Technical Papers
May 31, 2023

Analysis and Optimization of Tensile Strength for Loess Stabilized by Calcium Carbide Residue

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 8

Abstract

Calcium carbide residue (CCR) can be reutilized to solidify the loess for road construction as a base or subbase due to its rich Ca(OH)2 facilitating pozzolanic reaction with water and soil particles. This study examines the effect of curing time, CCR contents, and dry unit weights on the tensile strength (Rt) of CCR-stabilized loess through the splitting tensile test. Aiming to predict the Rt values, the ratio of porosity (n) controlled by compacted effort and initial volumetric CCR content (Liv), namely n/Liv, was chosen as a prediction parameter and then modified to n/Liv0.064 for compatible variation rate with Rt values. A prediction model for the splitting tensile strength of CCR-treated soil was proposed considering the modified ratio n/Liv0.064 and curing days. The results indicate that Rt values showed a nearly linear positive correlation with CCR contents and dry unit weights, logarithmic increase with the extension of curing time, but no apparent relationship with the ratio n/Liv. The modified ratio n/Liv0.064 can reflect the trend of Rt values at different curing days since the coefficients of determination were almost greater than 0.90 except for the specimens cured for seven days. The proposed prediction model had a good fit for laboratory data with 97% acceptability and close to 3% error. It can be applied for estimating the Rt values of CCR-stabilized loess using curing time and an optimized ratio of porosity and initial volumetric CCR content. From the aspect of practical engineering, the reutilization of CCR can reduce construction costs, waste disposal costs, and environmental pollution.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors acknowledge the financial support of the Key R&D program of Shaanxi Province (Grant No. 2022SF-169) and the Fundamental Research Funds for the Central Universities, CHD (Grant No. 300102212206).

References

Arulrajah, A., M. Yaghoubi, M. M. Disfani, S. Horpibulsuk, M. W. Bo, and M. Leong. 2018. “Evaluation of fly ash- and slag-based geopolymers for the improvement of a soft marine clay by deep soil mixing.” Soils Found. 58 (6): 1358–1370. https://doi.org/10.1016/j.sandf.2018.07.005.
ASTM. 2009. Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTMD 6913-04. West Conshohocken, PA: ASTM.
ASTM. 2011. Standard practice for classification of soils for engineering purposes unified soil classification system. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard test methods for determination of maximum dry unit weight of granular soils using a vibrating hammer. West Conshohocken, PA: ASTM.
ASTM. 2021. Standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. West Conshohocken, PA: ASTM.
Bakaiyang, L., J. Madjadoumbaye, Y. Boussafir, F. Szymkiewicz, and M. Duc. 2021. “Re-use in road construction of a Karal-type clay-rich soil from North Cameroon after a lime/cement mixed treatment using two different limes.” Case Stud. Constr. Mater. 15 (Dec): e00626. https://doi.org/10.1016/j.cscm.2021.e00626.
Baldovino, J. A., E. B. Moreira, W. Teixeira, R. L. Izzo, and J. L. Rose. 2018. “Effects of lime addition on geotechnical properties of sedimentary soil in Curitiba, Brazil.” J. Rock Mech. Geotech. Eng. 10 (1): 188–194. https://doi.org/10.1016/j.jrmge.2017.10.001.
Baldovino, J. D. J. A., R. L. dos Santos Izzo, E. B. Moreira, and J. L. Rose. 2019. “Optimizing the evolution of strength for lime-stabilized rammed soil.” J. Rock Mech. Geotech. Eng. 11 (4): 882–891. https://doi.org/10.1016/j.jrmge.2018.10.008.
Baldovino, J. D. J. A., R. L. D. S. Izzo, M. D. Pereira, E. V. D. G. Rocha, J. L. Rose, and V. R. Bordignon. 2020. “Equations controlling tensile and compressive strength ratio of sedimentary soil–cement mixtures under optimal compaction conditions.” J. Mater. Civ. Eng. 32 (1): 04019320. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002973.
Caro, S., J. P. Agudelo, B. Caicedo, L. F. Orozco, F. Patiño, and N. Rodado. 2019. “Advanced characterisation of cement-stabilised lateritic soils to be used as road materials.” Int. J. Pavement Eng. 20 (12): 1425–1434. https://doi.org/10.1080/10298436.2018.1430893.
Chindaprasirt, P., A. Kampala, P. Jitsangiam, and S. Horpibulsuk. 2020. “Performance and evaluation of calcium carbide residue stabilized lateritic soil for construction materials.” Case Stud. Constr. Mater. 13 (Dec): e00389. https://doi.org/10.1016/j.cscm.2020.e00389.
Chinese Specification. 2009. Test methods of materials stabilized with inorganic binders for highway engineering. [In Chinese.] JTG E51-2009. Beijing: China Communications Press.
Consoli, N. C., A. Dalla Rosa Johann, E. A. Gauer, V. R. Dos Santos, R. L. Moretto, and M. B. Corte. 2012. “Key parameters for tensile and compressive strength of silt-lime mixtures.” Geotech. Lett. 2 (3): 81–85. https://doi.org/10.1680/geolett.12.00014.
Consoli, N. C., C. G. da Rocha, and C. Silvani. 2014. “Devising dosages for soil–fly ash–lime blends based on tensile strength controlling equations.” Constr. Build. Mater. 55 (Mar): 238–245. https://doi.org/10.1016/j.conbuildmat.2014.01.044.
Consoli, N. C., L. Festugato, B. S. Consoli, and L. da Silva Lopes Jr. 2015. “Assessing failure envelopes of soil–fly ash–lime blends.” J. Mater. Civ. Eng. 27 (5): 04014174. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001134.
Consoli, N. C., L. Festugato, C. G. da Rocha, and R. C. Cruz. 2013. “Key parameters for strength control of rammed sand–cement mixtures: Influence of types of portland cement.” Constr. Build. Mater. 49: 591–597. https://doi.org/10.1016/j.conbuildmat.2013.08.062.
Consoli, N. C., D. Foppa, L. Festugato, and K. S. Heineck. 2007. “Key parameters for strength control of artificially cemented soils.” J. Geotech. Geoenviron. Eng. 133 (2): 197–205. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197).
Consoli, N. C., E. J. B. Marin, R. A. Q. Samaniego, K. S. Heineck, and A. D. Johann. 2019. “Use of sustainable binders in soil stabilization.” J. Mater. Civ. Eng. 31 (2): 06018023. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002571.
Consoli, N. C., A. D. Rosa, and R. B. Saldanha. 2011. “Variables governing strength of compacted soil–fly ash–lime mixtures.” J. Mater. Civ. Eng. 23 (4): 432–440. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000186.
Diamond, S., and E. B. Kinter. 1965. “Mechanisms of soil-lime stabilization.” Highway Res. Rec. 92 (303): 83–102.
Du, Y. J., N. J. Jiang, S. Y. Liu, S. Horpibulsuk, and A. Arulrajah. 2016. “Field evaluation of soft highway subgrade soil stabilized with calcium carbide residue.” Soils Found. 56 (2): 301–314. https://doi.org/10.1016/j.sandf.2016.02.012.
Emarah, D. A., and S. A. Seleem. 2018. “Swelling soils treatment using lime and sea water for roads construction.” Alexandria Eng. J. 57 (4): 2357–2365. https://doi.org/10.1016/j.aej.2017.08.009.
Emmanuel, E., V. Anggraini, M. E. Raghunandan, A. Asadi, and A. Bouazza. 2022. “Improving the engineering properties of a soft marine clay with forsteritic olivine.” Eur. J. Environ. Civ. Eng. 26 (2): 519–546. https://doi.org/10.1080/19648189.2019.1665593.
Eskisar, T. 2021. “The role of carbide lime and fly ash blends on the geotechnical properties of clay soils.” Bull. Eng. Geol. Environ. 80 (8): 6343–6357. https://doi.org/10.1007/s10064-021-02326-y.
Hatmoko, J. T., and H. Suryadharma. 2017. “Shear behavior of calcium carbide residue—Bagasse ash stabilized expansive soil.” Procedia Eng. 171 (Jan): 476–483. https://doi.org/10.1016/j.proeng.2017.01.359.
Hologado, M., V. Rives, and S. San Román. 1992. “Thermal decomposition of Ca (OH) 2 from acetylene manufacturing: A route to supports for methane oxidative coupling catalysts.” J. Mater. Sci. Lett. 11 (24): 1708–1710. https://doi.org/10.1007/BF00736217.
Horpibulsuk, S., C. Phetchuay, and A. Chinkulkijniwat. 2012. “Soil stabilization by calcium carbide residue and fly ash.” J. Mater. Civ. Eng. 24 (2): 184–193. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000370.
Hunter, D. 1988. “Lime-induced heave in sulfate-bearing clay soils.” J. Geotech. Eng. 114 (2): 150–167. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:2(150).
Jiang, N. J., Y. J. Du, S. Y. Liu, M. L. Wei, S. Horpibulsuk, and A. Arulrajah. 2016. “Multi-scale laboratory evaluation of the physical, mechanical, and microstructural properties of soft highway subgrade soil stabilized with calcium carbide residue.” Can. Geotech. J. 53 (3): 373–383. https://doi.org/10.1139/cgj-2015-0245.
Joel, M., and J. E. Edeh. 2013. “Soil modification and stabilization potential of calcium carbide waste.” In Vol. 824 of Advanced materials research, 29–36. Bäch, SZ: Trans Tech Publications.
Kampala, A., and S. Horpibulsuk. 2013. “Engineering properties of silty clay stabilized with calcium carbide residue.” J. Mater. Civ. Eng. 25 (5): 632–644. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000618.
Latifi, N., and C. L. Meehan. 2017. “Strengthening of montmorillonitic and kaolinitic clays with calcium carbide residue: A sustainable additive for soil stabilization.” In Vol. 277 of Geotechnical frontiers, 154–163. Reston, VA: ASCE.
Latifi, N., F. Vahedifard, E. Ghazanfari, and A. S. A. Rashid. 2018. “Sustainable usage of calcium carbide residue for stabilization of clays.” J. Mater. Civ. Eng. 30 (6): 04018099. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002313.
Li, Y. D., J. F. Li, J. Cui, Y. Shan, and Y. F. Niu. 2021. “Experimental study on calcium carbide residue as a combined activator for coal gangue geopolymer and feasibility for soil stabilization.” Constr. Build. Mater. 312 (Dec): 125465. https://doi.org/10.1016/j.conbuildmat.2021.125465.
Liu, Y. Y., C. W. Chang, A. Namdar, Y. She, C. H. Lin, X. Yuan, and Q. Yang. 2019. “Stabilization of expansive soil using cementing material from rice husk ash and calcium carbide residue.” Constr. Build. Mater. 221 (Oct): 1–11. https://doi.org/10.1016/j.conbuildmat.2019.05.157.
Noolu, V., H. Mudavath, R. J. Pillai, and S. K. Yantrapalli. 2019. “Permanent deformation behaviour of black cotton soil treated with calcium carbide residue.” Constr. Build. Mater. 223 (Oct): 441–449. https://doi.org/10.1016/j.conbuildmat.2019.07.010.
Patel, S. K., and B. Singh. 2017. “Strength and deformation behavior of fiber-reinforced cohesive soil under varying moisture and compaction states.” Geotech. Geol. Eng. 35 (4): 1767–1781. https://doi.org/10.1007/s10706-017-0207-y.
Phoo-ngernkham, T., C. Phiangphimai, D. Intarabut, S. Hanjitsuwan, N. Damrongwiriyanupap, L. Y. Li, and P. Chindaprasirt. 2020. “Low cost and sustainable repair material made from alkali-activated high-calcium fly ash with calcium carbide residue.” Constr. Build. Mater. 247 (Jun): 118543. https://doi.org/10.1016/j.conbuildmat.2020.118543.
Saldanha, R. B., H. C. Scheuermann, J. E. C. Mallmann, N. C. Consoli, and K. R. Reddy. 2018. “Physical-mineralogical-chemical characterization of carbide lime: An environment-friendly chemical additive for soil stabilization.” J. Mater. Civ. Eng. 30 (6): 06018004. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002283.
Sukprasert, S., M. Hoy, S. Horpibulsuk, A. Arulrajah, A. S. A. Rashid, and R. Nazir. 2021. “Fly ash based geopolymer stabilisation of silty clay/blast furnace slag for subgrade applications.” Road Mater. Pavement 22 (2): 357–371. https://doi.org/10.1080/14680629.2019.1621190.
Sun, Y. J., J. Ma, Y. G. Chen, B. H. Tan, and W. J. Cheng. 2020. “Mechanical behavior of copper-contaminated soil solidified/stabilized with carbide slag and metakaolin.” Environ. Earth Sci. 79 (18): 423. https://doi.org/10.1007/s12665-020-09172-3.
Tefa, L., M. Bassani, B. Coppola, and P. Palmero. 2022. “Effect of degradation on mechanical strengths of alkali-activated fines in stabilized construction and demolition waste aggregates.” J. Mater. Civ. Eng. 34 (2): 04021454. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004090.
Zhao, L. W., G. Y. Zhu, S. P. Li, Z. H. Meng, X. J. Mu, J. B. Zhang, H. Q. Li, and K. Q. Xie. 2021. “Research progress on characteristics and comprehensive utilization of calcium carbide slag.” [In Chinese]. Clean Coal Technol. 27 (3): 13–26. https://doi.org/10.13226/j.issn.1006-6772.21010601.
Zhao, Y., J. Zhan, G. Liu, M. Zheng, R. Jin, L. Yang, L. Hao, X. Wu, X. Zhang, and P. Wang. 2017. “Evaluation of dioxins and dioxin-like compounds from a cement plant using carbide slag from chlor-alkali industry as the major raw material.” J. Hazard Mater. 330 (May): 135–141. https://doi.org/10.1016/j.jhazmat.2017.02.018.
Zhiyan Consulting. 2022. Investment planning prospect of China’s calcium carbide industry and 14th five-year development strategy analysis report 2022–2027. Beijing: Zhiyan Consulting.
Zhuang, X. Y., L. Chen, S. Komarneni, C. H. Zhou, D. S. Tong, H. M. Yang, W. H. Yu, and H. Wang. 2016. “Fly ash-based geopolymer: Clean production, properties and applications.” J. Cleaner Prod. 125 (Jul): 253–267. https://doi.org/10.1016/j.jclepro.2016.03.019.
Zurinskas, D., D. Vaiciukyniene, G. Stelmokaitis, and V. Dorosevas. 2020. “Clayey soil strength improvement by using alkali activated slag reinforcing.” Minerals 10 (12): 1076. https://doi.org/10.3390/min10121076.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 8August 2023

History

Received: Aug 30, 2022
Accepted: Jan 24, 2023
Published online: May 31, 2023
Published in print: Aug 1, 2023
Discussion open until: Oct 31, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Doctoral Candidate, Highway School, Chang’an Univ., Xi’an, Shaanxi 710064, China. Email: [email protected]
Associate Professor, Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region Ministry of Education, Chang’an Univ., Xi’an, Shaanxi 710064, China (corresponding author). Email: [email protected]
Professor, Key Laboratory of Road Structure and Material Ministry of Transport, Chang’an Univ., Xi’an, Shaanxi 710064, China. Email: [email protected]
Master’s Candidate, Highway School, Chang’an Univ., Xi’an, Shaanxi 710064, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share