Technical Papers
Nov 24, 2023

Mesoscale Behavior of Montmorillonite Clay Modified by a Responsive Polymer

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 2

Abstract

Responsive polymers can be combined with clay particles to form adaptable, or “tunable,” clay–polymer composites. The purpose of this study is to investigate the potential for “tunability” of a nanocomposite at the mesoscale through changes in material properties—swelling behavior, Atterberg limits, hydraulic conductivity, and shear strength—with varying pH and ionic concentration of the surrounding fluid. The composite was synthesized from a nonionic form of the polymer polyacrylamide and an expansive clay, montmorillonite. An attempt was made to induce changes in behavior of the composite by exposing the material to a selected range of pH and ionic concentration conditions, thereby influencing the conformation (shape and size) of the responsive polymer molecules under different stress levels and solid contents. Behavior was compared for the cases of predicted coiled, partially extended, and extended conformation. The test results demonstrate that conformation of responsive polymer and tunability of composite depends primarily on solution type, stress levels, and solid content. The “tuning” response of a nanocomposite is maximized with a significant change in ionic concentration of the surrounding fluid. Nanocomposite swelling was 30% less than pure clay and had a friction angle 12° greater than pure clay at high ionic concentration. At low or high pH conditions, nanocomposite tunability was limited.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. 1266288. The authors thank Ms. Nancy Roberts and Mr. Ken Thomas for their support with the laboratory equipment and testing for this study. Authors also thank undergraduate research assistant Laura Ferrer for helping on collect data on the plastic limit and cyclic swelling tests.

References

ASTM. 2010. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318-10e1. West Conshohocken, PA: ASTM.
ASTM. 2011a. Standard test method for direct shear test of soils under consolidated drained conditions. ASTM D3080/D3080M-11. West Conshohocken, PA: ASTM.
ASTM. 2011b. Standard test method for swell index of clay mineral component of geosynthetic clay liners. ASTM D5890-11. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. ASTM D5084-16a. West Conshohocken, PA: ASTM.
Bate, B., Q. Zhao, and S. Burns. 2013. “Impact of organic coatings on frictional strength of organically modified clay.” J. Geotech. Geoenviron. Eng. 140 (1): 228–236. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000980.
Besra, L., D. K. Sengupta, S. K. Roy, and P. Ay. 2004. “Influence of polymer adsorption and conformation on flocculation and dewatering of kaolin suspension.” Sep. Purif. Technol. 37 (3): 231–246. https://doi.org/10.1016/j.seppur.2003.10.001.
Bishop, M. D., S. Kim, A. M. Palomino, and J. S. Lee. 2014. “Deformation of “tunable” clay–polymer composites.” Appl. Clay Sci. 101 (Nov): 265–271. https://doi.org/10.1016/j.clay.2014.08.014.
Bohnhoff, G., and C. Shackelford. 2014. “Hydraulic conductivity of polymerized bentonite-amended backfills.” J. Geotech. Geoenviron. Eng. 140 (3): 04013028. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001034.
Bohnhoff, G. L., C. D. Shackelford, and K. M. Sample-Lord. 2013. “Calcium-resistant membrane behavior of polymerized bentonite.” J. Geotech. Geoenviron. Eng. 140 (3): 04013029. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001042.
Bottero, J., M. Bruant, J. Cases, D. Canet, and F. Fiessinger. 1988. “Adsorption of nonionic polyacrylamide on sodium montmorillonite: Relation between adsorption, ξ potential, turbidity, enthalpy of adsorption data and 13 C-NMR in aqueous solution.” J. Colloid Interface Sci. 124 (2): 515–527. https://doi.org/10.1016/0021-9797(88)90188-9.
BSI (British Standards Institution). 1990. Section 4: Determination of liquid limit. BS1377-90. London: BSI.
Butt, H. J., and M. Kappl. 2009. Surface and interfacial forces. New York: Wiley.
Daniel, D., and H. Shan. 1991. Results of direct shear tests on hydrated bentonitic blankets. Austin, TX: Univ. of Texas at Austin.
Deng, Y., J. B. Dixon, and G. N. White. 2006a. “Adsorption of polyacrylamide on smectite, illite, and kaolinite.” Soil Sci. Soc. Am. J. 70 (1): 297–304. https://doi.org/10.2136/sssaj2005.0200.
Deng, Y., J. B. Dixon, G. N. White, R. H. Loeppert, and A. S. Juo. 2006b. “Bonding between polyacrylamide and smectite.” Colloids Surf., A 281 (1): 82–91. https://doi.org/10.1016/j.colsurfa.2006.02.030.
Di Emidio, G., F. Mazzieri, R. D. Verastegui-Flores, W. Van Impe, and A. Bezuijen. 2015. “Polymer-treated bentonite clay for chemical-resistant geosynthetic clay liners.” Geosynth. Int. 22 (1): 125–137. https://doi.org/10.1680/gein.14.00036.
Di Emidio, G., W. Van Impe, and R. V. Flores. 2011. “Advances in geosynthetic clay liners: Polymer enhanced clays.” In Proc., Geo-Frontiers: Advances in Geotechnical Engineering, 1931–1940. Reston, VA: ASCE.
Ece, Ö., A. Alemdar, N. Güngör, and S. Hayashi. 2002. “Influences of nonionic poly (ethylene glycol) polymer PEG on electrokinetic and rheological properties of bentonite suspensions.” J. Appl. Polymer Sci. 86 (2): 341–346.
Espinasse, P., and B. Siffert. 1979. “Acetamide and polyacrylamide adsorption on to clays- influence of the exchangeable cation and the salinity of the medium.” Clays Clay Miner. 27 (4): 279. https://doi.org/10.1346/CCMN.1979.0270406.
Flory, P. J. 1953. Principles of polymer chemistry. Ithaca, NY: Cornell University Press.
Geng, W., W. J. Likos, and C. H. Benson. 2016. “Viscosity of polymer-modified bentonite as a hydraulic performance index.” Geotech. Spec. Publ. 2016 (271): 498–507. https://doi.org/10.1061/9780784480144.049.
Gilbert, M., and H. Laudelout. 1971. “Tactoids in hydrogen montmorillonite suspensions.” J. Colloid Interface Sci. 35 (3): 486–489. https://doi.org/10.1016/0021-9797(71)90150-0.
Gilbert, R. B., F. Fernandez, and D. W. Horsfield. 1996. “Shear strength of reinforced geosynthetic clay liner.” J. Geotech. Eng. 122 (4): 259–266. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(259).
Halder, B. K., M. Bishop, A. M. Palomino, and J-S. Lee. 2017. “Compressibility of ‘tunable’ clay-polymer composite.” In Vol. 276 of Geotechnical frontiers: Waste containment, barriers, and sustainable geoengineering, edited by T. L. Brandon, and R. J. Valentine, 423–433. Reston, VA: ASCE.
Halder, B. K., M. Palomino, and J. Hicks. 2018. “Influence of polyacrylamide conformation on fabric of ‘tunable’ kaolin–polymer composite.” Can. Geotech. J. 55 (9): 1295–1312. https://doi.org/10.1139/cgj-2017-0200.
Heller, H., and R. Keren. 2003. “Anionic polyacrylamide polymer adsorption by pyrophyllite and montmorillonite.” Clays Clay Miner. 51 (3): 334–339. https://doi.org/10.1346/CCMN.2003.0510310.
Hiemenz, P. C., and T. P. Lodge. 2007. Polymer chemisty. 2nd ed. Boca Raton, FL: CRC Press.
Israelachvili, J. N. 2011. Intermolecular and surface forces: Revised third edition. Cambridge, MA: Academic Press.
Jo, H., C. Benson, C. Shackelford, J. Lee, and T. Edil. 2005. “Long-term hydraulic conductivity of a non-prehydrated geosynthetic clay liner permeated with in organic salt solutions.” J. Geotech. Geoenviron. Eng. 131 (4): 405–417. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:4(405).
Jo, H. Y., T. Katsumi, C. H. Benson, and T. B. Edil. 2001. “Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions.” J. Geotech. Geoenviron. Eng. 127 (7): 557–567. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(557).
Katsumi, T., Ho Ishimori, M. Onikata, and R. Fukagawa. 2008. “Long-term barrierperformance of modified bentonite materials against sodium and calciumpermeant solutions.” Geotext. Geomembr. 26 (1): 14–30. https://doi.org/10.1016/j.geotexmem.2007.04.003.
Kim, S. 2011. An engineered clay soil system using functional polymers. State College, PA: Pennsylvania State Univ.
Kim, S., M. A. Motyka, A. M. Palomino, and N. J. Podraza. 2012a. “Conformational effects of adsorbed polymer on the swelling behavior of engineered clay minerals.” Clays Clay Miner. 60 (4): 363–373. https://doi.org/10.1346/CCMN.2012.0600403.
Kim, S., and A. M. Palomino. 2011. “Factors influencing the synthesis of tunable clay–polymer nanocomposites using bentonite and polyacrylamide.” Appl. Clay Sci. 51 (4): 491–498. https://doi.org/10.1016/j.clay.2011.01.017.
Kim, S., A. M. Palomino, and C. M. Colina. 2012b. “Responsive polymer conformation and resulting permeability of clay–polymer nanocomposites.” Mol. Simul. 38 (8–9): 723–734. https://doi.org/10.1080/08927022.2012.678346.
Klenina, O., and L. Lebedeva. 1983. “Viscometric properties of dilute solutions of hydrolyzed polyacrylamide.” Polym. Sci. USSR 25 (10): 2380–2389. https://doi.org/10.1016/0032-3950(83)90171-5.
Lambe, T. W., and R. V. Whitman. 2008. Soil mechanics SI version. New York: Wiley.
Lochhead, R. Y., and C. M. Boykin. 2002. “An investigative study of polymer adsorption to smectite clay: polyelectrolytes and sodium montmorillonite.” ACS Symp. Ser. 804 (May): 85–98. https://doi.org/10.1021/bk-2002-0804. ch008.
Low, P. F. 1981. “The swelling of clay: III. Dissociation of exchangeable cations.” Soil Sci. Soc. Am. J. 45 (6): 1074–1078. https://doi.org/10.2136/sssaj1981.03615995004500060013x.
Maltesh, C., P. Somasundaran, R. Kulkarni, and S. Gundiah. 1991. “Polymer-polymer complexation in dilute aqueous solutions: Poly (acrylic acid)-poly (ethylene oxide) and poly (acrylic acid)-poly (vinylpyrrolidone)” Langmuir 7 (10): 2108–2111. https://doi.org/10.1021/la00058a024.
Malusis, M. A., and C. D. Shackelford. 2002. “Chemico-osmotic efficiency of a geosynthetic clay liner.” J. Geotech. Geoenviron. Eng. 128 (2): 97–106. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:2(97).
McRory, J. A., and A. K. Ashmawy. 2005. “Polymer treatment of bentonite clay for contaminant resistant barriers.” In Waste containment and remediation, 1–11. Austin, TX: Geo-Frontiers Congress.
Mendes, P. M. 2008. “Stimuli-responsive surfaces for bio-applications.” Chem. Soc. Rev. 37 (11): 2512–2529. https://doi.org/10.1039/b714635n.
Mesri, G., and R. Olson. 1970. “Shear strength of montmorillonite.” Géotechnique 20 (3): 261–270. https://doi.org/10.1680/geot.1970.20.3.261.
Mitchell, J. K., and K. Soga. 2005. Fundamentals of soil behavior. New York: Wiley.
Mortland, M. 1970. “Clay-organic complexes and interactions.” Adv. Agron. 22 (75): 117.
Mortland, M. M. 1966. “Urea complexes with montmorillonite: An infrared absorption study.” Clay Miner. 6 (3): 143–156. https://doi.org/10.1180/claymin.1966.006.3.02.
Motornov, M., S. Minko, K.-J. Eichhorn, M. Nitschke, F. Simon, and M. Stamm. 2003. “Reversible tuning of wetting behavior of polymer surface with responsive polymer brushes.” Langmuir 19 (19): 8077–8085. https://doi.org/10.1021/la0343573.
Norrish, K. 1954. “Crystalline swelling of montmorillonite: Manner of swelling of montmorillonite.” Nature 173 (4397): 256–257. https://doi.org/10.1038/173256a0.
Nugent, R. A. 2011. “The effect of exopolymers on the compressibility and shear strength of kaolinite.” Doctoral Dissertations, Dept. of Civil and Environmental Engineering, Louisiana State Univ.
Ogawa, M., and K. Kuroda. 1995. “Photo functions of intercalation compounds.” Chem. Rev. 95 (2): 399–438. https://doi.org/10.1021/cr00034a005.
Olson, R. E. 1974. “Shearing strengths of kaolinite, illite, and montmorillonite.” J. Geotech. Eng. Div. 100 (11): 1215–1229. https://doi.org/10.1061/AJGEB6.0000120.
Olson, R. E., and G. Mesri. 1970. “Mechanisms controlling compressibility of clays.” J. Soil Mech. Found. Div. 96 (6): 1863–1878. https://doi.org/10.1061/JSFEAQ.0001475.
Pane, V., P. Croce, D. Znidarcic, H. Ko, H. Olsen, and R. Schiffman. 1983. “Effects of consolidation on permeability measurements for soft clay.” Géotechnique 33 (1): 67–72. https://doi.org/10.1680/geot.1983.33.1.67.
Rad, N., B. Jacobson, and R. Bachus. 1994. “Compatibility of geosynthetic clay liners with organic and inorganic permeants.” In Proc., 5th Int. Conf. on Geotextiles, Geomembranes, and Related Products, 1165–1168. Singapore: International Geosynthetics Society.
Saka, E., and C. Güler. 2006. “The effects of electrolyte concentration, ion species and pH on the zeta potential and electrokinetic charge density of montmorillonite.” Clay Miner. 41 (4): 853–861. https://doi.org/10.1180/0009855064140224.
Scalia, J., C. Benson, G. Bohnhoff, T. Edil, and C. Shackelford. 2014. “Long-term hydraulic conductivity of a bentonite-polymer composite permeated with aggressive inorganic solutions.” J. Geotech. Geoenviron. Eng. 140 (3): 04013025https://doi.org/10.1061/(ASCE)GT.1943-5606.0001040.
Scalia, J., IV., G. L. Bohnhoff, C. D. Shackelford, C. H. Benson, K. M. Sample-Lord, M. A. Malusis, and W. J. Likos. 2018. “Enhanced bentonites for containment of inorganic waste leachates by GCLs.” Geosynth. Int. 25 (4): 392–411. https://doi.org/10.1680/jgein.18.00024.
Segad, M., T. Åkesson, B. Cabane, and B. Jönsson. 2015. “Nature of flocculation and tactoid formation in montmorillonite: The role of pH.” PCCP 17 (44): 29608–29615. https://doi.org/10.1039/C5CP04007H.
Segad, M., B. Jönsson, and B. Cabane. 2012. “Tactoid formation in montmorillonite.” J. Phys. Chem. C 116 (48): 25425–25433. https://doi.org/10.1021/jp3094929.
Shackelford, C. D. 1994. “Waste-soil interactions that alter hydraulic conductivity.” In Hydraulic conductivity and waste contaminant transport in soil, edited by D. E. Daniel, and S. J. Trautwein, 111–168. West Conshohocken, PA: ASTM.
Shackelford, C. D., A. Meier, and K. Sample-Lord. 2016. “Limiting membrane and diffusion behavior of a geosynthetic clay liner.” Geotext. Geomembr. 44 (5): 707–718. https://doi.org/10.1016/j.geotexmem.2016.05.009.
Shan, H.-Y., and Y.-J. Lai. 2002. “Effect of hydrating liquid on the hydraulic properties of geosynthetic clay liners.” Geotext. Geomembr. 20 (1): 19–38. https://doi.org/10.1016/S0266-1144(01)00023-1.
Sharratt, W. N., R. O’Connell, S. E. Rogers, C. G. Lopez, and J. T. Cabral. 2020. “Conformation and phase behavior of sodium carboxymethyl cellulose in the presence of mono-and divalent salts.” Macromolecules 53 (4): 1451–1463. https://doi.org/10.1021/acs.macromol.9b02228.
Soltani, A., A. Deng, A. Taheri, and B. C. O’Kelly. 2022. “Intermittent swelling and shrinkage of a highly expansive soil treated with polyacrylamide.” J. Rock Mech. Geotech. Eng. 14 (1): 252–261. https://doi.org/10.1016/j.jrmge.2021.04.009.
Soule, N. M., and S. E. Burns. 2001. “Effects of organic cation structure on behavior of organobentonites.” J. Geotech. Geoenviron. Eng. 127 (4): 363–370. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(363).
Spitzer, J. J., C. Midgley, H. Slooten, and K. Lok. 1989. “On a possible relationship between stability ratios and electrophoretic mobilities of polymer latices.” Colloids Surf. 39 (2): 273–279.
Susko, F. 1990. “An FT-IR study of calcium-exchanged montmorillonite treated with polyacrylamide and poly (ethylene oxide).” Miner. Metall. Process 7 (Mar): 206. https://doi.org/10.1007/BF03402919.
Swenson, J., M. Smalley, and H. Hatharasinghe. 1998. “Mechanism and strength of polymer bridging flocculation.” Phys. Rev. Lett. 81 (26): 5840. https://doi.org/10.1103/PhysRevLett.81.5840.
Tahoun, S. A., and M. Mortland. 1966a. “Complexes of montmorillonite with primary, secondary, and tertiary amides: I. protonation of amides on the surface of montmorillonite.” Soil Sci. 102 (4): 248–254. https://doi.org/10.1097/00010694-196610000-00006.
Tahoun, S. A., and M. Mortland. 1966b. “Complexes of montmorillonite with primary, secondary, and tertiary amides: II. coordination of amides on the surface of montmorillonite.” Soil Sci. 102 (5): 314–321. https://doi.org/10.1097/00010694-196611000-00006.
Tanaka, T., I. Nishio, S.-T. Sun, and S. Ueno-Nishio. 1982. “Collapse of gels in an electric field.” Science 218 (4571): 467–469. https://doi.org/10.1126/science.218.4571.467.
Theng, B. K. G. 2012. Formation and properties of clay-polymer complexes. Amsterdam, Netherlands: Elsevier.
Tian, K., W. J. Likos, and C. H. Benson. 2016. “Pore-scale imaging of polymer-modified bentonite in saline solutions.” In Geo-Chicago, 468–477. Reston, VA: ASCE.
Tian, K., W. J. Likos, and C. H. Benson. 2019. “Polymer elution and hydraulic conductivity of bentonite–polymer composite geosynthetic clay liners.” J. Geotech. Geoenviron. Eng. 145 (10): 04019071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002097.
Vaia, R. A., H. Ishii, and E. P. Giannelis. 1993. “Synthesis and properties of two-dimensionalnanostructures by direct intercalation of polymer melts in layered silicates.” Chem. Mater. 5 (12): 1694–1696. https://doi.org/10.1021/cm00036a004.
van Olphen, H. 1977. An introduction to clay colloid chemistry. 2nd ed. 318. New York: Wiley.
Wanner, H., Y. Albinsson, O. Karnland, E. Wieland, L. Charlet, and P. Wersin. 1994. “The acid/base chemistry of montmorillonite.” Radiochim. Acta 66 (s1): 157–162. https://doi.org/10.1524/ract.1994.6667.special-issue.157.
Wu, T., P. Gong, I. Szleifer, P. Vlcˇek, V. Šubr, and J. Genzer. 2007. “Behavior of surface-anchored poly (acrylic acid) brushes with grafting density gradients on solid substrates: 1. Experiment.” Macromolecules 40 (24): 8756–8764. https://doi.org/10.1021/ma0710176.
Young, M. H., E. A. Moran, Z. Yu, J. Zhu, and D. M. Smith. 2009. “Reducing saturated hydraulic conductivity of sandy soils with polyacrylamide.” Soil Sci. Soc. Am. J. 73 (1): 13–20. https://doi.org/10.2136/sssaj2007.0378.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 2February 2024

History

Received: Sep 6, 2022
Accepted: Jul 26, 2023
Published online: Nov 24, 2023
Published in print: Feb 1, 2024
Discussion open until: Apr 24, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Bijoy K. Halder, Ph.D. [email protected]
P.E.
Senior Geotechnical Engineer, American Electric Power, 1 Riverside Plaza, Columbus, OH 43215. Email: [email protected]
Angelica M. Palomino, Ph.D., A.M.ASCE https://orcid.org/0000-0002-9999-6252 [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, Univ. of Tennessee, 325 John D. Tickle Building, Knoxville, TN 37996 (corresponding author). ORCID: https://orcid.org/0000-0002-9999-6252. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share