Abstract

The construction of infrastructure in coastal areas requires stabilizers to improve the characteristics of weak cohesionless geomaterials. Ordinary portland cement (OPC) is typically used to improve these geomaterials and provide a reliable foundation for infrastructure. However, the production of OPC is energy-intensive and has a high carbon footprint. Recently, geopolymers (GPs) have received attention as a sustainable alternative to OPC due to their low carbon footprint and ability to provide good mechanical properties. Their low carbon footprint is mainly attributed to the feasibility of using various waste and local materials such as fly ash (FA) and calcined clays for synthesizing GP. This study focused on investigating the effectiveness of metakaolin-based GPs as a stabilizer for cohesionless soils that are typically found in coastal areas. Its effectiveness was evaluated through unconfined compressive strength (UCS) and resilient modulus (MR) obtained from repeated load triaxial (RLT) tests. In addition, scanning electron microscopy (SEM) and magic-angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy were conducted to characterize the structure of the stabilized cohesiveness soils. The strength test results showed that the addition of 20 wt.% GP was effective in improving the UCS of cohesionless soils over 115 times after 3-day curing. The RLT test indicated that treated specimens with 20 wt.% GP had similar resilient moduli as soil samples treated with 4 wt.% OPC. Micro-characterization tests confirmed that the continuous network of GP gels significantly improved the UCS of GP-treated soils. Therefore, this study has shown that GPs are an effective and eco-friendly solution for improving the cohesionless geomaterials common in coastal areas.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

Funding for the study was provided by the Transportation Consortium of South-Central States (Tran-SET) through the Grant #20GTTAMU21. We want to acknowledge the use of the TAMU Materials Characterization Core Facility (RRID:SCR_022202) and X-Ray Diffraction Laboratory. The assistance of Dr. Vladimir Bakhmoutov from the NMR facility at Texas A&M University with the collection and interpretation of MAS-NMR spectra is greatly appreciated.

References

Abdila, S. R., M. M. A. B. Abdullah, R. Ahmad, D. D. Burduhos Nergis, S. Z. A. Rahim, M. F. Omar, A. V. Sandu, and P. Vizureanu. 2022. “Potential of soil stabilization using ground granulated blast furnace slag (GGBFS) and fly ash via geopolymerization method: A review.” Materials 15 (1): 375. https://doi.org/10.3390/ma15010375.
Abdila, S. R., M. M. A. B. Abdullah, R. Ahmad, S. Z. A. Rahim, M. Rychta, I. Wnuk, M. Nabiałek, K. Muskalski, M. F. M. Tahir, and M. Isradi. 2021. “Evaluation on the mechanical properties of ground granulated blast slag (GGBS) and fly ash stabilized soil via geopolymer process.” Materials 14 (11): 2833. https://doi.org/10.3390/ma14112833.
Abdullah, H. H., M. A. Shahin, and M. L. Walske. 2019. “Geo-mechanical behavior of clay soils stabilized at ambient temperature with fly-ash geopolymer-incorporated granulated slag.” Soils Found. 59 (6): 1906–1920. https://doi.org/10.1016/j.sandf.2019.08.005.
ACAA (American Coal Ash Association). 2015. Coal combustion products utilization. Denver: ACAA.
Afrakoti, M. T. P., A. J. Choobbasti, M. Ghadakpour, and S. S. Kutanaei. 2020. “Investigation of the effect of the coal wastes on the mechanical properties of the cement-treated sandy soil.” Constr. Build. Mater. 239 (Mar): 117848. https://doi.org/10.1016/j.conbuildmat.2019.117848.
Aiban, S. A. 1994. “A study of sand stabilization in eastern Saudi Arabia.” Eng. Geol. 38 (1–2): 65–79. https://doi.org/10.1016/0013-7952(94)90025-6.
Arulrajah, A., M. Yaghoubi, M. M. Disfani, S. Horpibulsuk, M. W. Bo, and M. Leong. 2018. “Evaluation of fly ash- and slag-based geopolymers for the improvement of a soft marine clay by deep soil mixing.” Soils Found. 58 (6): 1358–1370. https://doi.org/10.1016/j.sandf.2018.07.005.
ASTM. 2012. Standard test methods for laboratory compaction characteristics of soil using standard effort (12400 ft-lbf/ft3 (600 kN-m/m3)). ASTM D698. West Conshohocken, PA: ASTM International.
ASTM. 2014. Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854. West Conshohocken, PA: ASTM International.
ASTM. 2016. Standard test method for unconfined compressive strength of cohesive soil. ASTM D2166. West Conshohocken, PA: ASTM International.
ASTM. 2017a. Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM D2487. West Conshohocken, PA: ASTM International.
ASTM. 2017b. Standard test methods for liquid limit, plastic limit, and plasticity index for soils. ASTM D4318. West Conshohocken, PA: ASTM International.
ASTM. 2017c. Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM D6913. West Conshohocken, PA: ASTM International.
ASTM. 2020. Standard test methods for determining the water (moisture content, ash content, and organic material of peat and other organic soils. ASTM D2974. West Conshohocken, PA: ASTM International.
ASTM. 2021a. Standard specification for portland cement. ASTM C150/C150M. West Conshohocken, PA: ASTM International.
ASTM. 2021b. Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (Hydrometer) analysis. ASTM D7928. West Conshohocken, PA: ASTM International.
Atkins, P., L. Jones, and L. Laverman. 2013. Chemical principles: The quest for insight. New York: W. H. Freeman.
Badar, M. S., K. Kupwade-Patil, S. A. Bernal, J. L. Provis, and E. N. Allouche. 2014. “Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes.” Constr. Build. Mater. 61 (Aug): 79–89. https://doi.org/10.1016/j.conbuildmat.2014.03.015.
Bakhmutov, V. I. 2011. Solid-state NMR in materials science: Principles and applications. Boca Raton, FL: CRC Press.
Capuano, L. 2020. Annual energy outlook 2020. Washington, DC: US Energy Information Administration.
Chakraborty, S., A. J. Puppala, and N. Biswas. 2022. “Role of crystalline silica admixture in mitigating ettringite-induced heave in lime-treated sulfate-rich soils.” Géotechnique 72 (5): 438–454. https://doi.org/10.1680/jgeot.20.P.154.
Chang, I., J. Im, and G.-C. Cho. 2016. “Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering.” Sustainability 8 (3): 251. https://doi.org/10.3390/su8030251.
Cheng, T. W., M. L. Lee, M. S. Ko, T. H. Ueng, and S. F. Yang. 2012. “The heavy metal adsorption characteristics on metakaolin-based geopolymer.” Appl. Clay Sci. 56 (Aug): 90–96. https://doi.org/10.1016/j.clay.2011.11.027.
Cheng, T.-W., and J. Chiu. 2003. “Fire-resistant geopolymer produced by granulated blast furnace slag.” Min. Eng. 16 (3): 205–210. https://doi.org/10.1016/S0892-6875(03)00008-6.
Choobbasti, A. J., A. Vafaei, and S. S. Kutanaei. 2015. “Mechanical properties of sandy soil improved with cement and nanosilica.” Open Eng. 5 (1): 111–116. https://doi.org/10.1515/eng-2015-0011.
Consoli, N. C., R. C. Cruz, M. F. Floss, and L. Festugato. 2010. “Parameters controlling tensile and compressive strength of artificially cemented sand.” J. Geotech. Geoenviron. Eng. 136 (5): 759–763. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000278.
da Fonseca, A. V., R. C. Cruz, and N. C. Consoli. 2009. “Strength properties of sandy soil–cement admixtures.” Geotech. Geol. Eng. 27 (6): 681–686. https://doi.org/10.1007/s10706-009-9267-y.
Davidovits, J. 1989. “Geopolymers and geopolymeric materials.” J. Therm. Anal. Calorim. 35 (2): 429–441. https://doi.org/10.1007/BF01904446.
Davidovits, J. 2005. Geopolymer, green chemistry and sustainable development solutions: Proceedings of the world congress geopolymer 2005. Hauts-de-France, France: Geopolymer Institute.
Davidovits, J., and D. Comrie. 1998. “Long term durability of hazardous toxic and nuclear waste disposals.” In Proc., Geopolymer '88 First European Conf. on Soft Mineralurgy, 125–134. Saint-Quentin, France: Geopolymere Institute.
DeJong, J., K. Soga, E. Kavazanjian, S. Burns, L. Van Paassen, A. Al Qabany, A. Aydilek, S. Bang, M. Burbank, and L. F. Caslake. 2014 “Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges.” In Proc., Bio-and Chemo-Mechanical Processes in Geotechnical Engineering: Géotechnique Symp. in Print 2013, 143–157. London: Ice Publishing.
Detphan, S., and P. Chindaprasirt. 2009. “Preparation of fly ash and rice husk ash geopolymer.” Int. J. Miner. Metall. Mater. 16 (6): 720–726. https://doi.org/10.1016/S1674-4799(10)60019-2.
Dhami, N. K., M. S. Reddy, and A. Mukherjee. 2016. “Significant indicators for biomineralisation in sand of varying grain sizes.” Constr. Build. Mater. 104 (Aug): 198–207. https://doi.org/10.1016/j.conbuildmat.2015.12.023.
Diaz-Loya, I., M. Juenger, S. Seraj, and R. Minkara. 2019. “Extending supplementary cementitious material resources: Reclaimed and remediated fly ash and natural pozzolans.” Cem. Concr. Compos. 101 (Aug): 44–51. https://doi.org/10.1016/j.cemconcomp.2017.06.011.
Doebelin, N., and R. Kleeberg. 2015. “Profex: A graphical user interface for the Rietveld refinement program BGMN.” J. Appl. Crystallogr. 48 (5): 1573–1580. https://doi.org/10.1107/S1600576715014685.
Dungca, J. R., and E. E. T. Codilla. 2018. “Fly-ash-based geopolymer as stabilizer for silty sand embankment materials.” Int. J. of GEOMATE 14 (46): 143–149. https://doi.org/10.21660/2018.46.7181.
Duxson, P., A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. Van Deventer. 2007a. “Geopolymer technology: The current state of the art.” J. Mater. Sci. 42 (9): 2917–2933. https://doi.org/10.1007/s10853-006-0637-z.
Duxson, P., S. W. Mallicoat, G. C. Lukey, W. M. Kriven, and J. S. van Deventer. 2007b. “The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers.” Colloids Surf., A 292 (1): 8–20. https://doi.org/10.1016/j.colsurfa.2006.05.044.
Gartner, E. 2004. “Industrially interesting approaches to ‘low-CO2’ cements.” Cem. Concr. Res. 34 (9): 1489–1498. https://doi.org/10.1016/j.cemconres.2004.01.021.
Hardjito, D., S. E. Wallah, D. M. J. Sumajouw, and B. V. Rangan. 2004. “On the development of fly ash-based geopolymer concrete.” Mater. J. 101 (6): 467–472. https://doi.org/10.14359/13485.
Huang, J., R. B. Kogbara, N. Hariharan, E. A. Masad, and D. N. Little. 2021. “A state-of-the-art review of polymers used in soil stabilization.” Constr. Build. Mater. 305 (Mar): 124685. https://doi.org/10.1016/j.conbuildmat.2021.124685.
Jang, J., N. Biswas, A. J. Puppala, S. S. C. Congress, M. Radovic, and O. Huang. 2022. “Evaluation of geopolymer for stabilization of sulfate-rich expansive soils for supporting pavement infrastructure.” Transp. Res. Rec. 2676 (9): 230–245. https://doi.org/10.1177/03611981221086650.
Jang, J., A. J. Puppala, S. Chakraborty, N. Biswas, O. Huang, and M. Radovic. 2021. “Eco-friendly stabilization of sulfate-rich expansive soils using geopolymers for transportation infrastructure.” In Proc., Tran-SET 2021, 223–231. Reston, VA: ASCE.
Jose, A., J. Murali Krishnan, and R. G. Robinson. 2022. “Resilient and permanent deformation response of cement-stabilized pond ash.” J. Mater. Civ. Eng. 34 (1): 04021408. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004044.
Kanto, T., A. Miyoshi, T. Ogawa, K. Maekawa, and M. Aino. 2006. “Suppressive effect of liquid potassium silicate on powdery mildew of strawberry in soil.” J. Gen. Plant Pathol. 72 (3): 137–142. https://doi.org/10.1007/s10327-005-0270-8.
Kaur, K., J. Singh, and M. Kaur. 2018. “Compressive strength of rice husk ash based geopolymer: The effect of alkaline activator.” Constr. Build. Mater. 169 (Feb): 188–192. https://doi.org/10.1016/j.conbuildmat.2018.02.200.
Kennedy, T. W., R. Smith, R. J. Holmgreen Jr., and M. Tahmoressi. 1987. “An evaluation of lime and cement stabilization.” Transp. Res. Rec. 1119 (1): 11–25.
Khadka, S. D., P. W. Jayawickrama, and S. Senadheera. 2018. “Strength and shrink/swell behavior of highly plastic clay treated with geopolymer.” Transp. Res. Rec. 2672 (52): 174–184. https://doi.org/10.1177/0361198118797214.
Khadka, S. D., P. W. Jayawickrama, S. Senadheera, and B. Segvic. 2020. “Stabilization of highly expansive soils containing sulfate using metakaolin and fly ash based geopolymer modified with lime and gypsum.” Transp. Geotech. 23 (Jun): 100327. https://doi.org/10.1016/j.trgeo.2020.100327.
Lizcano, M., A. Gonzalez, S. Basu, K. Lozano, and M. Radovic. 2012a. “Effects of water content and chemical composition on structural properties of alkaline activated metakaolin-based geopolymers.” J. Am. Ceram. Soc. 95 (7): 2169–2177. https://doi.org/10.1111/j.1551-2916.2012.05184.x.
Lizcano, M., H. S. Kim, S. Basu, and M. Radovic. 2012b. “Mechanical properties of sodium and potassium activated metakaolin-based geopolymers.” J. Mater. Sci. 47 (6): 2607–2616. https://doi.org/10.1007/s10853-011-6085-4.
Luukkonen, T., J. Yliniemi, H. Sreenivasan, K. Ohenoja, M. Finnilä, G. Franchin, and P. Colombo. 2020. “Ag- or Cu-modified geopolymer filters for water treatment manufactured by 3D printing, direct foaming, or granulation.” Sci. Rep. 10 (1): 1–14. https://doi.org/10.1038/s41598-020-64228-5.
MacKenzie, K. J., S. Komphanchai, and R. Vagana. 2008. “Formation of inorganic polymers (geopolymers) from 2: 1 layer lattice aluminosilicates.” J. Eur. Ceram. Soc. 28 (1): 177–181. https://doi.org/10.1016/j.jeurceramsoc.2007.06.004.
Maghous, S., N. Consoli, A. Fonini, and V. P. Dutra. 2014. “A theoretical–experimental approach to elastic and strength properties of artificially cemented sand.” Comput. Geotech. 62 (Jun): 40–50. https://doi.org/10.1016/j.compgeo.2014.06.011.
Martinez, A., L. Huang, and M. Gomez. 2019. “Thermal conductivity of MICP-treated sands at varying degrees of saturation.” Géotech. Lett. 9 (1): 15–21. https://doi.org/10.1680/jgele.18.00126.
Mindess, S., J. F. Young, and D. Darwin. 2003. Concrete. Hoboken, NJ: Prentice Hall.
MolaAbasi, H., S. N. Semsani, M. Saberian, A. Khajeh, J. Li, and M. Harandi. 2020. “Evaluation of the long-term performance of stabilized sandy soil using binary mixtures: A micro-and macro-level approach.” J. Cleaner Prod. 267 (Sep): 122209. https://doi.org/10.1016/j.jclepro.2020.122209.
Mujah, D., M. A. Shahin, and L. Cheng. 2017. “State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization.” Geomicrobiol. J. 34 (6): 524–537. https://doi.org/10.1080/01490451.2016.1225866.
Murmu, A. L., A. Jain, and A. Patel. 2019. “Mechanical properties of alkali activated fly ash geopolymer stabilized expansive clay.” KSCE J. Civ. Eng. 23 (9): 3875–3888. https://doi.org/10.1007/s12205-019-2251-z.
Nasab, G., F. Golestanifard, and K. J. D. MacKenzie. 2014. “The effect of the SiO2/Na2O ratio in the structural modification of metakaolin-based geopolymers studied by XRD, FTIR and MAS-NMR.” J. Ceram. Sci. Technol. 5 (3): 185–192. https://doi.org/10.4416/JCST2014-00007.
Olidis, C., and D. Hein. 2004. Guide for the mechanistic-empirical design of new and rehabilitated pavement structures. Washington, DC: National Cooperative Highway Research Program.
Papa, E., V. Medri, C. Paillard, B. Contri, A. N. Murri, A. Vaccari, and E. Landi. 2019. “Geopolymer-hydrotalcite composites for CO2 capture.” J. Cleaner Prod. 237 (Nov): 117738. https://doi.org/10.1016/j.jclepro.2019.117738.
Phummiphan, I., S. Horpibulsuk, R. Rachan, A. Arulrajah, S.-L. Shen, and P. Chindaprasirt. 2018. “High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material.” J. Hazard. Mater. 341 (Jun): 257–267. https://doi.org/10.1016/j.jhazmat.2017.07.067.
Phummiphan, I., S. Horpibulsuk, P. Sukmak, A. Chinkulkijniwat, A. Arulrajah, and S.-L. Shen. 2016. “Stabilisation of marginal lateritic soil using high calcium fly ash-based geopolymer.” Road Mater. Pavement Des. 17 (4): 877–891. https://doi.org/10.1080/14680629.2015.1132632.
Provis, J. L., and J. S. J. Van Deventer. 2009. Geopolymers: Structures, processing, properties and industrial applications. Amsterdam, Netherlands: Elsevier.
Rengasamy, P., and K. Olsson. 1991. “Sodicity and soil structure.” Soil Res. 29 (6): 935–952. https://doi.org/10.1071/SR9910935.
Rios, S., A. V. da Fonseca, and S. S. Bangaru. 2016. “Silty sand stabilized with different binders.” Procedia Eng. 143 (Aug): 187–195. https://doi.org/10.1016/j.proeng.2016.06.024.
Rowles, M. R., J. V. Hanna, K. Pike, M. E. Smith, and B. O’Connor. 2007. “29 Si, 27 Al, 1 H and 23 Na MAS NMR study of the bonding character in aluminosilicate inorganic polymers.” Appl. Magn. Reson. 32 (4): 663. https://doi.org/10.1007/s00723-007-0043-y.
Samuel, R., A. J. Puppala, A. Banerjee, O. Huang, M. Radovic, and S. Chakraborty. 2021. “Improvement of strength and volume-change properties of expansive clays with geopolymer treatment.” Transp. Res. Rec. 2675 (9): 308–320. https://doi.org/10.1177/03611981211001842.
Santoni, R. L., J. S. Tingle, and S. L. Webster. 2001. “Engineering properties of sand-fiber mixtures for road construction.” J. Geotech. Geoenviron. Eng. 127 (3): 258–268. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:3(258).
Santoni, R. L., J. S. Tingle, and S. L. Webster. 2002. “Stabilization of silty sand with nontraditional additives.” Transp. Res. Rec. 1787 (1): 61–70. https://doi.org/10.3141/1787-07.
Santoni, R. L., and S. L. Webster. 2001. “Airfields and roads construction using fiber stabilization of sands.” J. Transp. Eng. 127 (2): 96–104. https://doi.org/10.1061/(ASCE)0733-947X(2001)127:2(96).
Shayan, A. 2016. Specification and use of geopolymer concrete in the manufacture of structural and non-structural components: Review of literature. Sydney, NSW, Australia: Austroads.
Song, Y., Z. Li, J. Zhang, Y. Tang, Y. Ge, and X. Cui. 2020. “A low-cost biomimetic heterostructured multilayer membrane with geopolymer microparticles for broad-spectrum water purification.” ACS Appl. Mater. Interfaces 12 (10): 12133–12142. https://doi.org/10.1021/acsami.0c00440.
Sukmak, P., S. Horpibulsuk, S.-L. Shen, P. Chindaprasirt, and C. Suksiripattanapong. 2013. “Factors influencing strength development in clay–fly ash geopolymer.” Constr. Build. Mater. 47 (Mar): 1125–1136. https://doi.org/10.1016/j.conbuildmat.2013.05.104.
Tingle, J. S., R. L. Santoni, and S. L. Webster. 2002. “Full-scale field tests of discrete fiber-reinforced sand.” J. Transp. Eng. 128 (1): 9–16. https://doi.org/10.1061/(ASCE)0733-947X(2002)128:1(9).
Turner, L. K., and F. G. Collins. 2013. “Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete.” Constr. Build. Mater. 43 (Jun): 125–130. https://doi.org/10.1016/j.conbuildmat.2013.01.023.
Van Jaarsveld, J., J. Van Deventer, and A. Schwartzman. 1999. “The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics.” Min. Eng. 12 (1): 75–91. https://doi.org/10.1016/S0892-6875(98)00121-6.
Wang, S., Q. Xue, Y. Zhu, G. Li, Z. Wu, and K. Zhao. 2021. “Experimental study on material ratio and strength performance of geopolymer-improved soil.” Constr. Build. Mater. 267 (Jan): 120469. https://doi.org/10.1016/j.conbuildmat.2020.120469.
Xu, H., and J. Van Deventer. 2000. “The geopolymerisation of alumino-silicate minerals.” Int. J. Miner. Process. 59 (3): 247–266. https://doi.org/10.1016/S0301-7516(99)00074-5.
Xu, H., and J. S. Van Deventer. 2002. “Microstructural characterisation of geopolymers synthesised from kaolinite/stilbite mixtures using XRD, MAS-NMR, SEM/EDX, TEM/EDX, and HREM.” Cem. Concr. Res. 32 (11): 1705–1716. https://doi.org/10.1016/S0008-8846(02)00859-1.
Yao, L., and M. A. Naeth. 2015. “Soil and plant response to used potassium silicate drilling fluid application.” Ecotoxicol. Environ. Saf. 120 (Oct): 326–333. https://doi.org/10.1016/j.ecoenv.2015.06.021.
Zhang, M., M. Zhao, G. Zhang, P. Nowak, A. Coen, and M. Tao. 2015. “Calcium-free geopolymer as a stabilizer for sulfate-rich soils.” Appl. Clay Sci. 108 (May): 199–207. https://doi.org/10.1016/j.clay.2015.02.029.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 10October 2023

History

Received: Sep 22, 2022
Accepted: Mar 6, 2023
Published online: Jul 22, 2023
Published in print: Oct 1, 2023
Discussion open until: Dec 22, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Doctoral Student, Dept. of Materials Science and Engineering, Texas A&M Univ., College Station, TX 77843. ORCID: https://orcid.org/0000-0001-7004-3506. Email: [email protected]
Senior Staff Professional, Fugro, 6100 Hillcroft Ave., Houston, TX 77081. ORCID: https://orcid.org/0000-0002-3739-6657. Email: [email protected]
Surya Sarat Chandra Congress, Ph.D., A.M.ASCE https://orcid.org/0000-0001-5921-9582 [email protected]
Assistant Professor, Dept. of Civil, Construction and Environmental Engineering, North Dakota State Univ., Fargo, ND 58102. ORCID: https://orcid.org/0000-0001-5921-9582. Email: [email protected]
Anand J. Puppala, Ph.D., F.ASCE [email protected]
P.E.
D.GE
Professor, Zachry Dept. of Civil and Environmental Engineering, Texas A&M Univ., College Station, TX 77843. Email: [email protected]
Miladin Radovic, Ph.D. [email protected]
Professor, Dept. of Materials Science and Engineering, Texas A&M Univ., College Station, TX 77843 (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share