Technical Papers
Jul 31, 2023

Synthesis and Reaction Mechanism of Geopolymer Gels with Increasing Calcium Content: From Experiments to Molecular Dynamics Simulation

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 10

Abstract

This work aims to investigate the effects of calcium on the performances of metakaolin-based geopolymer with the aid of a combination of the experiment study and molecular dynamics simulation. These impacts were comprehensively characterized by fresh properties through setting time and consistency of paste with calcium oxide (CaO) partial substitution, while the hardened properties were conducted via compressive strength and elasticity modulus tests. The microstructural characteristics of reaction products were analyzed by X-ray diffraction (XRD), thermogravimetric differential thermal analysis (TG-DTG), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDS), and Brunauer-Emmett-Teller (BET) method. Moreover, various structures of sodium aluminate silicate hydrate (N─ A─ S─ H), calcium aluminate silicate hydrate (C─ A─ S─ H), and five types of geopolymer gels models with increasing calcium content were established and optimized by molecular dynamics simulation. The results showed that the workability of paste decreased with the increase in calcium content, while there was a threshold for mechanical properties at all ages. The products of geopolymer with calcium composite incorporation inclusion were mainly amorphous phases of N(C)─ A─ S─ H containing large amounts of calcite, while even Ca(OH)2 and unreacted CaO could be found in a high-calcium system with higher crystallinity. The coexistence of gels increased compactness and also formed a relatively denser network structure with many mesopores, but poor pore structure caused by unacceptable polymerization degree and bound water consumption of hydration products occurred when the CaO replacement ratio reached 20%. Acceptable agreement between the simulations and experimental results was obtained with a significant decrease in the bond lengths of Si─ O and Ca─ O. Overall, the reaction mechanism of calcium in the system was innovatively revealed through the establishment of a macroscopic properties–microstructures–atomic model (multiscale) relationship.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

We wish to acknowledge the partial support by the joint project between the Natural Science Foundation of China and Royal Society (52111530140), the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars (LR21E080003), National Natural Science Foundation of China (52278278), and the special support plan for high-level talents in Zhejiang Province (2021R52035).

References

ACI (American Concrete Institute). 2014. Building code requirements for structural concrete and commentary. ACI 318-14. Farmington Hills, MI: ACI.
Albitar, M., P. Visintin, M. S. M. Ali, and M. Drechsler. 2015. “Assessing behaviour of fresh and hardened geopolymer concrete mixed with class-F fly ash.” KSCE J. Civ. Eng. 19 (5): 1445–1455. https://doi.org/10.1007/s12205-014-1254-z.
Bagheri, A., A. Nazari, J. G. Sanjayan, P. Rajeev, and W. H. Duan. 2017. “Fly ash-based boroaluminosilicate geopolymers: Experimental and molecular simulations.” Ceram. Int. 43 (5): 4119–4126. https://doi.org/10.1016/j.ceramint.2016.12.020.
Bajpai, R., K. Choudhary, A. Srivastava, K. S. Sangwan, and M. Singh. 2020. “Environmental impact assessment of fly ash and silica fume based geopolymer concrete.” J. Cleaner Prod. 254 (Aug): 120147. https://doi.org/10.1016/j.jclepro.2020.120147.
Bell, J. L., P. Sarin, P. E. Driemeyer, R. P. Haggerty, P. J. Chupas, and W. M. Kriven. 2008. “X-ray pair distribution function analysis of a metakaolin-based, KAlSi2O6·5.5H2O inorganic polymer (geopolymer).” J. Mater. Chem. 18 (48): 5974–5981. https://doi.org/10.1039/b808157c.
Bernal, S. A., and J. L. Provis. 2014. “Durability of alkali-activated materials: Progress and perspectives.” J. Am. Ceram. Soc. 97 (4): 997–1008. https://doi.org/10.1111/jace.12831.
Bernal, S. A., J. L. Provis, B. Walkley, R. S. Nicolas, J. D. Gehman, D. G. Brice, A. R. Kilcullen, P. Duxson, and J. S. J. van Deventer. 2013. “Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation.” Cem. Concr. Res. 53 (18): 127–144. https://doi.org/10.1016/j.cemconres.2013.06.007.
CEB-FIP (Comité Euro-International du Béton and Fédération International de la Précontrainte). 1990. CEP-FIP model code. London: Thomas Telford Ltd.
Chen, J., D. Y. Lv, K. Li, H. Liu, and Z. Z. Xu. 2017. “Pore structure characteristics of metakaolin-based geopolymers by nitrogen adsorption method.” [In Chinese.] J. Chin. Ceram. Soc. 45 (8): 1121−1127. https://doi.org/10.14062/j.issn.0454-5648.2017.08.10.
Chen, K. Y., D. Z. Wu, S. J. Fei, C. G. Pan, X. Y. Shen, C. X. Zhang, and J. T. Hu. 2021a. “Resistance of blended alkali-activated fly ash-OPC mortar to mild-concentration sulfuric and acetic acid attack.” Environ. Sci. Pollut. Res. 29 (17): 25694–25708. https://doi.org/10.1007/s11356-021-17555-7.
Chen, K. Y., D. Z. Wu, L. L. Xia, Q. M. Cai, and Z. Y. Zhang. 2021b. “Geopolymer concrete durability subjected to aggressive environments—A review of influence factors and comparison with ordinary portland cement.” Constr. Build. Mater. 279 (21): 122496. https://doi.org/10.1016/j.conbuildmat.2021.122496.
Chen, K. Y., D. Z. Wu, M. Yi, Q. M. Cai, and Z. Y. Zhang. 2021c. “Mechanical and durability properties of metakaolin blended with slag geopolymer mortars used for pavement repair.” Constr. Build. Mater. 281 (12): 122566. https://doi.org/10.1016/j.conbuildmat.2021.122566.
Chen, K. Y., D. Z. Wu, Z. L. Zhang, C. G. Pan, X. Y. Shen, L. L. Xia, and J. W. Zang. 2021d. “Modeling and optimization of fly ash–slag-based geopolymer using response surface method and its application in soft soil stabilization.” Constr. Build. Mater. 315 (Jan): 125723. https://doi.org/10.1016/j.conbuildmat.2021.125723.
Chen, K. Y., J. Xia, R. J. Wu, X. Y. Shen, J. J. Chen, Y. X. Zhao, and W. L. Jin. 2022. “An overview on the influence of various parameters on the fabrication and engineering properties of CO2-cured cement-based composites.” J. Cleaner Prod. 366 (12): 132968. https://doi.org/10.1016/j.jclepro.2022.132968.
Chen, X., A. Sutrisno, and L. J. Struble. 2018. “Effects of calcium on setting mechanism of metakaolin-based geopolymer.” J. Am. Ceram. Soc. 101 (2): 957–968. https://doi.org/10.1111/jace.15249.
China National Standardization Management Committee. 1977. Calcium oxide for industrial use. GB 1262-1977. Beijing: China National Standardization Management.
Chinese Standard. 2010. Code for design of concrete structures. GB 50010. Beijing: National Standard of the People’s Republic of China.
Chinese Standard. 2011. Test methods for water requirement of normal consistency, setting time and soundness of the Portland cement. GB/T 1346. Beijing: National Standard of the People’s Republic of China.
Chinese Standard. 2021. Test method of cement mortar strength (ISO method). GB/T 17671. Beijing: National Standard of the People’s Republic of China.
Chitsaz, S., and A. Tarighat. 2020. “Molecular dynamics simulation of N-A-S-H geopolymer macro molecule model for prediction of its modulus of elasticity.” Constr. Build. Mater. 243 (Aug): 118176. https://doi.org/10.1016/j.conbuildmat.2020.118176.
Chitsaz, S., and A. Tarighat. 2021. “Estimation of the modulus of elasticity of N-A-S-H and slag-based geopolymer structures containing calcium and magnesium ions as impurities using molecular dynamics simulations.” Ceram. Int. 47 (5): 6424–6433. https://doi.org/10.1016/j.ceramint.2020.10.224.
Cho, B. H., W. Chung, and B. H. Nam. 2020. “Molecular dynamics simulation of calcium-silicate-hydrate for nano-engineered cement composites—A review.” Nanomaterials 10 (11): 2158. https://doi.org/10.3390/nano10112158.
Chuah, S., W. H. Duan, Z. Pan, E. Hunter, A. H. Korayem, X. L. Zhao, F. Collins, and J. G. Sanjayan. 2016. “The properties of fly ash based geopolymer mortars made with dune sand.” Mater. Des. 92 (Jul): 571–578. https://doi.org/10.1016/j.matdes.2015.12.070.
Clayden, N. J., S. Esposito, A. Aronne, and P. Pernice. 1999. “Solid state 27Al NMR and FTIR study of lanthanum aluminosilicate glasses.” J. Non-Cryst. Solids 258 (1): 1–19. https://doi.org/10.1016/S0022-3093(99)00555-4.
Cong, P. L., and L. N. Mei. 2021. “Using silica fume for improvement of fly ash/slag based geopolymer activated with calcium carbide residue and gypsum.” Constr. Build. Mater. 275 (Mar): 122171. https://doi.org/10.1016/j.conbuildmat.2020.122171.
Cui, Y. X., J. F. Jiang, T. F. Fu, and S. F. Liu. 2022. “Feasibility of using waste brine/seawater and sea sand for the production of concrete: An experimental investigation from mechanical properties and durability perspectives.” Sustainability 14 (20): 13340. https://doi.org/10.3390/su142013340.
Davidovits, J. 1991. “Geopolymers.” J. Therm. Anal. 37 (8): 1633–1656. https://doi.org/10.1007/BF01912193.
Davidovits, J. 2017. “Geopolymers: Ceramic-like inorganic polymers.” J. Ceram. Sci. Technol. 8 (3): 335–350. https://doi.org/10.4416/JCST2017-00038.
Diaz-Loya, E. I., F. N. Allouch, and S. Vaidya. 2011. “Mechanical properties of fly-ash-based geopolymer concrete.” ACI Mater. J. 108 (3): 300. https://doi.org/10.14359/51682495.
Duxson, P., A. Fernandez-Jimenez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. van Deventer. 2007. “Geopolymer technology: The current state of the art.” J. Mater. Sci. 42 (9): 2917–2933. https://doi.org/10.1007/s10853-006-0637-z.
Duxson, P., J. L. Provis, G. C. Lukey, S. W. Mallicoat, W. M. Kriven, and J. S. J. van Deventer. 2005. “Understanding the relationship between geopolymer compositions, microstructure and mechanical properties.” Colloids Surf., A 269 (1–3): 47–58. https://doi.org/10.1016/j.colsurfa.2005.06.060.
Fernández-Jiménez, A., A. Palomo, and D. Revuelta. 2009. “Alkali activation of industrial byproducts to develop new earth-friendly cements.” In Proc., 11th Int. Conf. on Non-Conventional Materials and Technologies. Bath, UK: Univ. of Bath.
Hamid, S. A. 1981. “The crystal structure of the 11 Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5]·1H2O.” Z. Kristallogr. 154 (5): 189–198. https://doi.org/10.1524/zkri.1981.154.3-4.189.
Hardjito, D., C. C. Cheak, and C. H. L. Ing. 2008. “Strength and setting times of low calcium fly ash-based geopolymer mortar.” Mod. Appl. Sci. 2 (4): 3–11. https://doi.org/10.5539/mas.v2n4p3.
Hardjito, D., S. E. Wallah, D. M. J. Sumajouw, and B. V. Rangan. 2004. “The stress-strain behaviour of fly ash-based geopolymer concrete.” In Development in mechanics of structures and materials, edited by A. J. Decks and H. Hao, 831–834. Leiden, Netherlands: A. A. Balkema Publishers.
Hassan, A., M. Arif, and M. Shariq. 2020. “Age-dependent compressive strength and elastic modulus of fly ash-based geopolymer concrete.” Struct. Concr. 23 (1): 473–487. https://doi.org/10.1002/suco.202000372.
Hou, D. S., T. Li, and P. Wang. 2018. “Molecular dynamics study on the structure and dynamics of NaCl solution transport in the nanometer channel of CASH gel.” ACS Sustainable Chem. Eng. 6 (7): 9498–9509. https://doi.org/10.1021/acssuschemeng.8b02126.
Jiang, C. H., A. Y. Wang, X. F. Bao, T. Y. Ni, and J. Ling. 2020. “A review on geopolymer in potential coating application: Materials, preparation and basic properties.” J. Build. Eng. 32 (Jul): 101734. https://doi.org/10.1016/j.jobe.2020.101734.
Jiang, F. X., Q. R. Yang, Y. T. Wang, P. Wang, D. S. Hou, and Z. Q. Jin. 2021. “Insights on the adhesive properties and debonding mechanism of CFRP/concrete interface under sulfate environment: From experiments to molecular dynamics.” Constr. Build. Mater. 269 (12): 121247. https://doi.org/10.1016/j.conbuildmat.2020.121247.
Ke, Q., X. T. Gong, S. W. Liao, C. X. Duan, and L. B. Li. 2022. “Effects of thermostats/barostats on physical properties of liquids by molecular dynamics simulations.” J. Mol. Liq. 365 (1): 120116. https://doi.org/10.1016/j.molliq.2022.120116.
Ken, P. W., M. Ramli, and C. C. Ban. 2015. “An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products.” Constr. Build. Mater. 77 (Feb): 370–395. https://doi.org/10.1016/j.conbuildmat.2014.12.065.
Khan, M. S. H., A. Castel, A. Akbarnezhad, S. F. Foster, and M. Smith. 2016. “Utilisation of steel furnace slag coarse aggregate in a low calcium fly ash geopolymer concrete.” Cem. Concr. Res. 89 (Nov): 220–229. https://doi.org/10.1016/j.cemconres.2016.09.001.
Kunther, W., B. Lothenbach, and J. Iskibsted. 2015. “Influence of the Ca/Si ratio of the C-S-H phase on the interaction with sulfate ions and its impact on the ettringite crystallization pressure.” Cem. Concr. Res. 69 (Jan): 37−49. https://doi.org/10.1016/j.cemconres.2014.12.002.
Kuo, W. T., C. U. Juang, and Z. R. Chen. 2020. “Effect of burn joss paper ash on properties of ground-granulated blast furnace-based slag geopolymer.” Appl. Sci. 10 (14): 4877. https://doi.org/10.3390/app10144877.
Lee, N. K., and H. K. Lee. 2013. “Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature.” Const. Build. Mater. 47 (Oct): 1201–1209. https://doi.org/10.1016/j.conbuildmat.2013.05.107.
Lee, N. K., and H. K. Lee. 2015. “Reactivity and reaction products of alkali-activated, fly ash/slag paste.” Constr. Build. Mater. 81 (Apr): 303–312. https://doi.org/10.1016/j.conbuildmat.2015.02.022.
Li, Z. M., M. Nedeljkovic, B. Y. Chen, and G. Ye. 2019. “Mitigating the autogenous shrinkage of alkali-activated slag by metakaolin.” Cem. Concr. Res. 122 (Aug): 30–41. https://doi.org/10.1016/j.cemconres.2019.04.016.
Liu, X. H., J. P. Jiang, H. L. Zhang, M. S. Li, Y. Y. Wu, L. Guo, W. Q. Wang, P. Duan, W. S. Zhang, and Z. H. Zhang. 2020. “Thermal stability and microstructure of metakaolin-based geopolymer blended with rice husk ash.” Appl. Clay Sci. 196 (Oct): 105769. https://doi.org/10.1016/j.clay.2020.105769.
Liu, Z., J. X. Wang, Q. K. Jiang, G. D. Cheng, L. Li, Y. X. Kang, and D. M. Wang. 2019. “A green route to sustainable alkali-activated materials by heat and chemical activation of lithium slag.” J. Cleaner Prod. 225 (14): 1184–1193. https://doi.org/10.1016/j.jclepro.2019.04.018.
Majidi, B. 2009. “Geopolymer technology, from fundamentals to advanced applications: A review.” Mater. Technol. 24 (2): 79–87. https://doi.org/10.1179/175355509X449355.
Marinoni, N., and M. A. T. M. Broekmans. 2013. “Microstructure of selected aggregate quartz by XRD, and a critical review of the crystallinity index.” Cem. Concr. Res. 54 (9): 215–225. https://doi.org/10.1016/j.cemconres.2013.08.007.
Mayhoub, O. A., E. A. R. Nasr, Y. Ali, and M. Kohail. 2020. “Properties of slag based geopolymer reactive powder concrete.” Ain Shams Eng. J. 12 (1): 99–105. https://doi.org/10.1016/j.asej.2020.08.013.
Mehta, A., and R. Siddique. 2017. “Strength, permeability and micro-structural characteristics of low-calcium fly ash based geopolymers.” Constr. Build. Mater. 141 (Jun): 325–334. https://doi.org/10.1016/j.conbuildmat.2017.03.031.
Mei, Q., C. J. Benmore, J. Siewenie, J. K. R. Weber, and M. Wildin. 2008. “Diffraction study of calcium aluminate glasses and melts: I. High energy x-ray and neutron diffraction on glasses around the eutectic composition.” J. Phys. Condens. Matter 20 (24): 245106. https://doi.org/10.1088/0953-8984/20/24/245106.
Merlino, S., E. Bonaccorsi, and T. Armbruster. 1999. “Tobermorites: Their real structure and order-disorder (OD) character.” Am. Mineral. 84 (10): 1613–1621. https://doi.org/10.2138/am-1999-1015.
Nath, P., and P. K. Sarker. 2015. “Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature.” Cem. Concr. Compos. 55 (15): 205–214. https://doi.org/10.1016/j.cemconcomp.2014.08.008.
Nath, P., and P. K. Sarker. 2017. “Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete.” Constr. Build. Mater. 130 (May): 22–31. https://doi.org/10.1016/j.conbuildmat.2016.11.034.
Palomo, A., S. Alonso, A. Fernández-Jiménez, I. Sobrados, and J. Sanz. 2004. “Alkaline activation of fly ashes: NMR study of the reaction products.” J. Am. Ceram. Soc. 87 (6): 1141–1145. https://doi.org/10.1111/j.1551-2916.2004.01141.x.
Pelisser, F., E. L. Guerrino, M. Menger, M. D. Michel, and J. A. Labrincha. 2013. “Micromechanical characterization of metakaolin-based geopolymers.” Constr. Build. Mater. 49 (Apr): 547–553. https://doi.org/10.1016/j.conbuildmat.2013.08.081.
Peng, H., C. Cui, Z. Liu, C. S. Cai, and Y. Liu. 2019. “Synthesis and reaction mechanism of an alkali-activated metakaolin-slag composite system at room temperature.” J. Mater. Civ. Eng. 31 (1): 04018345. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002558.
Phoo-ngernkham, T., P. Chindaprasirt, V. Sata, S. Hanjitsuwan, and S. Hatanaka. 2014. “The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature.” Mater. Des. 55 (Mar): 58–65. https://doi.org/10.1016/j.matdes.2013.09.049.
Provis, J. L., G. C. Lukey, and J. S. J. van Deventer. 2005. “Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results.” Chem. Mater. 17 (12): 3075–3085. https://doi.org/10.1021/cm050230i.
Puertas, F., M. Palacios, H. Manzano, J. S. Dolado, A. Rico, and J. Rodriguez. 2011. “A model for the C-A-S-H gel formed in alkali-activated slag cements.” J. Eur. Ceram. Soc. 31 (12): 2043–2056. https://doi.org/10.1016/j.jeurceramsoc.2011.04.036.
Rahier, H., W. Simons, B. V. Mele, and M. Biesemans. 1997. “Low-temperature synthesized aluminosilicate glasses: Part III Influence of the composition of the silicate solution on production, structure and properties.” J. Mater. Sci. 32 (9): 2237–2247. https://doi.org/10.1023/A:1018563914630.
Rozek, P., M. Krol, and W. Mozgawa. 2019. “Geopolymer-zeolite composites: A review.” J. Cleaner Prod. 230 (5): 557–579. https://doi.org/10.1016/j.jclepro.2019.05.152.
Sadat, M. R., K. Muralidharan, and L. Y. Zhang. 2018. “Reactive molecular dynamics simulation of the mechanical behavior of sodium aluminosilicate geopolymer and calcium silicate hydrate composites.” Comput. Mater. Sci. 150 (Jul): 500–509. https://doi.org/10.1016/j.commatsci.2018.04.041.
SA (Standards Australia). 2009. Concrete structures. AS 3600-2009. Sydney, Australia: SA.
Seyyedattar, M., S. Zendehboudi, and S. Butt. 2019. “Molecular dynamics simulations in reservoir analysis of offshore petroleum reserves: A systematic review of theory and applications.” Earth Sci. Rev. 192 (May): 194–213. https://doi.org/10.1016/j.earscirev.2019.02.019.
Sharma, U., L. P. Singh, B. J. Zhan, and C. S. Poon. 2019. “Effect of particle size of nanosilica on microstructure of C-S-H and its impact on mechanical strength.” Cem. Concr. Compos. 97 (Mar): 312–321. https://doi.org/10.1016/j.cemconcomp.2019.01.007.
Shi, H. S., X. L. Guo, M. Xia, and L. Y. Zhang. 2015. “Structural characterization of geopolymeric gel by molecular dynamic simulation.” [In Chinese.] J. Funct. Mater. 4 (Aug): 4081–4085.
Si, R. Z., S. C. Guo, Q. L. Dai, and J. Q. Wang. 2020. “Atomic-structure, microstructure and mechanical properties of glass powder modified metakaolin-based geopolymer.” Constr. Build. Mater. 254 (Sep): 119303. https://doi.org/10.1016/j.conbuildmat.2020.119303.
Smilauer, V., P. Hlavacek, F. Skvara, R. Sulc, L. Kopecky, and J. Nemecek. 2011. “Micromechanical multiscale model for alkali activation of fly ash and metakaolin.” J. Mater. Sci. 46 (20): 6545–6555. https://doi.org/10.1007/s10853-011-5601-x.
Smith, J. V., and S. W. Bailey. 1963. “Second review of Al–O and Si–O tetrahedral distances.” Acta Crystallogr. 16 (8): 801–811. https://doi.org/10.1107/S0365110X63002061.
Temuujin, J., A. van Riessen, and R. Williams. 2009. “Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes.” J. Hazard. Mater. 167 (1): 82–88. https://doi.org/10.1016/j.jhazmat.2008.12.121.
Topark-Ngarm, P., P. Chindaprasirt, and V. Sata. 2015. “Setting time, strength, and bond of high-calcium fly ash geopolymer concrete.” J. Mater. Civ. Eng. 27 (7): 0401498. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001157.
Wang, A. G., Y. Zheng, Z. H. Zhang, K. W. Liu, Y. Li, L. Shi, and D. S. Sun. 2020a. “The durability of alkali-activated materials in comparison with ordinary Portland cements and concretes: A review.” Engineering 6 (6): 695–706. https://doi.org/10.1016/j.eng.2019.08.019.
Wang, Q., S. R. Kang, L. M. Wu, Q. Zhang, and Z. Y. Ding. 2020b. “Structural modeling and molecular dynamics simulation of geopolymers gel.” Mater. Rep. 34 (4): 4056–4061. https://doi.org/10.11896/cldb.19030097.
Wang, R., and J. S. Wang. 2021. “The effects of calcium content on molecular structure and mechanical properties of sodium aluminosilicate hydrate (NASH) gels by molecular dynamics simulation.” J. Non-Cryst. Solids 551 (Jan): 120411. https://doi.org/10.1016/j.jnoncrysol.2020.120411.
Wang, R., J. S. Wang, and Q. C. Song. 2021. “The effect of Na+ and H2O on structural and mechanical properties of coal gangue-based geopolymer: Molecular dynamics simulation and experimental study.” Constr. Build. Mater. 268 (Jan): 121081. https://doi.org/10.1016/j.conbuildmat.2020.121081.
Wang, X., X. P. Xie, X. W. Ye, J. P. He, and J. Zhu. 2019. “Fractal characteristics of pore Structure of calcium-based geopolymer based on nitrogen adsorption.” [In Chinese.] Mater. Rep. 33 (6): 1989–1994. https://doi.org/10.11896/cldb.18030014.
Wang, Y. G., X. M. Liu, W. Zhang, Z. P. Li, Y. L. Zhang, Y. Li, and Y. Y. Ren. 2020c. “Effects of Si/Al ratio on the efflorescence and properties of fly ash based geopolymer.” J. Cleaner Prod. 244 (1): 118852. https://doi.org/10.1016/j.jclepro.2019.118852.
White, C. E., J. L. Provis, A. Llobet, T. Proffen, and J. S. J. van Deventer. 2011. “Evolution of local structure in geopolymer gels: An in situ neutron pair distribution function analysis.” J. Am. Ceram. Soc. 94 (10): 3532–3539. https://doi.org/10.1111/j.1551-2916.2011.04515.x.
White, C. E., J. L. Provis, T. Proffen, and J. S. J. van Deventer. 2010. “The effects of temperature on the local structure of metakaolin-based geopolymer binder: A neutron pair distribution function investigation.” J. Am. Ceram. Soc. 93 (10): 3486–3492. https://doi.org/10.1111/j.1551-2916.2010.03906.x.
Wianglor, K., S. Sinthupinyo, M. Piyaworapaiboon, and A. Chaipanich. 2017. “Effect of alkali-activated metakaolin cement on compressive strength of mortars.” Appl. Clay Sci. 141 (Jun): 272–279. https://doi.org/10.1016/j.clay.2017.01.025.
Xia, J., J. J. Chen, T. Li, J. Shen, Q. F. Liu, and W. L. Jin. 2022. “Modeling of corrosion mechanism of steel bars in chloride-contaminated concrete with transverse cracks.” Mag. Concr. Res. 75 (11): 580–594. https://doi.org/10.1680/jmacr.22.00227.
Xu, J., X. Chen, G. Yang, X. L. Niu, F. J. Chang, and G. Lacidogna. 2021. “Review of research on micromechanical properties of cement-based materials based on molecular dynamics simulation.” Constr. Build. Mater. 312 (Dec): 125389. https://doi.org/10.1016/j.conbuildmat.2021.125389.
Yan, D. M., S. K. Chen, Q. Zeng, S. L. Xu, and H. D. Li. 2016. “Correlating the elastic properties of metakaolin-based geopolymer with its composition.” Mater. Des. 95 (Apr): 306–318. https://doi.org/10.1016/j.matdes.2016.01.107.
Yan, D. M., J. Y. Lu, Y. F. Sun, T. Wang, T. Meng, Q. Zeng, and Y. Liu. 2021. “CO2 pretreatment to aerated concrete with high-volume industry wastes enables a sustainable precast concrete industry.” ACS Sustainable Chem. Eng. 9 (8): 3363−3375. https://doi.org/10.1021/acssuschemeng.1c00001.
Zhang, M., Z. Ding, P. Liu, M. K. Wang, and F. Xing. 2010. “Research of pore structure of phosphoaluminate cement paste using nitrogen adsorption isotherm.” Adv. Mater. Res. 129 (10): 1376–1380. https://doi.org/10.4028/www.scientific.net/AMR.129-131.1376.
Zhang, Y. S., W. H. Zhang, W. Sun, Z. J. Li, and Z. Y. Liu. 2015a. “Preparation of metakaolin based geopolymer and its three-dimensional pore structural characterization.” J. Wuhan Univ. Technol. Mater. Sci. Ed. 30 (3): 550–555. https://doi.org/10.1007/s11595-015-1187-5.
Zhang, Z. H., J. L. Provis, A. Reid, and H. Wang. 2015b. “Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete.” Cem. Concr. Compos. 62 (Sep): 97–105. https://doi.org/10.1016/j.cemconcomp.2015.03.013.
Zhang, Z. H., Y. C. Zhu, H. J. Zhu, Y. Zhang, J. L. Provis, and H. Wang. 2019. “Effect of drying procedures on pore structure and phase evolution of alkali-activated cements.” Cem. Concr. Compos. 96 (Jul): 194–203. https://doi.org/10.1016/j.cemconcomp.2018.12.003.
Zhao, J. H., L. Y. Tong, B. E. Li, T. H. Chen, C. P. Wang, G. Q. Yang, and Y. Zheng. 2021. “Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment.” J. Cleaner Prod. 307 (12): 127085. https://doi.org/10.1016/j.jclepro.2021.127085.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 10October 2023

History

Received: Nov 1, 2022
Accepted: Mar 6, 2023
Published online: Jul 31, 2023
Published in print: Oct 1, 2023
Discussion open until: Dec 31, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, Institute of Structural Engineering, Zhejiang Univ., Hangzhou, Zhejiang 310058, China. Email: [email protected]
J. Xia, Ph.D. [email protected]
Professor, Institute of Structural Engineering, Zhejiang Univ., Hangzhou, Zhejiang 310058, China (corresponding author). Email: [email protected]
Ph.D. Candidate, Institute of Structural Engineering, Zhejiang Univ., Hangzhou, Zhejiang 310058, China. Email: [email protected]
Ph.D. Candidate, Institute of Structural Engineering, Zhejiang Univ., Hangzhou, Zhejiang 310058, China. Email: [email protected]
D. S. Hou, Ph.D. [email protected]
Professor, Dept. of Civil Engineering, Qingdao Univ. of Technology, Qingdao, Shandong 266520, China. Email: [email protected]
Y. X. Zhao, Ph.D. [email protected]
Professor, Institute of Structural Engineering, Zhejiang Univ., Hangzhou, Zhejiang 310058, China. Email: [email protected]
W. L. Jin, Ph.D. [email protected]
Professor, Institute of Structural Engineering, Zhejiang Univ., Hangzhou, Zhejiang 310058, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share