Technical Papers
Jun 29, 2023

Proposition of a Clay Brick with Reduced Thickness and High Fire Resistance by Means of Numerical and Experimental Analysis

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 9

Abstract

Clay brick masonry is a construction system used worldwide due to its economy and technical viability. While its behavior when subjected to high temperatures is relatively well known, civilian construction has evolved and introduced lighter and more slender elements with no assessment of the potential decrease in performance. This study sought to develop a clay brick masonry system of reduced thickness and high fire resistance. In order to accomplish this objective, heat transfer in bricks of different geometries was analyzed with a finite element numerical model calibrated with experimental data. A wall sample was constructed in real scale with the optimum geometry obtained from the numerical analysis and evaluated experimentally. Results showed a satisfactory agreement between the model and experimental wall sample and produced a possible nonload-bearing compartmentalization system of reduced thickness with a 180 min fire resistance rating.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

ABNT (Associação Brasileira de Normas Técnicas). 1989. Paredes divisórias sem função estrutural—Determinação da resistência ao fogo—Método de ensaio. NBR 10636. Rio de Janeiro, Brazil: ABNT.
ABNT (Associação Brasileira de Normas Técnicas). 2005. Desempenho térmico de edificações Parte 1: Definições, símbolos e unidades. NBR 15220. Rio de Janeiro, Brazil: ABNT.
Ahmad, A., and L. M. Al-Hadhrami. 2009. “Thermal performance and economic assessment of masonry bricks.” Therm. Sci. 13 (4): 221–232. https://doi.org/10.2298/TSCI0904221A.
Alarie, Y. 2002. “Toxicity of fire smoke.” Crit. Rev. Toxicol. 32 (4): 259–289. https://doi.org/10.1080/20024091064246.
Alghamdi, A. A., and H. A. Alharthi. 2017. “Multiscale 3D finite-element modelling of the thermal conductivity of clay brick walls.” Constr. Build. Mater. 157 (Dec): 1–9. https://doi.org/10.1016/j.conbuildmat.2017.09.081.
AS (Australian Standard). 2005. Methods for fire tests on building materials, components and structures. AS 1530. Sydney, NSW, Australia: AS.
ASTM. 2016. Standard test methods for fire tests of building construction and materials. ASTM E119-16a. West Conshohocken, PA: ASTM.
Balaji, N. C., M. Mani, and B. V. Reddy. 2014. “Discerning heat transfer in building materials.” Energy Procedia 54 (Jan): 654–668. https://doi.org/10.1016/j.egypro.2014.07.307.
Beall, C. 1994. “Calculating masonry’s fire resistance.” Mag. Masonry Constr. 7 (8): 372–391.
Bernat, E., L. Gil, P. Roca, and C. Sandoval. 2013. “Experimental and numerical analysis of bending-buckling mixed failure of brickwork walls.” Constr. Build. Mater. 43 (Jun): 1–13. https://doi.org/10.1016/j.conbuildmat.2013.01.025.
Black, W. Z. 2009. “Smoke movement in elevator shafts during a high-rise structural fire.” Fire Saf. J. 44 (2): 168–182. https://doi.org/10.1016/j.firesaf.2008.05.004.
Bottin, G., G. Prager, A. M. Gil, B. F. Tutikian, and F. Bolina. 2018. Estruturas de alvenaria em situação de incêndio: Avaliação experimental em escala real da influência da geometria dos blocos cerâmicos no desempenho estrutural às altas temperaturas. São Leopoldo, Brazil: Universidade do Vale do Rio dos Sinos.
Bouchair, A. 2008. “Steady state theoretical model of fired clay hollow bricks for enhanced external wall thermal insulation.” Build. Environ. 43 (10): 1603–1618. https://doi.org/10.1016/j.buildenv.2007.10.005.
BS (British Standard). 2014. Test methods for determining the contribution to the fire resistance of structural members: Horizontal protective membranes. BS EN 13381-1. London: BS.
Buchanan, A. H., and A. K. Abu. 2017. Structural design for fire safety. New York: Wiley.
Buson, M., N. Lopes, H. Varum, R. M. Sposto, and P. V. Real. 2012. “Fire resistance of walls made of soil-cement and Kraftterra compressed earth blocks.” Fire Mater. 37 (7): 547–562. https://doi.org/10.1002/fam.2148.
CEN (European Committee for Standardization). 2005. Design of masonry structures—Part 1-2. Eurocode 6. Brussels, Belgium: CEN.
Chen, Y., X. Zhou, Z. Fu, T. Zhang, B. Cao, and L. Yang. 2016. “Vertical temperature distributions in ventilation shafts during a fire.” Exp. Therm. Fluid Sci. 79 (Dec): 118–125. https://doi.org/10.1016/j.expthermflusci.2016.07.007.
Cobîrzan, N., A. A. Balog, B. Belean, G. Borodi, D. Dădârlat, and M. Streza. 2016. “Thermophysical properties of masonry units: Accurate characterization by means of photothermal techniques and relationship to porosity and mineral composition.” Constr. Build. Mater. 105 (Feb): 297–306. https://doi.org/10.1016/j.conbuildmat.2015.12.056.
Filho, S. K., G. L. Prager, P. E. M. da Silva, F. L. Bolina, and B. F. Tutikian. 2018. “Comparative study of fire resistance and acoustic performance of ceramic brick walls in concern to NBR 15575 in residential buildings in Brazil.” Dyna 85 (204): 53–58. https://doi.org/10.15446/dyna.v85n204.65586.
He, J., X. Huang, X. Ning, T. Zhou, J. Wang, and R. Yuen. 2020. “Stairwell smoke transport in a full-scale high-rise building: Influence of opening location.” Fire Saf. J. 117 (Oct): 103151. https://doi.org/10.1016/j.firesaf.2020.103151.
Hennemann, G. G., A. M. Gil, B. Fernandes, F. L. Bolina, and B. F. Tutikian. 2017. “Avaliação teórico-experimental da influência da espessura de alvenaria na resistência ao fogo de sistemas verticais de vedação.” Ambiente Construído 17 (4): 183–195. https://doi.org/10.1590/s1678-86212017000400192.
Ingham, J. P. 2009. “Application of petrographic examination techniques to the assessment of fire-damaged concrete and masonry structures.” Mater. Charact. 60 (7): 700–709. https://doi.org/10.1016/j.matchar.2008.11.003.
ISO. 1999. Fire-resistance tests—Elements of building construction—Part 1: General requirements. ISO 834-1. Geneva: ISO.
Kanellopoulos, G., V. G. Koutsomarkos, K. J. Kontoleon, and K. Georgiadis-Filikas. 2017. “Numerical analysis and modelling of heat transfer processes through perforated clay brick masonry walls.” Procedia Environ. Sci. 38 (May): 492–499. https://doi.org/10.1016/j.proenv.2017.03.112.
Keelson, H. 2018. “Fire Resistance quantification of non-loadbearing masonry walls-numerical study.” Doctoral dissertation, Dept. of Civil and Environmental Engineering, Carleton Univ.
Klippel, F. S., P. E. Silva, F. L. Bolina, and B. Fonseca-Tutikian. 2018. “Comparative study of fire resistance and acoustic performance of ceramic brick walls in concern to NBR 15575 in residential buildings in Brazil.” Dyna 85 (204): 53–58. https://doi.org/10.15446/dyna.v85n204.65586.
Li, J., X. Meng, Y. Gao, W. Mao, T. Luo, and L. Zhang. 2018. “Effect of the insulation materials filling on the thermal performance of sintered hollow bricks.” Case Stud. Therm. Eng. 11 (Mar): 62–70. https://doi.org/10.1016/j.csite.2017.12.007.
Li, L. P., Z. G. Wu, Y. L. He, G. Lauriat, and W. Q. Tao. 2008. “Optimization of the configuration of 290×140 × 90 hollow clay bricks with 3-D numerical simulation by finite volume method.” Energy Build. 40 (10): 1790–1798. https://doi.org/10.1016/j.enbuild.2008.03.010.
Morales, M. P., M. C. Juárez, L. M. López-Ochoa, and P. Muñoz. 2012. “Influence of tongue and groove system on the thermal properties of large-format voided clay bricks for single-leaf walls.” Constr. Build. Mater. 30 (May): 169–173. https://doi.org/10.1016/j.conbuildmat.2011.12.006.
Morales, M. P., M. C. Juárez, P. Muñoz, and J. A. Gómez. 2011. “Study of the geometry of a voided clay brick using non-rectangular perforations to optimise its thermal properties.” Energy Build. 43 (9): 2494–2498. https://doi.org/10.1016/j.enbuild.2011.06.006.
Morales, M. P., P. Muñoz, M. C. Juárez, M. A. Mendívil, and P. Olasolo. 2016. “Influence of the type of lightweight clay brick on the equivalent thermal transmittance of different types of façades on buildings.” Mater. Constr. 66 (323): e096. https://doi.org/10.3989/mc.2016.08115.
Muñoz, P., M. P. Morales, V. Letelier, and M. A. Mendivil. 2016. “Fired clay bricks made by adding wastes: Assessment of the impact on physical, mechanical and thermal properties.” Constr. Build. Mater. 125: 241–252. https://doi.org/10.1016/j.conbuildmat.2016.08.024.
Nadjai, A., M. O’Gara, F. Ali, and R. Jurgen. 2006. “Compartment masonry walls in fire situations.” Fire Technol. 42 (3): 211–231. https://doi.org/10.1007/s10694-006-7509-6.
Nguyen, Q. T., T. Ngo, P. Tran, P. Mendis, L. Aye, and S. K. Baduge. 2018. “Fire resistance of a prefabricated bushfire bunker using aerated concrete panels.” Constr. Build. Mater. 174 (Jun): 410–420. https://doi.org/10.1016/j.conbuildmat.2018.04.065.
Nguyen, T. D., and F. Meftah. 2012. “Behavior of clay hollow-brick masonry walls during fire. Part 1: Experimental analysis.” Fire Saf. J. 52 (Aug): 55–64. https://doi.org/10.1016/j.firesaf.2012.06.001.
Nguyen, T. D., F. Meftah, R. Chammas, and A. Mebarki. 2009. “The behaviour of masonry walls subjected to fire: Modelling and parametrical studies in the case of hollow burnt-clay bricks.” Fire Saf. J. 44 (4): 629–641. https://doi.org/10.1016/j.firesaf.2008.12.006.
Parsekian, G. A., A. A. Hamid, and R. G. Drysdale. 2012. Comportamento e dimensionamento de alvenaria estrutural. São Carlos, Brazil: EdUFSCar.
Qi, D., L. L. Wang, J. Ji, and M. Li. 2017. “Dimensionless analytical solutions for steady-state fire smoke spread through high-rise shaft.” Fire Saf. J. 93 (Dec): 12–20. https://doi.org/10.1016/j.firesaf.2017.07.002.
Rosemann, F. 2011. Resistência ao fogo de paredes de alvenaria estrutural de blocos cerâmicos pelo critério de isolamento térmico. Florianópolis, Brazil: Universidade Federal de Santa Catarina Centro Tecnológico Programa de Pós-Graduação em Engenharia Civil.
Russo, S., and F. Sciarretta. 2012. “Experimental and theoretical investigation on masonry after high temperature exposure.” Exp. Mech. 52 (4): 341–359. https://doi.org/10.1007/s11340-011-9493-0.
Sandström, J., and S. Thelandersson. 2017. “The life safety objective in performance-based design for structural fire safety.” In Proc., 2nd Int. Conf. on Structural Safety Under Fire & Blast Loading, CONFAB 2017. London: Brunel Univ.
Santos, P., C. Martins, and E. Júlio. 2015. “Enhancement of the thermal performance of perforated clay brick walls through the addition of industrial nano-crystalline aluminium sludge.” Constr. Build. Mater. 101 (Dec): 227–238. https://doi.org/10.1016/j.conbuildmat.2015.10.058.
Souza, R. P. D. 2017. Avaliação da Influência da espessura do revestimento argamassado e do carregamento no comportamento da alvenaria frente a altas temperaturas. São Leopoldo, Brazil: Universidade do Vale do Rio dos Sinos.
Stec, A. A., and T. R. Hull. 2011. “Assessment of the fire toxicity of building insulation materials.” Energy Build. 43 (2–3): 498–506. https://doi.org/10.1016/j.enbuild.2010.10.015.
Wickström, U., S. Hunt, B. Lattimer, J. Barnett, and C. Beyler. 2018. “Technical comment—Ten fundamental principles on defining and expressing thermal exposure as boundary conditions in fire safety engineering.” Fire Mater 42 (8): 985–988. https://doi.org/10.1002/fam.2660.
William, D. C., Jr., and G. R. David. 2016. Cie^ncia e Engenharia de Materiais. Rio de Janeiro, Brazil: LTC.
Zhang, J., Q. Zhang, D. Zhang, Q. Xu, and W. Li. 2019. “Experimental and numerical study on compressive performance of perforated brick masonry after fire exposure.” Fire Mater. 43 (2): 200–218. https://doi.org/10.1002/fam.2688.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 9September 2023

History

Received: Jun 6, 2022
Accepted: Jan 18, 2023
Published online: Jun 29, 2023
Published in print: Sep 1, 2023
Discussion open until: Nov 29, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Researcher of Graduate Program in Architecture and Urbanism, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos, 950, São Leopoldo, Rio Grande do Sul 93.022-750, Brazil. Email: [email protected]
Professor, Dept. of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, Barranquilla 080002, Colombia. ORCID: https://orcid.org/0000-0003-1367-8972. Email: [email protected]
Researcher of Graduate Program in Civil Engineering, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos, 950, São Leopoldo, Rio Grande do Sul 93.022-750, Brazil; Instituto Tecnológico em Desempenho e Construção Civil (itt) Performance/Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos, 950, São Leopoldo, Rio Grande do Sul 93.022-750, Brazil. Email: [email protected]
Researcher of Graduate Program in Civil Engineering, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos, 950, São Leopoldo, Rio Grande do Sul 93.022-750, Brazil (corresponding author). ORCID: https://orcid.org/0000-0003-1319-0547. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share