Technical Papers
Aug 30, 2023

Compatibility and Self-Healing Properties of Asphalt Binder with Polyethylene Plastics: Observations from Coarse-Grained Molecular Simulation

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 11

Abstract

Recycled polyethylene (PE) has been used in asphalt modification for sustainability benefits but shows complex interaction with asphalt matrix. This study investigated compatibility and self-healing properties of asphalt/PE blends using coarse-grained molecular simulation. The mesoscale model based on three-component asphalt binder was first built and validated by physical and thermodynamic properties in terms of density, glass transition temperature, diffusion coefficient of asphaltene, and viscosity. The compatibility of asphalt and PE with various molecular structures was then studied using interaction energy at different temperatures. The two-layer model was further used to explore self-healing characteristics of asphalt binder. The results show that medium-density PE (MDPE) presents the strongest compatibility with asphalt binder, followed by high-density PE (HDPE) and low-density PE (LDPE), respectively. This finding was consistent with the compatibility index (tube testing) results from the literature. The interaction energy between PE and asphalt decreases with the increasing temperature, while the relative trend among three PE-modified asphalts remains unchanged. The morphology and confirmation of PE molecules further indicate that MDPE has better interaction with asphalt binder, while LDPE shows an aggregation pattern. On the other hand, HDPE-, MDPE-, and LDPE-modified asphalt experience smaller diffusion and greater activation energy than neat asphalt binder, which indicates a higher barrier for self-healing. The study findings provide a fundamental understanding on the interaction mechanism of asphalt and PE from the molecular scale.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

Abdullah, M. E., N. A. Ahmad, R. P. Jaya, N. A. Hassan, H. Yaacob, and M. R. Hainin. 2017. “Effects of waste plastic on the physical and rheological properties of bitumen.” IOP Conf. Ser.: Mater. Sci. Eng. 204 (1): 012016. https://doi.org/10.1088/1757-899X/204/1/012016.
Agrawal, V., G. Arya, and J. Oswald. 2014. “Simultaneous iterative Boltzmann inversion for coarse-graining of polyurea.” Macromolecules 47 (10): 3378–3389. https://doi.org/10.1021/ma500320n.
Ahmedzade, P., A. Fainleib, T. Günay, and O. Grygoryeva. 2014. “Modification of bitumen by electron beam irradiated recycled low density polyethylene.” Constr. Build. Mater. 69 (Sep): 1–9. https://doi.org/10.1016/j.conbuildmat.2014.07.027.
Andrews, A. B., R. E. Guerra, O. C. Mullins, and P. N. Sen. 2006. “Diffusivity of asphaltene molecules by fluorescence correlation spectroscopy.” J. Phys. Chem. A 110 (26): 8093–8097. https://doi.org/10.1021/jp062099n.
Arash, B., H. S. Park, and T. Rabczuk. 2015. “Mechanical properties of carbon nanotube reinforced polymer nanocomposites: A coarse-grained model.” Composites, Part B 80 (9): 92–100. https://doi.org/10.1016/j.compositesb.2015.05.038.
Arulrajah, A., E. Yaghoubi, Y. C. Wong, and S. Horpibulsuk. 2017. “Recycled plastic granules and demolition wastes as construction materials: Resilient moduli and strength characteristics.” Constr. Build. Mater. 147 (Aug): 639–647. https://doi.org/10.1016/j.conbuildmat.2017.04.178.
Ayar, P., F. Moreno-Navarro, and M. C. Rubio-Gámez. 2016. “The healing capability of asphalt pavements: A state of the art review.” J. Cleaner Prod. 113 (Feb): 28–40. https://doi.org/10.1016/j.jclepro.2015.12.034.
Brasileiro, L., F. Moreno-Navarro, R. Tauste-Martínez, J. Matos, and M. D. C. Rubio-Gámez. 2019. “Reclaimed polymers as asphalt binder modifiers for more sustainable roads: A review.” Sustainability 11 (3): 646. https://doi.org/10.3390/su11030646.
Cong, Y., W. Huang, and K. Liao. 2008. “Compatibility between SBS and asphalt.” Pet. Sci. Technol. 26 (3): 346–352. https://doi.org/10.1080/10916460600809493.
Dallavalle, M., and N. F. A. van der Vegt. 2017. “Evaluation of mapping schemes for systematic coarse graining of higher alkanes.” Phys. Chem. 19 (34): 23034–23042. https://doi.org/10.1039/C7CP03926C.
De Jong, D. H., G. Singh, W. D. Bennett, C. Arnarez, T. A. Wassenaar, L. V. Schafer, X. Periole, D. P. Tieleman, and S. J. Marrink. 2013. “Improved parameters for the martini coarse-grained protein force field.” J. Chem. Theory Comput. 9 (1): 687–697. https://doi.org/10.1021/ct300646g.
Fuentes-Audén, C., J. A. Sandoval, A. Jerez, F. J. Navarro, F. J. Martínez-Boza, P. Partal, and C. Gallegos. 2008. “Evaluation of thermal and mechanical properties of recycled polyethylene modified bitumen.” Polym. Test. 27 (8): 1005–1012. https://doi.org/10.1016/j.polymertesting.2008.09.006.
Fukunaga, H., J.-I. Takimoto, and M. Doi. 2002. “A coarse-graining procedure for flexible polymer chains with bonded and nonbonded interactions.” J. Chem. Phys. 116 (18): 8183–8190. https://doi.org/10.1063/1.1469609.
Gama, D. A., Y. Yan, J. K. G. Rodrigues, and R. Roque. 2018. “Optimizing the use of reactive terpolymer, polyphosphoric acid and high-density polyethylene to achieve asphalt binders with superior performance.” Constr. Build. Mater. 169 (Jun): 522–529. https://doi.org/10.1016/j.conbuildmat.2018.02.206.
Gobbo, C., I. Beurroies, D. de Ridder, R. Eelkema, S. J. Marrink, S. De Feyter, J. H. van Esch, and A. H. de Vries. 2013. “MARTINI model for physisorption of organic molecules on graphite.” J. Phys. Chem. C 117 (30): 15623–15631. https://doi.org/10.1021/jp402615p.
González, O., M. Munoz, and A. Santamaría. 2006. “Bitumen/polyethylene blends: Using m-LLDPEs to improve stability and viscoelastic properties.” Rheol. Acta 45 (5): 603–610. https://doi.org/10.1007/s00397-005-0009-7.
Guan, D., S. Feng, L. Zhang, Q. Shi, S. Zhao, and C. Xu. 2019. “Mesoscale simulation for heavy petroleum system using structural unit and dissipative particle dynamics (SU–DPD) frameworks.” Energy Fuels 33 (2): 1049–1060. https://doi.org/10.1021/acs.energyfuels.8b04082.
Guo, F., J. Zhang, J. Pei, B. Zhou, A. C. Falchetto, and Z. Hu. 2020. “Investigating the interaction behavior between asphalt binder and rubber in rubber asphalt by molecular dynamics simulation.” Constr. Build. Mater. 252 (Aug): 118956. https://doi.org/10.1016/j.conbuildmat.2020.118956.
Hajikarimi, P., A. S. Hosseini, and E. H. Fini. 2022. “Evaluation of the compatibility of waste plastics and bitumen using micromechanical modeling.” Constr. Build. Mater. 317 (Jan): 126107. https://doi.org/10.1016/j.conbuildmat.2021.126107.
Harmandaris, V. A., D. Reith, N. F. Van der Vegt, and K. Kremer. 2007. “Comparison between coarse-graining models for polymer systems: Two mapping schemes for polystyrene.” Macromol. Chem. Phys. 208 (19–20): 2109–2120. https://doi.org/10.1002/macp.200700245.
Ho, S., R. Church, K. Klassen, B. Law, D. MacLeod, and L. Zanzotto. 2006. “Study of recycled polyethylene materials as asphalt modifiers.” Can. J. Civ. Eng. 33 (8): 968–981. https://doi.org/10.1139/l06-044.
Hu, D., J. Pei, R. Li, J. Zhang, Y. Jia, and Z. Fan. 2020. “Using thermodynamic parameters to study self-healing and interface properties of crumb rubber modified asphalt based on molecular dynamics simulation.” Front. Struct. Civ. Eng. 14 (1): 109–122. https://doi.org/10.1007/s11709-019-0579-6.
Hu, K., C. Yu, Q. Yang, Z. Li, W. Zhang, T. Zhang, and Y. Feng. 2022. “Mechanistic study of graphene reinforcement of rheological performance of recycled polyethylene modified asphalt: A new observation from molecular dynamics simulation.” Constr. Build. Mater. 320 (Aug): 126263. https://doi.org/10.1016/j.conbuildmat.2021.126263.
Joshi, S. Y., and S. A. Deshmukh. 2021. “A review of advancements in coarse-grained molecular dynamics simulations.” Mol. Simul. 47 (10–11): 786–803. https://doi.org/10.1080/08927022.2020.1828583.
Khanam, P. N., and M. A. A. AlMaadeed. 2015. “Processing and characterization of polyethylene-based composites.” Adv. Manuf. Polym. Compos. Sci. 1 (2): 63–79. https://doi.org/10.1179/2055035915Y.0000000002.
Laidler, K. J. 1984. “The development of the Arrhenius equation.” J. Chem. Educ. 61 (6): 494. https://doi.org/10.1021/ed061p494.
Li, G., M. Han, Y. Tan, A. Meng, J. Li, and S. Li. 2020. “Research on bitumen molecule aggregation based on coarse-grained molecular dynamics.” Constr. Build. Mater. 263 (Aug): 120933. https://doi.org/10.1016/j.conbuildmat.2020.120933.
Liang, M., X. Xin, W. Fan, H. Wang, H. Jiang, J. Zhang, and Z. Yao. 2019a. “Experimental and simulation study of phase microstructure and storage stability of asphalt modified with ethylene-vinyl acetate.” J. Mater. Civ. Eng. 31 (12): 04019288. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002931.
Liang, M., X. Xin, W. Fan, H. Wang, H. Jiang, J. Zhang, and Z. Yao. 2019b. “Phase behavior and hot storage characteristics of asphalt modified with various polyethylene: Experimental and numerical characterizations.” Constr. Build. Mater. 203 (Apr): 608–620. https://doi.org/10.1016/j.conbuildmat.2019.01.095.
Liang, M., X. Xin, W. Fan, J. Zhang, H. Jiang, and Z. Yao. 2021. “Comparison of rheological properties and compatibility of asphalt modified with various polyethylene.” Int. J. Pavement Eng. 22 (1): 11–20. https://doi.org/10.1080/10298436.2019.1575968.
Liu, Q., S. Wu, and E. Schlangen. 2013. “Induction heating of asphalt mastic for crack control.” Constr. Build. Mater. 41 (Apr): 345–351. https://doi.org/10.1016/j.conbuildmat.2012.11.075.
Long, Z., S. Zhou, S. Jiang, W. Ma, Y. Ding, L. You, X. Tang, and F. Xu. 2021. “Revealing compatibility mechanism of nanosilica in asphalt through molecular dynamics simulation.” J. Mol. Model. 27 (3): 1–14. https://doi.org/10.1007/s00894-021-04697-1.
Marrink, S. J., H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. De Vries. 2007. “The MARTINI force field: Coarse grained model for biomolecular simulations.” J. Phys. Chem. B 111 (27): 7812–7824. https://doi.org/10.1021/jp071097f.
Masad, E., K. L. Roja, A. Rehman, and A. Abdala. 2020. A review of asphalt modification using plastics: A focus on polyethylene. College Station, TX: Texas A&M Univ.
Nevins, D., and F. J. Spera. 2007. “Accurate computation of shear viscosity from equilibrium molecular dynamics simulations.” Mol. Simul. 33 (15): 1261–1266. https://doi.org/10.1080/08927020701675622.
Nizamuddin, S., M. Jamal, R. Gravina, and F. Giustozzi. 2020. “Recycled plastic as bitumen modifier: The role of recycled linear low-density polyethylene in the modification of physical, chemical and rheological properties of bitumen.” J. Cleaner Prod. 266 (20): 121988. https://doi.org/10.1016/j.jclepro.2020.121988.
Nizamuddin, S., M. Jamal, J. Santos, and F. Giustozzi. 2021. “Recycling of low-value packaging films in bitumen blends: A grey-based multi criteria decision making approach considering a set of laboratory performance and environmental impact indicators.” Sci. Total Environ. 778 (Jul): 146187. https://doi.org/10.1016/j.scitotenv.2021.146187.
Östlund, J. A., M. Nydén, I. H. Auflem, and J. Sjöblom. 2003. “Interactions between asphaltenes and naphthenic acids.” Energy Fuels 17 (1): 113–119. https://doi.org/10.1021/ef020103y.
Padhan, R. K., and A. Sreeram. 2018. “Enhancement of storage stability and rheological properties of polyethylene (PE) modified asphalt using cross linking and reactive polymer based additives.” Constr. Build. Mater. 188 (Nov): 772–780. https://doi.org/10.1016/j.conbuildmat.2018.08.155.
Pérez-Lepe, A., F. J. Martínez-Boza, P. Attané, and C. Gallegos. 2006. “Destabilization mechanism of polyethylene-modified bitumen.” J. Appl. Polym. Sci. 100 (1): 260–267. https://doi.org/10.1002/app.23091.
Polacco, G., S. Berlincioni, D. Biondi, J. Stastna, and L. Zanzotto. 2005. “Asphalt modification with different polyethylene-based polymers.” Eur. Polym. J. 41 (12): 2831–2844. https://doi.org/10.1016/j.eurpolymj.2005.05.034.
Polacco, G., S. Filippi, F. Merusi, and G. Stastna. 2015. “A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility.” Adv. Colloid Interface Sci. 224 (Jun): 72–112. https://doi.org/10.1016/j.cis.2015.07.010.
Qiu, J., M. F. C. Van de Ven, S. P. Wu, J. Y. Yu, and A. A. A. Molenaar. 2011. “Investigating self healing behaviour of pure bitumen using dynamic shear rheometer.” Fuel 90 (8): 2710–2720. https://doi.org/10.1016/j.fuel.2011.03.016.
Read, J., D. Whiteoak, and R. N. Hunter. 2003. The shell bitumen handbook. New York: Thomas Telford.
Roja, K. L., A. Rehman, M. Ouederni, S. K. Krishnamoorthy, A. Abdala, and E. Masad. 2021. “Influence of polymer structure and amount on microstructure and properties of polyethylene-modified asphalt binders.” Mater. Struct. 54 (2): 1–17. https://doi.org/10.1617/s11527-021-01683-0.
Ruiz, L., W. Xia, Z. Meng, and S. Keten. 2015. “A coarse-grained model for the mechanical behavior of multi-layer graphene.” Carbon 82 (Nov): 103–115. https://doi.org/10.1016/j.carbon.2014.10.040.
Sun, D., T. Lin, X. Zhu, Y. Tian, and F. Liu. 2016. “Indices for self-healing performance assessments based on molecular dynamics simulation of asphalt binders.” Comput. Mater. Sci. 114 (Mar): 86–93. https://doi.org/10.1016/j.commatsci.2015.12.017.
Sun, H. 1998. “COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds.” J. Phys. Chem. B 102 (38): 7338–7364. https://doi.org/10.1021/jp980939v.
Sun, W., and H. Wang. 2020a. “Molecular dynamics simulation of diffusion coefficients between different types of rejuvenator and aged asphalt binder.” Int. J. Pavement Eng. 21 (8): 966–976. https://doi.org/10.1080/10298436.2019.1650927.
Sun, W., and H. Wang. 2020b. “Self-healing of asphalt binder with cohesive failure: Insights from molecular dynamics simulation.” Constr. Build. Mater. 262 (Nov): 120538. https://doi.org/10.1016/j.conbuildmat.2020.120538.
Tang, J., Q. Liu, S. Wu, Q. Ye, Y. Sun, and E. Schlangen. 2016. “Investigation of the optimal self-healing temperatures and healing time of asphalt binders.” Constr. Build. Mater. 113 (Jun): 1029–1033. https://doi.org/10.1016/j.conbuildmat.2016.03.145.
Tang, J., and H. Wang. 2022. “Coarse grained modeling of nanostructure and asphaltene aggregation in asphalt binder using dissipative particle dynamics.” Constr. Build. Mater. 314 (Jun): 125605. https://doi.org/10.1016/j.conbuildmat.2021.125605.
Tang, J., H. Wang, and M. Liang. 2022. “Molecular simulation and experimental analysis of interaction and compatibility between asphalt binder and styrene-butadiene-styrene.” Constr. Build. Mater. 342 (Aug): 128028. https://doi.org/10.1016/j.conbuildmat.2022.128028.
Teltayev, B. B., C. O. Rossi, G. G. Izmailova, E. D. Amirbayev, and A. O. Elshibayev. 2019. “Evaluating the effect of asphalt binder modification on the low-temperature cracking resistance of hot mix asphalt.” Case Stud. Constr. Mater. 11 (Dec): e00238. https://doi.org/10.1016/j.cscm.2019.e00238.
Vargas, M. A., M. A. Vargas, A. Sánchez-Sólis, and O. Manero. 2013. “Asphalt/polyethylene blends: Rheological properties, microstructure and viscosity modeling.” Constr. Build. Mater. 45 (Aug): 243–250. https://doi.org/10.1016/j.conbuildmat.2013.03.064.
Wani, T. A., N. Alsaif, M. M. Alanazi, A. H. Bakheit, S. Zargar, and M. A. Bhat. 2021. “A potential anticancer dihydropyrimidine derivative and its protein binding mechanism by multispectroscopic, molecular docking and molecular dynamic simulation along with its in-silico toxicity and metabolic profile.” Eur. J. Pharm. Sci. 158 (Aug): 105686. https://doi.org/10.1016/j.ejps.2020.105686.
Wu, S., and L. Montalvo. 2021. “Repurposing waste plastics into cleaner asphalt pavement materials: A critical literature review.” J. Cleaner Prod. 280 (Jan): 124355. https://doi.org/10.1016/j.jclepro.2020.124355.
Xia, T., Y. Qin, J. Xu, L. Zhou, W. Chen, and J. Dai. 2018. “Viscoelastic phase separation and crystalline-to-amorphous phase transition in bitumen/SBS/PE blends.” Polymer 155 (Oct): 129–135. https://doi.org/10.1016/j.polymer.2018.09.042.
Xu, G., and H. Wang. 2016. “Study of cohesion and adhesion properties of asphalt concrete with molecular dynamics simulation.” Comput. Mater. Sci 112 (Feb): 161–169. https://doi.org/10.1016/j.commatsci.2015.10.024.
Xu, G., H. Wang, and W. Sun. 2018. “Molecular dynamics study of rejuvenator effect on RAP binder: Diffusion behavior and molecular structure.” Constr. Build. Mater. 158 (Jan): 1046–1054. https://doi.org/10.1016/j.conbuildmat.2017.09.192.
Yousefi, A. A. 2003. “Polyethylene dispersions in bitumen: The effects of the polymer structural parameters.” J. Appl. Polym. Sci. 90 (12): 3183–3190. https://doi.org/10.1002/app.12942.
Yu, C., K. Hu, Y. Chen, W. Zhang, Y. Chen, and R. Chang. 2021a. “Compatibility and high temperature performance of recycled polyethylene modified asphalt using molecular simulations.” Mol. Simul. 47 (13): 1037–1049. https://doi.org/10.1080/08927022.2021.1944624.
Yu, C., K. Hu, Q. Yang, D. Wang, W. Zhang, G. Chen, and C. Kapyelata. 2021b. “Analysis of the storage stability property of carbon nanotube/recycled polyethylene-modified asphalt using molecular dynamics simulations.” Polymers 13 (10): 1658. https://doi.org/10.3390/polym13101658.
Zhang, L., and M. L. Greenfield. 2007. “Analyzing properties of model asphalts using molecular simulation.” Energy Fuels 21 (3): 1712–1716. https://doi.org/10.1021/ef060658j.
Zhang, S. F., L. L. Sun, J. B. Xu, H. Wu, and H. Wen. 2010. “Aggregate structure in heavy crude oil: Using a dissipative particle dynamics based mesoscale platform.” Energy Fuels 24 (8): 4312–4326. https://doi.org/10.1021/ef1003446.
Zhou, L., D. Wang, M. Iftikhar, Y. Lu, and M. Zhou. 2021. “Conformational changes and binding property of the periplasmic binding protein BtuF during vitamin B12 transport revealed by collision-induced unfolding, hydrogen-deuterium exchange mass spectrometry and molecular dynamic simulation.” Int. J. Biol. Macromol. 187 (Apr): 350–360. https://doi.org/10.1016/j.ijbiomac.2021.07.120.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 11November 2023

History

Received: Dec 13, 2022
Accepted: Apr 18, 2023
Published online: Aug 30, 2023
Published in print: Nov 1, 2023
Discussion open until: Jan 30, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Dept. of Civil and Environmental Engineering, School of Engineering, Rutgers, State Univ. of New Jersey, New Brunswick, NJ 08854; China 19th Metallurgical Group Corporation Limited, 3-57#, Renmin Middle Rd., Chengdu 610031, China. Email: [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, School of Engineering, Rutgers, State Univ. of New Jersey, New Brunswick, NJ 08854 (corresponding author). ORCID: https://orcid.org/0000-0001-8666-6900. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share