Technical Papers
May 23, 2023

Fracture Performance of Asphalt Concrete under Long-Term Vapor Exposure

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 8

Abstract

Long-term vapor exposure generates persistent moisture gradients across asphalt pavement sections, driving moisture diffusion into asphalt concrete (AC). Moisture in AC weakens the materials and exacerbates the action of load, causing premature distress such as cracking in pavement. However, few investigations have focused on the effects of long-term vapor exposure on AC’s fracture performance. We approached this issue by simulating the fracture process of AC experiencing long-term vapor exposure under an indirect tensile load. The cohesive zone model (CZM) was introduced to depict the fracture process. We calibrated the CZM model by minimizing the difference between simulation and laboratory measurements. The results showed that long-term vapor exposure lowered the bonding strength in AC, accelerating the cracking initiation and propagation. The damage distribution showed that the interface between aggregates and mortar was more prone to damage since it bore more stress than the bulk of the asphalt mortar. This study reveals the fracture performance of AC under long-term vapor exposure, which helps develop measures to prevent premature cracking in the pavement and prolong the service life.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors acknowledge the support received from the National Natural Science Foundation of China (Nos. 51878499, 52178433, and 52008311), the Science and Technology Commission of Shanghai Municipality (No. 21ZR1465700), and the Fundamental Research Funds for the Central Universities (Nos. 22120200447 and 22120220120).

References

AASHTO. 2010. Resistance of compacted hot mix asphalt (HMA) to moisture-induced damage. AASHTO T 283. Washington, DC: AASHTO.
AASHTO. 2011. Standard method of test for determining dynamic modulus of hot mix asphalt concrete mixtures. AASHTO 342-11. Washington, DC: AASHTO.
AASHTO. 2017. Standard specification for superpave volumetric mix design. AASHTO M 323-17. Washington, DC: AASHTO.
Abaqus. 2014. Abaqus analysis user’s guide, Abaqus 6.14. Providence, RI: Dassault Systèmes Simulia Corp.
Abuawad, I., Q. Aurangzeb, I. L. Alqadi, and H. Ozer. 2014. “Potential moisture damage of asphalt mixtures with additives using various test mechanisms.” In Proc., Transportation Research Board Annual Meeting. Washington, DC: Transportation Research Board.
Aliha, M., H. Ziari, B. Mojaradi, and M. J. Sarbijan. 2020. “Modes I and II stress intensity factors of semi-circular bend specimen computed for two-phase aggregate/mastic asphalt mixtures.” Theor. Appl. Fract. Mech. 106 (Apr): 102437. https://doi.org/10.1016/j.tafmec.2019.102437.
Al-Qudsi, A., A. C. Falchetto, D. Wang, S. Büchler, Y. S. Kim, and M. P. Wistuba. 2020. “Finite element cohesive fracture modeling of asphalt mixture based on the semi-circular bending (SCB) test and self-affine fractal cracks at low temperatures.” Cold Reg. Sci. Technol. 169 (Jan): 1–7. https://doi.org/10.1016/j.coldregions.2019.102916.
Ameri, M., A. Mansourian, S. Pirmohammad, M. Aliha, and M. Ayatollahi. 2012. “Mixed mode fracture resistance of asphalt concrete mixtures.” Eng. Fract. Mech. 93 (Oct): 153–167. https://doi.org/10.1016/j.engfracmech.2012.06.015.
Arambula, E., S. Caro, and E. Masad. 2010. “Experimental measurement and numerical simulation of water vapor diffusion through asphalt pavement materials.” J. Mater. Civ. Eng. 22 (6): 588–598. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000059.
Ban, H., S. Im, Y.-R. Kim, and J. S. Jung. 2018. “Laboratory tests and finite element simulations to model thermally induced reflective cracking of composite pavements.” Int. J. Pavement Eng. 19 (3): 220–230. https://doi.org/10.1080/10298436.2017.1279491.
Barenblatt, G. I. 1959. “The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks.” J. Appl. Math. Mech. 23 (3): 622–636. https://doi.org/10.1016/0021-8928(59)90157-1.
Bekele, A., R. Balieu, D. Jelagin, N. Rydén, and A. Gudmarsson. 2021. “Micro-mechanical modelling of low temperature-induced micro-damage initiation in asphalt concrete based on cohesive zone model.” Constr. Build. Mater. 286 (Jun): 122971. https://doi.org/10.1016/j.conbuildmat.2021.122971.
Bhasin, A., and D. N. Little. 2007. “Characterization of aggregate surface energy using the universal sorption device.” J. Mater. Civ. Eng. 19 (8): 634–641. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:8(634).
Bhasin, A., E. Masad, D. Little, and R. Lytton. 2006. “Limits on adhesive bond energy for improved resistance of hot-mix asphalt to moisture damage.” Transp. Res. Rec. 1970 (1): 2–13. https://doi.org/10.1177/0361198106197000101.
Bhattacharjee, S., and R. B. Mallick. 2012. “Effect of temperature on fatigue performance of hot mix asphalt tested under model mobile load simulator.” Int. J. Pavement Eng. 13 (2): 166–180. https://doi.org/10.1080/10298436.2011.653565.
Breakah, T. M., J. P. Bausano, and R. C. Williams. 2009. “Integration of moisture sensitivity testing with gyratory mix design and mechanistic-empirical pavement design.” J. Transp. Eng. 135 (11): 852–857. https://doi.org/10.1061/(ASCE)0733-947X(2009)135:11(852).
Caro, S., E. Masad, A. Bhasin, and D. Little. 2010a. “Micromechanical modeling of the influence of material properties on moisture-induced damage in asphalt mixtures.” Constr. Build. Mater. 24 (7): 1184–1192. https://doi.org/10.1016/j.conbuildmat.2009.12.022.
Caro, S., E. Masad, A. Bhasin, D. Little, and M. Sanchez-Silva. 2010b. “Probabilistic modeling of the effect of air voids on the mechanical performance of asphalt mixtures subjected to moisture diffusion.” Asphalt Paving Technol. Proc. Assoc. Asphalt Technol. 79 (Aug): 221–248.
Caro, S., E. Masad, A. Bhasin, and D. N. Little. 2008a. “Moisture susceptibility of asphalt mixtures, Part 1: Mechanisms.” Int. J. Pavement Eng. 9 (2): 81–98. https://doi.org/10.1080/10298430701792128.
Caro, S., E. Masad, A. Bhasin, and D. N. Little. 2008b. “Moisture susceptibility of asphalt mixtures, Part 2: Characterisation and modeling.” Int. J. Pavement Eng. 9 (2): 99–114. https://doi.org/10.1080/10298430701792144.
Cheng, D. 2002. Surface free energy of asphalt-aggregate system and performance analysis of asphalt concrete based on surface free energy. College Station, TX: Texas A&M Univ.
Cheng, D., D. N. Little, R. L. Lytton, and J. C. Holste. 2003. “Moisture damage evaluation of asphalt mixtures by considering both moisture diffusion and repeated-load conditions.” Transp. Res. Rec. 1832 (1): 42–49. https://doi.org/10.3141/1832-06.
Dai, Q., and Z. You. 2007. “Prediction of creep stiffness of asphalt mixture with micromechanical finite-element and discrete-element models.” J. Eng. Mech. 133 (2): 163–173. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:2(163).
Du, C., Y. Sun, J. Chen, H. Gong, X. Wei, and Z. Zhang. 2020. “Analysis of cohesive and adhesive damage initiations of asphalt pavement using a microstructure-based finite element model.” Constr. Build. Mater. 261 (Nov): 119973. https://doi.org/10.1016/j.conbuildmat.2020.119973.
Du, J., D. Ren, C. Ai, J. Zhang, and Y. Qiu. 2021. “Effect of aggregate gradation on crack propagation in asphalt mixtures at low temperatures based on the Eshelby equivalent inclusion theory.” Constr. Build. Mater. 290 (Jul): 123181. https://doi.org/10.1016/j.conbuildmat.2021.123181.
Hu, J., P. Liu, D. Wang, and M. Oeser. 2018. “Influence of aggregates’ spatial characteristics on air-voids in asphalt mixture.” Road Mater. Pavement Des. 19 (4): 837–855. https://doi.org/10.1080/14680629.2017.1279072.
Hu, J., P. Liu, D. Wang, M. Oeser, and G. Canon Falla. 2019. “Investigation on interface stripping damage at high-temperature using microstructural analysis.” Int. J. Pavement Eng. 20 (5): 544–556. https://doi.org/10.1080/10298436.2017.1316643.
Huang, T., and R. Luo. 2018. “Investigation of effect of temperature on water vapor diffusing into asphalt mixtures.” Constr. Build. Mater. 187 (Dec): 1204–1213. https://doi.org/10.1016/j.conbuildmat.2018.08.026.
Im, S., H. Ban, and Y.-R. Kim. 2014. “Characterization of mode-I and mode-II fracture properties of fine aggregate matrix using a semi-circular specimen geometry.” Constr. Build. Mater. 52 (Aug): 413–421. https://doi.org/10.1016/j.conbuildmat.2013.11.055.
Kassem, E., E. Masad, R. Bulut, and R. Lytton. 2006. “Measurements of moisture suction and diffusion coefficient in hot-mix asphalt and their relationships to moisture damage.” Transp. Res. Rec. 1970 (1): 45–54. https://doi.org/10.1177/0361198106197000104.
Kassem, E., E. Masad, R. Lytton, and R. Bulut. 2009. “Measurements of the moisture diffusion coefficient of asphalt mixtures and its relationship to mixture composition.” Int. J. Pavement Eng. 10 (6): 389–399. https://doi.org/10.1080/10298430802524792.
Kim, H., and W. G. Buttlar. 2009. “Discrete fracture modeling of asphalt concrete.” Int. J. Solids Struct. 46 (13): 2593–2604. https://doi.org/10.1016/j.ijsolstr.2009.02.006.
Kim, Y. R. 2008. Modeling of asphalt concrete. New York: McGraw-Hill Education.
Kim, Y. R., J. S. Lutif, A. Bhasin, and D. N. Little. 2008. “Evaluation of moisture damage mechanisms and effects of hydrated lime in asphalt mixtures through measurements of mixture component properties and performance testing.” J. Mater. Civ. Eng. 20 (10): 659–667. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:10(659).
Kim, Y.-R. 2011. “Cohesive zone model to predict fracture in bituminous materials and asphaltic pavements: State-of-the-art review.” Int. J. Pavement Eng. 12 (4): 343–356. https://doi.org/10.1080/10298436.2011.575138.
Kollmann, J., P. Liu, G. Lu, D. Wang, M. Oeser, and S. Leischner. 2019. “Investigation of the microstructural fracture behaviour of asphalt mixtures using the finite element method.” Constr. Build. Mater. 227 (Dec): 117078. https://doi.org/10.1016/j.conbuildmat.2019.117078.
Kringos, N., and A. Scarpas. 2005. “Raveling of asphaltic mixes due to water damage: Computational identification of controlling parameters.” Transp. Res. Rec. 1929 (1): 79–87. https://doi.org/10.1177/0361198105192900110.
Kringos, N., A. Scarpas, and A. De Bondt. 2008a. “Determination of moisture susceptibility of mastic-stone bond strength and comparison to thermodynamical properties.” In Proc., 2008 Annual Meeting of the Association of Asphalt Paving Technologists, AAPT, 435–478. Philadelphia: Journal of the Association of Asphalt Paving Technologists.
Kringos, N., A. Scarpas, and A. P. S. Selvadurai. 2008b. “Simulation of mastic erosion from open-graded asphalt mixes using a hybrid Lagrangian-Eulerian finite element approach.” Comput. Model. Eng. Sci. 28 (3): 147–159.
Li, X., A. F. Braham, M. O. Marasteanu, W. G. Buttlar, and R. C. Williams. 2008. “Effect of factors affecting fracture energy of asphalt concrete at low temperature.” Supplement, Road Mater. Pavement Des. 9 (S1): 397–416. https://doi.org/10.1080/14680629.2008.9690176.
Liang, H., L. Shi, D. Wang, X. Xiao, and K. Deng. 2021. “Influence of graded coarse aggregate content and specific surface area on the fracture properties of asphalt mixtures based on discrete element simulations and indoor tests.” Constr. Build. Mater. 299 (Sep): 123942. https://doi.org/10.1016/j.conbuildmat.2021.123942.
Little, D. N., D. H. Allen, and A. Bhasin. 2018. Modeling and design of flexible pavements and materials. New York: Springer.
Liu, P., J. Hu, D. Wang, M. Oeser, S. Alber, W. Ressel, and G. C. Falla. 2017a. “Modelling and evaluation of aggregate morphology on asphalt compression behavior.” Constr. Build. Mater. 133 (Feb): 196–208. https://doi.org/10.1016/j.conbuildmat.2016.12.041.
Liu, P., Q. Xing, D. Wang, and M. Oeser. 2017b. “Application of dynamic analysis in semi-analytical finite element method.” Materials 10 (9): 1009–1010. https://doi.org/10.3390/ma10091010.
Liu, P., Q. Xing, D. Wang, and M. Oeser. 2018. “Application of linear viscoelastic properties in semianalytical finite element method with recursive time integration to analyze asphalt pavement structure.” Adv. Civ. Eng. 2018 (1): 1–15. https://doi.org/10.1155/2018/9045820.
Loizos, A., and A. Scarpas. 2005. “Verification of falling weight deflectometer backanalysis using a dynamic finite elements simulation.” Int. J. Pavement Eng. 6 (2): 115–123. https://doi.org/10.1080/10298430500141030.
Luo, R., and T. Huang. 2018. “Development of a three-dimensional diffusion model for water vapor diffusing into asphalt mixtures.” Constr. Build. Mater. 179 (Sep): 526–536. https://doi.org/10.1016/j.conbuildmat.2018.05.076.
Luo, R., T. Huang, D. Zhang, and R. L. Lytton. 2017. “Water vapor diffusion in asphalt mixtures under different relative humidity differentials.” Constr. Build. Mater. 136 (Aug): 126–138. https://doi.org/10.1016/j.conbuildmat.2017.01.034.
Luo, R., Z. Liu, T. Huang, and C. Tu. 2018. “Water vapor passing through asphalt mixtures under different relative humidity differentials.” Constr. Build. Mater. 165 (Mar): 920–930. https://doi.org/10.1016/j.conbuildmat.2018.01.047.
Masad, E., B. Birgisson, A. Al-Omari, and A. Cooley. 2004. “Analytical derivation of permeability and numerical simulation of fluid flow in hot-mix asphalt.” J. Mater. Civ. Eng. 16 (5): 487–496. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:5(487).
Masad, E., C. Zollinger, R. Bulut, D. Little, R. Lytton, H. Khalid, R. Davis, T. Scarpas, E. Fini, and A. Guarin. 2006. “Characterization of HMA moisture damage using surface energy and fracture properties.” In Proc., Asphalt Paving Technology: Association of Asphalt Paving Technologists—Proc. of the Technical Sessions, 713–754. Lino Lakes, MN: Association of Asphalt Paving Technologist.
Meza-Lopez, J., N. Noreña, C. Meza, and C. Romanel. 2020. “Modeling of asphalt concrete fracture tests with the discrete-element method.” J. Mater. Civ. Eng. 32 (8): 04020228. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003305.
Motevalizadeh, S., and H. Rooholamini. 2021. “Cohesive zone modeling of EAF slag-included asphalt mixtures in fracture modes I and II.” Theor. Appl. Fract. Mech. 112 (Aug): 102918. https://doi.org/10.1016/j.tafmec.2021.102918.
Ng, K., and Q. Dai. 2011. “Investigation of fracture behavior of heterogeneous infrastructure materials with extended-finite-element method and image analysis.” J. Mater. Civ. Eng. 23 (12): 1662–1671. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000337.
Ren, W., Z. Yang, R. Sharma, C. Zhang, and P. J. Withers. 2015. “Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete.” Eng. Fract. Mech. 133 (Jan): 24–39. https://doi.org/10.1016/j.engfracmech.2014.10.016.
Rowe, G. M., and M. Sharrock. 2011. “Alternate shift factor relationship for describing temperature dependency of viscoelastic behavior of asphalt materials.” Transp. Res. Rec. 2207 (1): 125–135. https://doi.org/10.3141/2207-16.
Song, S. H. 2006. Fracture of asphalt concrete: A cohesive zone modeling approach considering viscoelastic effects. Champaign, IL: Univ. of Illinois at Urbana-Champaign.
Song, S. H., G. H. Paulino, and W. G. Buttlar. 2006a. “A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material.” Eng. Fract. Mech. 73 (18): 2829–2848. https://doi.org/10.1016/j.engfracmech.2006.04.030.
Song, S. H., G. H. Paulino, and W. G. Buttlar. 2006b. “Simulation of crack propagation in asphalt concrete using an intrinsic cohesive zone model.” J. Eng. Mech. 132 (11): 1215–1223. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:11(1215).
Song, W., Z. Xu, H. Wu, and Y. Zhan. 2022. “A novel approach to determine mode II fracture toughness of hot mix asphalt.” Theor. Appl. Fract. Mech. 122 (Jan): 103600. https://doi.org/10.1016/j.tafmec.2022.103600.
Souza, L. T., Y.-R. Kim, F. V. Souza, and L. S. Castro. 2012. “Experimental testing and finite-element modeling to evaluate the effects of aggregate angularity on bituminous mixture performance.” J. Mater. Civ. Eng. 24 (3): 249–258. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000386.
Sun, Y., C. Du, H. Gong, Y. Li, and J. Chen. 2020. “Effect of temperature field on damage initiation in asphalt pavement: A microstructure-based multiscale finite element method.” Mech. Mater. 144 (3): 103367. https://doi.org/10.1016/j.mechmat.2020.103367.
Sun, Y., C. Du, C. Zhou, X. Zhu, and J. Chen. 2019. “Analysis of load-induced top-down cracking initiation in asphalt pavements using a two-dimensional microstructure-based multiscale finite element method.” Eng. Fract. Mech. 216 (Mar): 106497. https://doi.org/10.1016/j.engfracmech.2019.106497.
Tong, Y., R. Luo, and R. L. Lytton. 2013. “Modeling water vapor diffusion in pavement and its influence on fatigue crack growth of fine aggregate mixture.” Transp. Res. Rec. 2373 (1): 71–80. https://doi.org/10.3141/2373-08.
Tong, Y., R. Luo, and R. L. Lytton. 2015. “Moisture and aging damage evaluation of asphalt mixtures using the repeated direct tensional test method.” Int. J. Pavement Eng. 16 (5): 397–410. https://doi.org/10.1080/10298436.2015.1007234.
Tschoegl, N. W. 2012. The phenomenological theory of linear viscoelastic behavior: An introduction. New York: Springer.
Vasconcelos, K. L., A. Bhasin, and D. N. Little. 2010. “Measurement of water diffusion in asphalt binders using Fourier transform infrared–attenuated total reflectance.” Transp. Res. Rec. 2179 (1): 29–38. https://doi.org/10.3141/2179-04.
Vasconcelos, K. L., A. Bhasin, and D. N. Little. 2011a. “History dependence of water diffusion in asphalt binders.” Int. J. Pavement Eng. 12 (5): 497–506. https://doi.org/10.1080/10298436.2010.535536.
Vasconcelos, K. L., A. Bhasin, D. N. Little, and R. L. Lytton. 2011b. “Experimental measurement of water diffusion through fine aggregate mixtures.” J. Mater. Civ. Eng. 23 (4): 445–452. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000190.
Wang, H., and I. L. Al-Qadi. 2010. “Near-surface pavement failure under multiaxial stress state in thick asphalt pavement.” Transp. Res. Rec. 2154 (1): 91–99. https://doi.org/10.3141/2154-08.
Wang, H., J. Wang, and J. Chen. 2014. “Micromechanical analysis of asphalt mixture fracture with adhesive and cohesive failure.” Eng. Fract. Mech. 132 (Aug): 104–119. https://doi.org/10.1016/j.engfracmech.2014.10.029.
Wang, H., J. Wang, and J. Chen. 2018. “Fracture simulation of asphalt concrete with randomly generated aggregate microstructure.” Road Mater. Pavement Des. 19 (7): 1674–1691. https://doi.org/10.1080/14680629.2017.1345778.
Wang, X., Z. J. Yang, J. Yates, A. Jivkov, and C. Zhang. 2015. “Monte Carlo simulations of mesoscale fracture modeling of concrete with random aggregates and pores.” Constr. Build. Mater. 75 (Jan): 35–45. https://doi.org/10.1016/j.conbuildmat.2014.09.069.
Witczak, M., and O. Fonseca. 1996. “Revised predictive model for dynamic (complex) modulus of asphalt mixtures.” Transp. Res. Rec. 1540 (1): 15–23. https://doi.org/10.1177/0361198196154000103.
Xi, L., R. Luo, and H. Liu. 2021. “Effect of relative humidity on the linear viscoelastic properties of asphalt mixtures.” Constr. Build. Mater. 307 (Nov): 124956. https://doi.org/10.1016/j.conbuildmat.2021.124956.
Yang, Z., X. Su, J. F. Chen, and G. Liu. 2009. “Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials.” Int. J. Solids Struct. 46 (17): 3222–3234. https://doi.org/10.1016/j.ijsolstr.2009.04.013.
Yin, A., X. Yang, H. Gao, and H. Zhu. 2012. “Tensile fracture simulation of random heterogeneous asphalt mixture with the cohesive crack model.” Eng. Fract. Mech. 92 (Sep): 40–55. https://doi.org/10.1016/j.engfracmech.2012.05.016.
Yin, A., X. Yang, and Z. Yang. 2013. “2D and 3D fracture modeling of asphalt mixture with randomly distributed aggregates and embedded cohesive cracks.” Procedia Iutam 6 (Jan): 114–122. https://doi.org/10.1016/j.piutam.2013.01.013.
Yin, A., X. Yang, G. Zeng, and H. Gao. 2014. “Fracture simulation of pre-cracked heterogeneous asphalt mixture beam with movable three-point bending load.” Constr. Build. Mater. 65 (Jun): 232–242. https://doi.org/10.1016/j.conbuildmat.2014.04.119.
Yin, A., X. Yang, G. Zeng, and H. Gao. 2015. “Experimental and numerical investigation of fracture behavior of asphalt mixture under direct shear loading.” Constr. Build. Mater. 86 (Aug): 21–32. https://doi.org/10.1016/j.conbuildmat.2015.03.099.
Zhao, Y., F. Ni, L. Zhou, and J. Jiang. 2017. “Heterogeneous fracture simulation of asphalt mixture under SCB test with cohesive crack model.” Road Mater. Pavement Des. 18 (6): 1411–1422. https://doi.org/10.1080/14680629.2016.1230071.
Zhu, Y., E. V. Dave, R. Rahbar-Rastegar, J. S. Daniel, and A. Zofka. 2017. “Comprehensive evaluation of low-temperature fracture indices for asphalt mixtures.” Supplement, Road Mater. Pavement Des. 18 (S4): 467–490. https://doi.org/10.1080/14680629.2017.1389085.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 8August 2023

History

Received: Jul 20, 2022
Accepted: Dec 5, 2022
Published online: May 23, 2023
Published in print: Aug 1, 2023
Discussion open until: Oct 23, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji Univ., 304 Tongda Bldg., 4800 Cao’an Rd., Shanghai 201804, China. ORCID: https://orcid.org/0000-0002-0948-8845. Email: [email protected]
Hongren Gong, Ph.D. [email protected]
Assistant Professor, Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji Univ., 304 Tongda Bldg., 4800 Cao’an Rd., Shanghai 201804, China (corresponding author). Email: [email protected]
Lin Cong, Ph.D. [email protected]
Professor, Key Laboratory of Road and Traffic Engineering of Ministry of Education, Tongji Univ., 304 Tongda Bldg., 4800 Cao’an Rd., Shanghai 201804, China. Email: [email protected]
Yiren Sun, Ph.D. [email protected]
Associate Professor, School of Transportation and Logistics, Dalian Univ. of Technology, No. 2 Linggong Rd., Ganjingzi District, Dalian, Liaoning 116024, China. Email: [email protected]
Ph.D. Candidate, School of Transportation and Logistics, Dalian Univ. of Technology, No. 2 Linggong Rd., Ganjingzi District, Dalian, Liaoning 116024, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share