Technical Papers
May 22, 2023

Strength-Gain Characteristics and Swelling Response of Steel Slag and Steel Slag–Fly Ash Mixtures

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 8

Abstract

The shear strength and stiffness characteristics of steel slag indicate that it can potentially be utilized as a competent base/subbase material of bound and unbound pavement layers. However, concerns with respect to the utilization of steel slag remain due to its long-term swelling, corrosivity, and leaching characteristics. In this study, long-term swelling and corrosivity tests were performed on basic-oxygen-furnace steel slag (BOFSS) and electric-arc-furnace ladle steel slag [EAF(L)SS] generated in Indiana, USA. In order to reduce the 1D swelling strains of these slags, 5%, 10%, and 20% Class C fly ash (CCFA) and 10% ground rubber replacement ratios were used to prepare steel slag mixtures for testing. The improvement due to CCFA replacement was evaluated by performing unconfined compression and long-term swelling tests on selected steel slag–CCFA mixtures. The seven-day unconfined compression strengths of 90% EAF(L)SS + 10% CCFA and 90% BOFSS + 10% CCFA mixtures were 2,387 and 3,768 kPa, respectively. After nine months of monitoring, the maximum 1D swelling strains of soaked samples of BOFSS and EAF(L)SS mixtures prepared with 10% CCFA replacement were 0.1% or less. The unconfined compression and swelling test results for the steel slag–CCFA mixtures indicated superior strength gain characteristics and negligible swelling strains with time than for steel slags.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors gratefully acknowledge the financial support (FHWA/IN/JTRP-2009/SPR-3129), provided by the Indiana Department of Transportation (INDOT), MultiServ, and Edward C. Levy Co (Levy). The contents of this publication reflect the views of the authors, who are responsible for the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the INDOT and the Federal Highway Administration (FHWA), nor do the contents constitute a standard, specification, or regulation.

References

AASHTO. 2012. Standard specification for materials for aggregate and soil-aggregate subbase, base, and surface courses. AASHTO M 147-65. Washington, DC: AASHTO.
Alonso, J. A. F., V. O. Lopez, M. Skaf, A. Aragon, and T. S. J. Jose. 2017. “Performance of fiber-reinforced EAF slag concrete for use in pavements.” Constr. Build. Mater. 149 (Sep): 629–638. https://doi.org/10.1016/j.conbuildmat.2017.05.174.
Altun, I. A., and I. Yilmaz. 2002. “Study on steel furnace slags with MgO additive in portland cement.” Cem. Concr. Res. 32 (8): 1247–1249. https://doi.org/10.1016/S0008-8846(02)00763-9.
Ameri, M. D., S. Hesami, and H. Goli. 2013. “Laboratory evaluation of warm mix asphalt mixtures containing electric arc furnace (EAF) steel slag.” Constr. Build. Mater. 49 (Dec): 611–617. https://doi.org/10.1016/j.conbuildmat.2013.08.034.
API (American Petroleum Institute). 1997. Cathodic protection of aboveground petroleum storage tanks. Washington, DC: API.
Arribas, I., A. Santamaria, E. Ruiz, V. O. Lopez, and J. M. Manso. 2015. “Electric arc furnace slag and its use in hydraulic concrete.” Constr. Build. Mater. 90 (Aug): 68–79. https://doi.org/10.1016/j.conbuildmat.2015.05.003.
ASTM. 2000. Standard test methods for laboratory compaction characteristics of soil using standard effort [12,400  ft-lbf/ft3 (600  kN-m/m3)]. ASTM D698-00a. West Conshohocken, PA: ASTM.
ASTM. 2005. Standard specification for coal fly ash or calcined natural pozzolan for use in concrete. ASTM C618-08a. West Conshohocken, PA: ASTM.
ASTM. 2007a. Standard test method for CBR (California bearing ratio) of laboratory-compacted soils. ASTM D1883-07. West Conshohocken, PA: ASTM.
ASTM. 2007b. Standard test methods unconfined compressive strength of compacted soil-lime mixtures. ASTM D5102-04. West Conshohocken, PA: ASTM.
ASTM. 2012a. Standard test method for field measurement of soil resistivity using the Wenner four-electrode method. ASTM G57-06. West Conshohocken, PA: ASTM.
ASTM. 2012b. Standard test method for measuring pH of soil for use in corrosion testing. ASTM G51-95. West Conshohocken, PA: ASTM.
Balunaini, U., and M. Prezzi. 2010. “Interaction of ribbed-metal strip reinforcement with tire shred-sand mixtures.” Geotech. Geol. Eng. 28 (2): 147–163. https://doi.org/10.1007/s10706-009-9288-6.
Daku, S. S., V. B. Diyelmak, O. A. Otitolaiye, and I. E. Abalaka. 2019. “Evaluation of soil corrosivity using electrical resistivity method: A case study of part of the University of JOS permanent site.” Sci. Res. J. 7 (3): 66–76. https://doi.org/10.31364/SCIRJ/v7.i3.2019.P0319623.
Esmaeili, M., R. Nouri, and K. Yousefian. 2017. “Experimental comparison of the lateral resistance of tracks with steel slag ballast and limestone ballast materials.” Proc. Inst. Mech. Eng., Part F: J. Rail Rapid Transit 231 (2): 175–184. https://doi.org/10.1177/0954409715623577.
Firat, S., S. Dikmen, G. Yilmaz, and J. M. Khatib. 2020. “Characteristics of engineered waste materials used for road subbase layers.” KSCE J. Civ. Eng. 24 (9): 2643–2656. https://doi.org/10.1007/s12205-020-2242-0.
Galán-Arboledas, R. J., J. Á. de Diego, M. Dondi, and S. Bueno. 2017. “Energy, environmental and technical assessment for the incorporation of EAF stainless steel slag in ceramic building materials.” J. Cleaner Prod. 142 (Jan): 1778–1788. https://doi.org/10.1016/j.jclepro.2016.11.110.
Hainin, M. R., G. Rusbintardjo, M. A. Abdul Aziz, A. Hamim, and N. I. M. Yusoff. 2013. “Laboratory evaluation on steel slag as aggregate replacement in stone mastic asphalt mixtures.” J. Teknologi 65 (2): 13–19. https://doi.org/10.11113/jt.v65.2185.
Hou, J., Q. Liu, J. Liu, and Q. Wu. 2018. “Material properties of steel slag-cement binding materials prepared by precarbonated steel slag.” J. Mater. Civ. Eng. 30 (9): 04018208. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002370.
IAC (Indiana Administrative Code). 2017. Restricted waste sites waste criteria. Indianapolis: Indiana General Assembly, Indiana Legislative Service Agency.
Iacobescu, R. I., G. N. Angelopoulos, P. T. Jones, B. Blanpain, and Y. Pontikes. 2016. “Ladle metallurgy stainless steel slag as raw material in ordinary portland cement production: A possibility for industrial symbiosis.” J. Cleaner Prod. 112 (Jan): 872–881. https://doi.org/10.1016/j.jclepro.2015.06.006.
Jiang, L., C. L. Dong, and S. Y. Wang. 2020. “Reducing volume expansion of steel slag by using a surface hydrophobic waterproof structure.” J. Mater. Civ. Eng. 32 (10): 04020303. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003320.
Kim, B., and M. Prezzi. 2008. “Compaction characteristics and corrosivity of Indiana Class-F fly and bottom ash mixtures.” Constr. Build. Mater. 22 (4): 694–702. https://doi.org/10.1016/j.conbuildmat.2006.09.007.
Koh, T., S.-W. Moon, H. Jung, Y. Jeong, and S. Pyo. 2018. “A feasibility study on the application of basic oxygen furnace (BOF) steel slag for railway ballast material.” Sustainability 10 (2): 284. https://doi.org/10.3390/su10020284.
Lambe, T. W., and R. V. Whitman. 1979. Soil mechanics. New York: Wiley.
Manso, J. M., et al. 2013. “The use of ladle furnace slag in soil stabilization.” Constr. Build. Mater. 40 (Mar): 126–134. https://doi.org/10.1016/j.conbuildmat.2012.09.079.
Maslehuddin, M., A. M. Sharif, M. Shameem, M. Ibrahim, and M. S. Barry. 2003. “Comparison of properties of steel slag and crushed limestone aggregate concretes.” Constr. Build. Mater. 17 (2): 105–112. https://doi.org/10.1016/S0950-0618(02)00095-8.
Mcneil, J. D. 1980. Electrical conductivity of soils and rocks: Geonics limited technical note TN-5. Mississauga, ON, Canada: Geonics Limited.
Montenegro-Cooper, J. M., M. Celemín-Matachana, J. Cañizal, and J. J. González. 2019. “Study of the expansive behavior of ladle furnace slag and its mixture with low quality natural soils.” Constr. Build. Mater. 203 (Apr): 201–209. https://doi.org/10.1016/j.conbuildmat.2019.01.040.
Moura, B. L. R., J. E. S. L. Teixeira, R. A. Simao, M. Khedmati, Y. R. Kim, and P. J. M. Pires. 2020. “Adhesion between steel slag aggregates and bituminous binder based on surface characteristics and mixture moisture resistance.” Constr. Build. Mater. 264 (Dec): 120685. https://doi.org/10.1016/j.conbuildmat.2020.120685.
Ortega-Lopez, V., J. M. Manso, I. I. Cuesta, and J. J. Gonzalez. 2014. “The long-term accelerated expansion of various ladle-furnace basic slags and their soil-stabilization applications.” Constr. Build. Mater. 68 (Oct): 455–464. https://doi.org/10.1016/j.conbuildmat.2014.07.023.
Ortega-Lopez, V. O., J. A. Fuente-Alonso, A. Santamaria, J. T. San-José, and A. Aragon. 2018. “Durability studies on fiber-reinforced EAF slag concrete for pavements.” Constr. Build. Mater. 163 (Feb): 471–481. https://doi.org/10.1016/j.conbuildmat.2017.12.121.
Palankar, N., A. U. Ravi Shankar, and B. M. Mithun. 2016. “Durability studies on eco-friendly concrete mixes incorporating steel slag as coarse aggregates.” J. Cleaner Prod. 129 (Aug): 437–448. https://doi.org/10.1016/j.jclepro.2016.04.033.
Pasetto, M., and N. Baldo. 2010. “Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags.” J. Hazard. Mater. 181 (1–3): 938–948. https://doi.org/10.1016/j.jhazmat.2010.05.104.
Pasetto, M., and N. Baldo. 2016. “Recycling of waste aggregates in cement bound mixtures for road pavement bases and sub-bases.” Constr. Build. Mater. 108 (Apr): 112–118. https://doi.org/10.1016/j.conbuildmat.2016.01.023.
Pasetto, M., and N. Baldo. 2018. “Re-use of industrial wastes in cement bound mixtures for road construction.” Environ. Eng. Manage. J. 17 (2): 417–426. https://doi.org/10.30638/eemj.2018.042.
Patel, S., and J. T. Shahu. 2016. “Resilient response and permanent strain of steel slag-fly ash-dolime mix.” J. Mater. Civ. Eng. 28 (10): 04016106. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001619.
Pathak, S., R. Choudhary, A. Kumar, and M. L. Pattanaik. 2022. “Friction characteristics of open graded asphalt friction courses with BOF and EAF steel slag aggregates.” J. Mater. Civ. Eng. 34 (6): 04022087. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004222.
Pattanaik, M. L., R. Chowdary, and B. Kumar. 2018. “Clogging evaluation of open graded friction course mixes with EAF steel slag and modified binders.” Constr. Build. Mater. 159 (Jan): 220–233. https://doi.org/10.1016/j.conbuildmat.2017.10.096.
Pellegrino, C., and V. Gaddo. 2009. “Mechanical and durability characteristics of concrete containing EAF slag as aggregate.” Cem. Concr. Compos. 31 (9): 663–671. https://doi.org/10.1016/j.cemconcomp.2009.05.006.
Poh, H. Y., S. G. Ghataora, and N. Ghazireh. 2006. “Soil stabilization using basic oxygen steel slag fines.” J. Mater. Civ. Eng. 18 (2): 229–240. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:2(229).
Reynolds, J. M. 2011. An introduction to applied and environmental geophysics. Hoboken, NJ: Wiley.
Roberge, P. R. 2007. Corrosion inspection and monitoring. Hoboken, NJ: Wiley.
Roberge, P. R. 2019. Handbook of corrosion engineering. New York: McGraw-Hill.
Rondi, L., G. Bregoli, S. Sorlini, L. Cominoli, C. Collivignarelli, and G. Plizzari. 2016. “Concrete with EAF steel slag as aggregate: A comprehensive technical and environmental characterization.” Composites, Part B 90 (Apr): 195–202. https://doi.org/10.1016/j.compositesb.2015.12.022.
Roslan, N. H., M. D. Ismail, Z. A. Majid, S. Ghoreishiamiri, and M. D. Bala. 2016. “Performance of steel slag and steel sludge in concrete.” Constr. Build. Mater. 104 (Feb): 16–24. https://doi.org/10.1016/j.conbuildmat.2015.12.008.
Roychand, R., R. J. Gravina, Y. Zhuge, X. Ma, O. Youssf, and J. E. Mills. 2020. “A comprehensive review on the mechanical properties of waste tire rubber concrete.” Constr. Build. Mater. 237 (Mar): 117651. https://doi.org/10.1016/j.conbuildmat.2019.117651.
Santamaria, V. A., A. Rodriguez, G. Gutiérrez, and V. Calderon. 2015. “Design of masonry mortars fabricated concurrently with different steel slag aggregates.” Constr. Build. Mater. 95 (Oct): 197–206. https://doi.org/10.1016/j.conbuildmat.2015.07.164.
Santamaría, A., A. Orbe, J. T. San José, and J. J. González. 2018. “A study on the durability of structural concrete incorporating electric steelmaking slags.” Constr. Build. Mater. 161 (Feb): 94–111. https://doi.org/10.1016/j.conbuildmat.2017.11.121.
Santamaría, A., M. M. Orbe, M. Losañez, V. O. L. Skaf, and J. J. González. 2017. “Self-compacting concrete incorporating electric arc-furnace steelmaking slag as aggregate.” Mater. Des. 115 (Feb): 179–193. https://doi.org/10.1016/j.matdes.2016.11.048.
Scully, J. C. 1990. The fundamentals of corrosion. 3rd ed. Oxford: Pergamon Press.
Seda, J. H., J. C. Lee, and J. A. H. Carraro. 2007. “Beneficial use of waste tire rubber for swelling potential mitigation in expansive soils.” In GeoDenver 2007: Soil Improvement, Geotechnical Special Publication 172, edited by V. R. Schaefer, G. M. Filz, P. M. Gallagher, A. L. Sehn, and K. J. Wissmann, 1–9. Reston, VA: ASCE.
Shen, W., M. Zhou, W. Ma, J. Hu, and Z. Cai. 2009. “Investigation on the application of steel slag-fly ash-phosphogympsum solidified material as a road base material.” J. Hazard. Mater. 164 (1–3): 99–104. https://doi.org/10.1016/j.jhazmat.2008.07.125.
Shi, C. 2004. “Steel slag—Its production, processing and cementitious properties.” J. Mater. Civ. Eng. 16 (3): 230–236. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(230).
Sing, L. K., N. Yahaya, S. R. Othman, S. N. Fariza, and N. M. Noor. 2013. “The relationship between soil resistivity and corrosion growth in tropical region.” J. Corros. Sci. Eng. 16: 1–11.
Soltani, A., A. Deng, A. Taheri, M. Mirzababaei, and S. K. Vanapalli. 2019. “Swell–shrink behavior of rubberized expansive clays during alternate wetting and drying.” Minerals 9 (4): 224. https://doi.org/10.3390/min9040224.
Sun, P., and Z. C. Guo. 2015. “Sintering preparation of porous sound-absorbing materials from steel slag.” Trans. Nonferrous Met. Soc. China 25 (7): 2230–2240. https://doi.org/10.1016/S1003-6326(15)63865-1.
Wang, J., J. Wang, H. Ming, Z. Zhang, and E. H. Han. 2018. “Effect of pH on corrosion behavior of 316L stainless steel in hydrogenated high temperature water.” Mater. Corros. 69 (5): 580–589. https://doi.org/10.1002/maco.201709761.
Wang, Q., D. Wang, and S. Zhuang. 2017. “The soundness of steel slag with different free CaO and MgO contents.” Constr. Build. Mater. 151 (Oct): 138–146. https://doi.org/10.1016/j.conbuildmat.2017.06.077.
Wang, W., A. Shen, Z. He, and H. Liu. 2022. “Evaluation of the adhesion property and moisture stability of rubber modified asphalt mixture incorporating waste steel slag.” J. Adhes. Sci. Technol. 37 (2): 296–318. https://doi.org/10.1080/01694243.2022.2031461.
Wu, S., Y. Xue, Q. Ye, and Y. Chen. 2007. “Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures.” Build. Environ. 42 (7): 2580–2585. https://doi.org/10.1016/j.buildenv.2006.06.008.
Yildirim, I. Z. 2022. “Türkiye’de Çıkan Endüstriyel Yan Ürünlerin Dolgu Özellikleri Üzerine Deneysel Bir İnceleme.” Teknik Dergi 33 (6): 12789–12815. https://doi.org/10.18400/tekderg.847828.
Yildirim, I. Z., and M. Prezzi. 2011. “Chemical, mineralogical, and morphological properties of steel slag.” Adv. Civ. Eng. 2011: 1–13. https://doi.org/10.1155/2011/463638.
Yildirim, I. Z., and M. Prezzi. 2015. “Geotechnical properties of fresh and aged basic oxygen furnace steel slag.” J. Mater. Civ. Eng. 27 (12): 04015046. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001310.
Yildirim, I. Z., and M. Prezzi. 2017. “Experimental evaluation of EAF ladle steel slag as a geo-fill material: Mineralogical, physical and mechanical properties.” Constr. Build. Mater. 154 (Nov): 23–33. https://doi.org/10.1016/j.conbuildmat.2017.07.149.
Yildirim, I. Z., and M. Prezzi. 2022. “Subgrade stabilisation mixtures with EAF steel slag: An experimental study followed by field implementation.” Int. J. Pavement Eng. 23 (6): 1754–1767. https://doi.org/10.1080/10298436.2020.1823389.
Yildirim, I. Z., M. Prezzi, M. Vasudevan, and H. Santoso. 2013. Use of soil-steel slag-class-C fly ash mixtures in subgrade applications. West Lafayette, IN: Indiana Dept. of Transportation and Purdue Univ.
Yoder, E. J., and M. W. Witczak. 1975. Principles of pavement design. New York: Wiley.
Yoon, S., M. Prezzi, N. Z. Siddiki, and B. Kim. 2006. “Construction of a test embankment using a sand–tire shred mixture as fill material.” Waste Manage. 26 (9): 1033–1044. https://doi.org/10.1016/j.wasman.2005.10.009.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 8August 2023

History

Received: May 1, 2022
Accepted: Dec 7, 2022
Published online: May 22, 2023
Published in print: Aug 1, 2023
Discussion open until: Oct 22, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Irem Zeynep Yildirim, Ph.D., M.ASCE https://orcid.org/0000-0003-1820-2607 [email protected]
P.E.
Assistant Professor, Dept. of Civil Engineering, Bogazici Univ., Bebek, Istanbul, TR 34342 Turkey (corresponding author). ORCID: https://orcid.org/0000-0003-1820-2607. Email: [email protected]
Umashankar Balunaini, Ph.D. [email protected]
Professor, Dept. of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502 285, India. Email: [email protected]
Monica Prezzi, Ph.D., M.ASCE [email protected]
Professor, Lyles School of Civil Engineering, Purdue Univ., West Lafayette, IN 47907. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share