrete.” Cem. Concr. Res. 31 (12): 1867–1872. https://doi.org/10.1016/S0008-8846(01)00601-9.
Mahmood, A. H., S. Afroz, A. Kashani, T. Kim, and S. J. Foster. 2022. “The efficiency of recycled glass powder in mitigating the alkali-silica reaction induced by recycled glass aggregate in cementitious mortars.” Mater. Struct. 55 (6): 1–20. https://doi.org/10.1617/s11527-022-01989-7.
Malvern Mastersizer. 2023. “Malvern Mastersizer 2000.” Accessed July 7, 2023. https://www.malvernpanalytical.com/en/products/category/particle-size-analyzers.
McMillan, P. F., G. H. Wolf, and B. T. Poe. 1992. “Vibrational spectroscopy of silicate liquids and glasses.” Chem. Geol. 96 (3–4): 351–366. https://doi.org/10.1016/0009-2541(92)90064-C.
Meddah, M. S., and A. Tagnit-Hamou. 2009. “Pore structure of concrete with mineral admixtures and its effect on self-desiccation shrinkage.” ACI Mater. J. 106 (3): 241–250.
Medjigbodo, G., E. Rozière, K. Charrier, L. Izoret, and A. Loukili. 2018. “Hydration, shrinkage, and durability of ternary binders containing Portland cement, limestone filler and metakaolin.” Constr. Build. Mater. 183 (Sep): 114–126. https://doi.org/10.1016/j.conbuildmat.2018.06.138.
Mo, Z., R. Wang, and X. Gao. 2020. “Hydration and mechanical properties of UHPC matrix containing limestone and different levels of metakaolin.” Constr. Build. Mater. 256 (Sep): 119454. https://doi.org/10.1016/j.conbuildmat.2020.119454.
Mohr, B. J., and K. L. Hood. 2010. “Influence of bleed water reabsorption on cement paste autogenous deformation.” Cem. Concr. Res. 40 (2): 220–225. https://doi.org/10.1016/j.cemconres.2009.10.014.
Mokarem, D. W., R. E. Weyers, and D. S. Lane. 2005. “Development of a shrinkage performance specifications and prediction model analysis for supplemental cementitious material concrete mixtures.” Cem. Concr. Res. 35 (5): 918–925. https://doi.org/10.1016/j.cemconres.2004.09.013.
Monasterio, M., J. J. Gaitero, E. Erkizia, A. M. G. Bustos, L. A. Miccio, J. S. Dolado, and S. Cerveny. 2015. “Effect of addition of silica-and amine functionalized silica-nanoparticles on the microstructure of calcium silicate hydrate (C–S–H) gel.” J. Colloid Interface Sci. 450 (Jul): 109–118. https://doi.org/10.1016/j.jcis.2015.02.066.
Moon, J., J. E. Oh, M. Balonis, F. P. Glasser, S. M. Clark, and P. J. M. Monteiro. 2012. “High pressure study of low compressibility tetracalcium aluminum carbonate hydrates 3CaO·Al2O3·CaCO3·11H2O.” Cem. Concr. Res. 42 (1): 105–110. https://doi.org/10.1016/j.cemconres.2011.08.004.
Muller, N., and J. Harnisch. 2007. A blueprint for a climate friendly cement industry. Gland, Switzerland: WWF International.
Nguyen, H.-A., T.-P. Chang, J.-Y. Shih, and C.-T. Chen. 2019. “Influence of low calcium fly ash on compressive strength and hydration product of low energy super sulfated cement paste.” Cem. Concr. Compos. 99 (May): 40–48. https://doi.org/10.1016/j.cemconcomp.2019.02.019.
Nguyen, Q. D., S. Afroz, and A. Castel. 2020a. “Influence of calcined clay reactivity on the mechanical properties and chloride diffusion resistance of limestone calcined clay cement (LC3) concrete.” J. Mar. Sci. Eng. 8 (5): 301. https://doi.org/10.3390/jmse8050301.
Nguyen, Q. D., S. Afroz, Y. Zhang, T. Kim, W. Li, and A. Castel. 2022. “Autogenous and total shrinkage of limestone calcined clay cement (LC3) concretes.” Constr. Build. Mater. 314 (Jan): 125720. https://doi.org/10.1016/j.conbuildmat.2021.125720.
Nguyen, Q. D., M. S. H. Khan, and A. Castel. 2018. “Engineering properties of limestone calcined clay concrete.” J. Adv. Concr. Technol. 16 (8): 343–357. https://doi.org/10.3151/jact.16.343.
Nguyen, Q. D., M. S. H. Khan, and A. Castel. 2020b. “Chloride diffusion in limestone flash calcined clay cement concrete.” ACI Mater. J. 117 (6): 165–175. https://doi.org/10.14359/51725986.
Nguyen, Q. D., T. Kim, and A. Castel. 2020c. “Mitigation of alkali-silica reaction by limestone calcined clay cement (LC3).” Cem. Concr. Res. 137 (Nov): 106176. https://doi.org/10.1016/j.cemconres.2020.106176.
Okoronkwo, M. U., and F. P. Glasser. 2016. “Stability of strätlingite in the CASH system.” Mater. Struct. 49 (10): 4305–4318. https://doi.org/10.1617/s11527-015-0789-x.
Olson, R. A., C. M. Neubauer, and H. M. Jennings. 1997. “Damage to the pore structure of hardened Portland cement paste by mercury intrusion.” J. Am. Ceram. Soc. 80 (9): 2454–2458. https://doi.org/10.1111/j.1151-2916.1997.tb03144.x.
Puerta-Falla, G., A. Kumar, L. Gomez-Zamorano, M. Bauchy, N. Neithalath, and G. Sant. 2015. “The influence of filler type and surface area on the hydration rates of calcium aluminate cement.” Constr. Build. Mater. 96 (Oct): 657–665. https://doi.org/10.1016/j.conbuildmat.2015.08.094.
Rigby, S. P., R. S. Fletcher, and S. N. Riley. 2004. “Characterisation of porous solids using integrated nitrogen sorption and mercury porosimetry.” Chem. Eng. Sci. 59 (1): 41–51. https://doi.org/10.1016/j.ces.2003.09.017.
Rostami, V., Y. Shao, A. J. Boyd, and Z. He. 2012. “Microstructure of cement paste subject to early carbonation curing.” Cem. Concr. Res. 42 (1): 186–193. https://doi.org/10.1016/j.cemconres.2011.09.010.
Rovnaník, P., I. Kusák, P. Bayer, P. Schmid, and L. Fiala. 2019. “Comparison of electrical and self-sensing properties of Portland cement and alkali-activated slag mortars.” Cem. Concr. Res. 118 (Apr): 84–91. https://doi.org/10.1016/j.cemconres.2019.02.009.
Saje, D. 2015. “Reduction of the early autogenous shrinkage of high strength concrete.” Adv. Mater. Sci. Eng. 2015 (Jan): 310641. https://doi.org/10.1155/2015/310641.
Santacruz, I., Á. G. D. la Torre, G. Álvarez-Pinazo, A. Cabeza, A. Cuesta, J. Sanz, and M. A. G. Aranda. 2016. “Structure of stratlingite and effect of hydration methodology on microstructure.” Adv. Cem. Res. 28 (1): 13–22. https://doi.org/10.1680/adcr.14.00104.
Scrivener, K., F. Avet, H. Maraghechi, F. Zunino, J. Ston, W. Hanpongpun, and A. Favier. 2018a. “Impacting factors and properties of limestone calcined clay cements (LC3).” Green Mater. 7 (1): 3–14. https://doi.org/10.1680/jgrma.18.00029.
Scrivener, K., F. Martirena, S. Bishnoi, and S. Maity. 2018b. “Calcineggggwd clay limestone cements (LC3).” Cem. Concr. Res. 114 (Dec): 49–56. https://doi.org/10.1016/j.cemconres.2017.08.017.
Scrivener, K., R. Snellings, and B. Lothenbach. 2018c. A practical guide to microstructural analysis of cementitious materials. Boca Raton, FL: CRC Press.
Senhadji, Y., G. Escadeillas, M. Mouli, and H. Khelafi. 2014. “Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar.” Powder Technol. 254 (Mar): 314–323. https://doi.org/10.1016/j.powtec.2014.01.046.
Shanahan, N., A. Markandeya, A. Elnihum, Y. P. Stetsko, and A. Zayed. 2016. “Multi-technique investigation of metakaolin and slag blended Portland cement pastes.” Appl. Clay Sci. 132 (Nov): 449–459. https://doi.org/10.1016/j.clay.2016.07.015.
Shi, Z., S. Ferreiro, B. Lothenbach, M. R. Geiker, W. Kunther, J. Kaufmann, D. Herfort, and J. Skibsted. 2019. “Sulfate resistance of calcined clay–Limestone–Portland cements.” Cem. Concr. Res. 116 (Feb): 238–251. https://doi.org/10.1016/j.cemconres.2018.11.003.
Shi, Z., B. Lothenbach, M. R. Geiker, J. Kaufmann, A. Leemann, S. Ferreiro, and J. Skibsted. 2016. “Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars.” Cem. Concr. Res. 88 (Oct): 60–72. https://doi.org/10.1016/j.cemconres.2016.06.006.
Silva, A. S., A. Gameiro, J. Grilo, R. Veiga, and A. Velosa. 2014. “Long-term behavior of lime–metakaolin pastes at ambient temperature and humid curing condition.” Appl. Clay Sci. 88 (Feb): 49–55. https://doi.org/10.1016/j.clay.2013.12.016.
Snellings, R., J. Chwast, Ö. Cizer, N. De Belie, Y. Dhandapani, P. Durdzinski, J. Elsen, J. Haufe, D. Hooton, and C. Patapy. 2018. “RILEM TC-238 SCM recommendation on hydration stoppage by solvent exchange for the study of hydrate assemblages.” Mater. Struct. 51 (6): 1–4. https://doi.org/10.1617/s11527-018-1298-5.
Snoeck, D., L. F. Velasco, A. Mignon, S. Van Vlierberghe, P. Dubruel, P. Lodewyckx, and N. De Belie. 2014. “The influence of different drying techniques on the water sorption properties of cement-based materials.” Cem. Concr. Res. 64 (Oct): 54–62. https://doi.org/10.1016/j.cemconres.2014.06.009.
Ston, J., A. Hilaire, and K. Scrivener. 2018. “Autogenous shrinkage and creep of limestone and calcined clay based binders.” In Calcined clays sustainable concrete, 447–454. Dordrecht, Netherlands: Springer.
Sykes, D., and J. D. Kubicki. 1993. “A model for H2O solubility mechanisms in albite melts from infrared spectroscopy and molecular orbital calculations.” Geochim. Cosmochim. Acta 57 (5): 1039–1052. https://doi.org/10.1016/0016-7037(93)90039-Y.
Tazawa, E., and S. Miyazawa. 1995. “Influence of cement and admixture on autogenous shrinkage of cement paste.” Cem. Concr. Res. 25 (2): 281–287. https://doi.org/10.1016/0008-8846(95)00010-0.
Thomas, J. J., and H. M. Jennings. 2006. “A colloidal interpretation of chemical aging of the CSH gel and its effects on the properties of cement paste.” Cem. Concr. Res. 36 (1): 30–38. https://doi.org/10.1016/j.cemconres.2004.10.022.
Tironi, A., A. N. Scian, and E. F. Irassar. 2017. “Blended cements with limestone filler and kaolinitic calcined clay: Filler and pozzolanic effects.” J. Mater. Civ. Eng. 29 (9): 4017116. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001965.
Trezza, M. A., and A. E. Lavat. 2001. “Analysis of the system 3CaO·Al2O3CaSO4·2H2OCaCO3H2O by FT-IR spectroscopy.” Cem. Concr. Res. 31 (6): 869–872. https://doi.org/10.1016/S0008-8846(01)00502-6.
Trümer, A., H.-M. Ludwig, M. Schellhorn, and R. Diedel. 2019. “Effect of a calcined Westerwald bentonite as supplementary cementitious material on the long-term performance of concrete.” Appl. Clay Sci. 168 (Feb): 36–42. https://doi.org/10.1016/j.clay.2018.10.015.
Vizcaino Andres, L. M., M. G. Antoni, A. Alujas Diaz, J. F. Martirena Hernandez, and K. L. Scrivener. 2015. “Effect of fineness in clinker-calcined clays-limestone cements.” Adv. Cem. Res. 27 (9): 546–556. https://doi.org/10.1680/jadcr.14.00095.
Wang, L., N. U. Rehman, I. Curosu, Z. Zhu, M. A. B. Beigh, M. Liebscher, L. Chen, D. C. W. Tsang, S. Hempel, and V. Mechtcherine. 2021. “On the use of limestone calcined clay cement (LC3) in high-strength strain-hardening cement-based composites (HS-SHCC).” Cem. Concr. Res. 144 (Jun): 106421. https://doi.org/10.1016/j.cemconres.2021.106421.
Wild, S., J. M. Khatib, and L. J. Roose. 1998. “Chemical shrinkage and autogenous shrinkage of Portland cement—Metakaolin pastes.” Adv. Cem. Res. 10 (3): 109–119. https://doi.org/10.1680/adcr.1998.10.3.109.
Winnefeld, F., and B. Lothenbach. 2010. “Hydration of calcium sulfoaluminate cements—Experimental findings and thermodynamic modeling.” Cem. Concr. Res. 40 (8): 1239–1247. https://doi.org/10.1016/j.cemconres.2009.08.014.
Wu, B., and G. Ye. 2019. “Study of carbonation rate of synthetic CSH by XRD, NMR and FTIR.” Heron 64 (1–2): 21–38.
Yang, K., and C. E. White. 2020. “Multiscale pore structure determination of cement paste via simulation and experiment: The case of alkali-activated metakaolin.” Cem. Concr. Res. 137 (Nov): 106212. https://doi.org/10.1016/j.cemconres.2020.106212.
Young, J. F., S. Mindess, and D. Darwin. 2002. Concrete. Hoboken, NJ: Prentice Hall.
Yu, P., R. J. Kirkpatrick, B. Poe, P. F. McMillan, and X. Cong. 1999. “Structure of calcium silicate hydrate (C-S-H): Near-, Mid-, and Far-infrared spectroscopy.” J. Am. Ceram. Soc. 82 (3): 742–748. https://doi.org/10.1111/j.1151-2916.1999.tb01826.x.
Zajac, M., A. Rossberg, G. Le Saout, and B. Lothenbach. 2014. “Influence of limestone and anhydrite on the hydration of Portland cements.” Cem. Concr. Compos. 46 (Feb): 99–108. https://doi.org/10.1016/j.cemconcomp.2013.11.007.
Zarzuela, R., M. Luna, L. M. Carrascosa, M. P. Yeste, I. Garcia-Lodeiro, M. T. Blanco-Varela, M. A. Cauqui, J. M. Rodríguez-Izquierdo, and M. J. Mosquera. 2020. “Producing CSH gel by reaction between silica oligomers and portlandite: A promising approach to repair cementitious materials.” Cem. Concr. Res. 130 (Apr): 106008. https://doi.org/10.1016/j.cemconres.2020.106008.
Zhang, T., X. Liu, J. Wei, and Q. Yu. 2014. “Influence of preparation method on the performance of ternary blended cements.” Cem. Concr. Compos. 52 (Sep): 18–26. https://doi.org/10.1016/j.cemconcomp.2014.04.005.
Zhang, Y., S. Afroz, Q. D. Nguyen, T. Kim, A. Castel, and T. Xu. 2022a. “Modeling blended cement concrete tensile creep for standard ring test application.” Struct. Concr. 24 (2): 2170–2188. https://doi.org/10.1002/suco.202200304.
Zhang, Y., S. Afroz, Q. D. Nguyen, T. Kim, J. Eisenträger, A. Castel, and T. Xu. 2021. “Analytical model predicting the concrete tensile stress development in the restrained shrinkage ring test.” Constr. Build. Mater. 307 (Nov): 124930. https://doi.org/10.1016/j.conbuildmat.2021.124930.
Zhang, Y., S. Afroz, Q. D. Nguyen, T. Kim, D. Nguyen, A. Castel, J. Nairn, and R. I. Gilbert. 2022b. “Autogenous shrinkage of fly ash and ground granulated blast furnace slag concrete.” Mag. Concr. Res. 75 (6): 283–295. https://doi.org/10.1680/jmacr.21.00300.
Zhang, Z., and G. W. Scherer. 2017. “Supercritical drying of cementitious materials.” Cem. Concr. Res. 99 (Sep): 137–154. https://doi.org/10.1016/j.cemconres.2017.05.005.
Zhao, Y., J. Gong, and S. Zhao. 2017. “Experimental study on shrinkage of HPC containing fly ash and ground granulated blast-furnace slag.” Constr. Build. Mater. 155 (Nov): 145–153. https://doi.org/10.1016/j.conbuildmat.2017.07.020.
Zimmermann, B., and A. Kohler. 2013. “Optimizing Savitzky-Golay parameters for improving spectral resolution and quantification in infrared spectroscopy.” Appl. Spectrosc. 67 (8): 892–902. https://doi.org/10.1366/12-06723.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 12December 2023

History

Received: Dec 20, 2022
Accepted: May 19, 2023
Published online: Sep 29, 2023
Published in print: Dec 1, 2023
Discussion open until: Feb 29, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Sumaiya Afroz
Ph.D. Candidate, Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, Univ. of New South Wales (UNSW), Sydney, NSW 2052, Australia.
Senior Lecturer, Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, Univ. of New South Wales (UNSW), Sydney, NSW 2052, Australia (corresponding author). ORCID: https://orcid.org/0000-0003-4371-7178. Email: [email protected]
Arnaud Castel, Ph.D.
Professor, School of Civil and Environmental Engineering, Univ. of Technology Sydney (UTS), Sydney, NSW 2007, Australia.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share