Technical Papers
Feb 28, 2023

Water-Pressure Synergy Mechanisms of Pressure-Driven Geopolymer Granulation of Solid Waste

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 5

Abstract

Using solid waste to produce artificial aggregate (AA) to replace natural aggregate has attracted extensive research interest. This study proposes pressure granulation under minor water to produce AA. The strength formation and water-pressure synergy mechanisms are discussed by setting water and load configurations and characterizing the internal pore structure. In addition, the water damage to the AA is discussed. The results show that the squeeze-out effect caused by the synergistic effect of water and load determines AA’s physical and mechanical properties. Furthermore, the law of the squeeze-out effect is proven by the fact that the AA with a compressive strength of 19.77 MPa was obtained under a 10% water-to-powder ratio and a 55 kN load. In addition, water erosion severely affects AA’s strength, which might be relieved by decreasing the water absorption of AA.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This study was funded by the National Natural Science Foundation of China joint fund for regional innovation and development (Grant No. U20A20315).

References

Ahmaruzzaman, M. 2010. “A review on the utilization of fly ash.” Prog. Energy Combust. Sci. 36 (3): 327–363. https://doi.org/10.1016/j.pecs.2009.11.003.
Alrefaei, Y., and J.-G. Dai. 2018. “Tensile behavior and microstructure of hybrid fiber ambient cured one-part engineered geopolymer composites.” Constr. Build. Mater. 184 (Sep): 419–431. https://doi.org/10.1016/j.conbuildmat.2018.07.012.
Alrefaei, Y., Y.-S. Wang, and J.-G. Dai. 2019. “The effectiveness of different superplasticizers in ambient cured one-part alkali activated pastes.” Cem. Concr. Compos. 97 (Mar): 166–174. https://doi.org/10.1016/j.cemconcomp.2018.12.027.
Aslani, F. 2016. “Thermal performance modeling of geopolymer concrete.” J. Mater. Civ. Eng. 28 (1): 04015062. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001291.
Banerjee, S., G. C. Sharma, M. C. Chattopadhyaya, and Y. C. Sharma. 2014. “Kinetic and equilibrium modeling for the adsorptive removal of methylene blue from aqueous solutions on of activated fly ash (AFSH).” J. Environ. Chem. Eng. 2 (3): 1870–1880. https://doi.org/10.1016/j.jece.2014.06.020.
Belviso, C. 2018. “State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues.” Prog. Energy Combust. Sci. 65 (Mar): 109–135. https://doi.org/10.1016/j.pecs.2017.10.004.
Chang, F.-C., M.-Y. Lee, S.-L. Lo, and J.-D. Lin. 2010. “Artificial aggregate made from waste stone sludge and waste silt.” J. Environ. Manage. 91 (11): 2289–2294. https://doi.org/10.1016/j.jenvman.2010.06.011.
Chen, Z., R. Li, and J. Liu. 2021. “Preparation and properties of carbonated steel slag used in cement cementitious materials.” Constr. Build. Mater. 283 (May): 122667. https://doi.org/10.1016/j.conbuildmat.2021.122667.
Cho, Y.-K., S.-W. Yoo, S.-H. Jung, K.-M. Lee, and S.-J. Kwon. 2017. “Effect of Na2O content, SiO2/Na2O molar ratio, and curing conditions on the compressive strength of FA-based geopolymer.” Constr. Build. Mater. 145 (Aug): 253–260. https://doi.org/10.1016/j.conbuildmat.2017.04.004.
Colangelo, F., F. Messina, and R. Cioffi. 2015. “Recycling of MSWI fly ash by means of cementitious double step cold bonding pelletization: Technological assessment for the production of lightweight artificial aggregates.” J. Hazard. Mater. 299 (Dec): 181–191. https://doi.org/10.1016/j.jhazmat.2015.06.018.
Ding, J., S. Ma, S. Shen, Z. Xie, S. Zheng, and Y. Zhang. 2017. “Research and industrialization progress of recovering alumina from fly ash: A concise review.” Waste Manage. 60 (Feb): 375–387. https://doi.org/10.1016/j.wasman.2016.06.009.
Feng, D., J. L. Provis, and J. S. J. van Deventer. 2012. “Thermal activation of albite for the synthesis of one-part mix geopolymers.” J. Am. Ceram. Soc. 95 (2): 565–572. https://doi.org/10.1111/j.1551-2916.2011.04925.x.
Fernández-Jiménez, A., A. Palomo, and M. Criado. 2005. “Microstructure development of alkali-activated fly ash cement: A descriptive model.” Cem. Concr. Res. 35 (6): 1204–1209. https://doi.org/10.1016/j.cemconres.2004.08.021.
Ghouleh, Z., R. I. L. Guthrie, and Y. Shao. 2017. “Production of carbonate aggregates using steel slag and carbon dioxide for carbon-negative concrete.” J. CO2 Util. 18 (Mar): 125–138. https://doi.org/10.1016/j.jcou.2017.01.009.
Glukhovsky, V. D. 1959. Soil silicates, 154. Kiev, Ukraine: Gosstroyizdat.
Gonçalves, J. P., L. M. Tavares, R. D. Toledo Filho, E. M. R. Fairbairn, and E. R. Cunha. 2007. “Comparison of natural and manufactured fine aggregates in cement mortars.” Cem. Concr. Res. 37 (6): 924–932. https://doi.org/10.1016/j.cemconres.2007.03.009.
González-Corrochano, B., J. Alonso-Azcárate, L. Rodríguez, A. P. Lorenzo, M. F. Torío, J. J. T. Ramos, M. D. Corvinos, and C. Muro. 2016. “Valorization of washing aggregate sludge and sewage sludge for lightweight aggregates production.” Constr. Build. Mater. 116 (Jul): 252–262. https://doi.org/10.1016/j.conbuildmat.2016.04.095.
Gregori, A., C. Castoro, G. C. Marano, and R. Greco. 2019. “Strength reduction factor of concrete with recycled rubber aggregates from tires.” J. Mater. Civ. Eng. 31 (8): 04019146. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002783.
Gunasekara, C., D. W. Law, S. Setunge, and J. G. Sanjayan. 2015. “Zeta potential, gel formation and compressive strength of low calcium fly ash geopolymers.” Constr. Build. Mater. 95 (Oct): 592–599. https://doi.org/10.1016/j.conbuildmat.2015.07.175.
Gunasekara, C., S. Setunge, D. W. Law, N. Willis, and T. Burt. 2018. “Engineering properties of geopolymer aggregate concrete.” J. Mater. Civ. Eng. 30 (11): 04018299. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002501.
Hajimohammadi, A., J. L. Provis, and J. S. J. van Deventer. 2011. “The effect of silica availability on the mechanism of geopolymerisation.” Cem. Concr. Res. 41 (3): 210–216. https://doi.org/10.1016/j.cemconres.2011.02.001.
Hajimohammadi, A., J. L. Provis, and J. S. J. Van Deventer. 2008. “One-part geopolymer mixes from geothermal silica and sodium aluminate.” Ind. Eng. Chem. Res. 47 (23): 9396–9405. https://doi.org/10.1021/ie8006825.
Hajimohammadi, A., J. L. Provis, and J. S. J. Van Deventer. 2010. “Effect of alumina release rate on the mechanism of geopolymer gel formation.” Chem. Mater. 22 (18): 5199–5208. https://doi.org/10.1021/cm101151n.
Iyu, B., A. Wang, Z. Zhang, K. Liu, H. Xu, L. Shi, and D. Sun. 2019. “Coral aggregate concrete: Numerical description of physical, chemical and morphological properties of coral aggregate.” Cem. Concr. Compos. 100 (Jul): 25–34. https://doi.org/10.1016/j.cemconcomp.2019.03.016.
Jesudoss, S. K., J. J. Vijaya, K. Kaviyarasu, L. J. Kennedy, R. J. Ramalingam, and H. A. Al-Lohedan. 2018. “Anti-cancer activity of hierarchical ZSM-5 zeolites synthesized from rice-based waste materials.” RSC Adv. 8 (1): 481–490. https://doi.org/10.1039/C7RA11763A.
Jiang, Y., T.-C. Ling, C. Shi, and S.-Y. Pan. 2018. “Characteristics of steel slags and their use in cement and concrete—A review.” Resour. Conserv. Recycl. 136 (Sep): 187–197. https://doi.org/10.1016/j.resconrec.2018.04.023.
Jiang, Y., T.-C. Ling, and M. Shi. 2020. “Strength enhancement of artificial aggregate prepared with waste concrete powder and its impact on concrete properties.” J. Cleaner Prod. 257 (Jun): 120515. https://doi.org/10.1016/j.jclepro.2020.120515.
Kazmi, S. M. S., M. J. Munir, Y.-F. Wu, X. Lin, and M. R. Ahmad. 2021. “Investigation of thermal performance of concrete incorporating different types of recycled coarse aggregates.” Constr. Build. Mater. 270 (Feb): 121433. https://doi.org/10.1016/j.conbuildmat.2020.121433.
Khan, M. Z. N., F. U. A. Shaikh, Y. Hao, and H. Hao. 2018. “Effects of curing conditions and sand-to-binder ratios on compressive strength development of fly ash geopolymer.” J. Mater. Civ. Eng. 30 (2): 04017267. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002119.
Koloušek, D., J. Brus, M. Urbanova, J. Andertova, V. Hulinsky, and J. Vorel. 2007. “Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers.” J. Mater. Sci. 42 (22): 9267–9275. https://doi.org/10.1007/s10853-007-1910-5.
Kou, S. C., C. S. Poon, and D. Chan. 2007. “Influence of fly ash as cement replacement on the properties of recycled aggregate concrete.” J. Mater. Civ. Eng. 19 (9): 709–717. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:9(709).
Lee, K.-H., K.-H. Yang, J.-H. Mun, and N. Van Tuan. 2019. “Effect of sand content on the workability and mechanical properties of concrete using bottom ash and dredged soil-based artificial lightweight aggregates.” Int. J. Concr. Struct. Mater. 13 (1): 1–13. https://doi.org/10.1186/s40069-018-0306-z.
Liu, Z., C. S. Cai, H. Peng, and F. Fan. 2016. “Experimental study of the geopolymeric recycled aggregate concrete.” J. Mater. Civ. Eng. 28 (9): 04016077. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001584.
Mehta, P. K. 1986. Concrete: Structure, properties, and materials. Englewood Cliffs, NJ: Prentice-Hall.
Menéndez, E., A. M. Álvaro, M. T. Hernández, and J. L. Parra. 2014. “New methodology for assessing the environmental burden of cement mortars with partial replacement of coal bottom ash and fly ash.” J. Environ. Manage. 133 (Jan): 275–283. https://doi.org/10.1016/j.jenvman.2013.12.009.
Mo, L., S. Yang, B. Huang, L. Xu, S. Feng, and M. Deng. 2020. “Preparation, microstructure and property of carbonated artificial steel slag aggregate used in concrete.” Cem. Concr. Compos. 113 (Oct): 103715. https://doi.org/10.1016/j.cemconcomp.2020.103715.
Nahhab, A. H., and A. K. Ketab. 2020. “Influence of content and maximum size of light expanded clay aggregate on the fresh, strength, and durability properties of self-compacting lightweight concrete reinforced with micro steel fibers.” Constr. Build. Mater. 233 (Feb): 117922. https://doi.org/10.1016/j.conbuildmat.2019.117922.
Nematollahi, B., J. Sanjayan, and F. U. A. Shaikh. 2015. “Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate.” Ceram. Int. 41 (4): 5696–5704. https://doi.org/10.1016/j.ceramint.2014.12.154.
Palomo, A., M. W. Grutzeck, and M. T. Blanco. 1999. “Alkali-activated fly ashes: A cement for the future.” Cem. Concr. Res. 29 (8): 1323–1329. https://doi.org/10.1016/S0008-8846(98)00243-9.
Peceño, B., C. Arenas, B. Alonso-Fariñas, and C. Leiva. 2019. “Substitution of coarse aggregates with mollusk-shell waste in acoustic-absorbing concrete.” J. Mater. Civ. Eng. 31 (6): 04019077. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002719.
Prasanphan, S., A. Wannagon, T. Kobayashi, and S. Jiemsirilers. 2019. “Reaction mechanisms of calcined kaolin processing waste-based geopolymers in the presence of low alkali activator solution.” Constr. Build. Mater. 221 (Oct): 409–420. https://doi.org/10.1016/j.conbuildmat.2019.06.116.
Puertas, F., S. Martínez-Ramírez, S. Alonso, and T. Vázquez. 2000. “Alkali-activated fly ash/slag cements: Strength behaviour and hydration products.” Cem. Concr. Res. 30 (10): 1625–1632. https://doi.org/10.1016/S0008-8846(00)00298-2.
Qian, L.-P., L.-Y. Xu, Y. Alrefaei, T. Wang, T. Ishida, and J.-G. Dai. 2022. “Artificial alkali-activated aggregates developed from wastes and by-products: A state-of-the-art review.” Resour. Conserv. Recycl. 177 (Feb): 105971. https://doi.org/10.1016/j.resconrec.2021.105971.
Rakhimova, N. R., and R. Z. Rakhimov. 2019. “Literature review of advances in materials used in development of alkali-activated mortars, concretes, and composites.” J. Mater. Civ. Eng. 31 (11): 03119002. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002899.
Ranjbar, N., C. Kuenzel, J. Spangenberg, and M. Mehrali. 2020. “Hardening evolution of geopolymers from setting to equilibrium: A review.” Cem. Concr. Compos. 114: 103729. https://doi.org/10.1016/j.cemconcomp.2020.103729.
Ranjbar, N., M. Mehrali, M. R. Maheri, and M. Mehrali. 2017. “Hot-pressed geopolymer.” Cem. Concr. Res. 100 (Oct): 14–22. https://doi.org/10.1016/j.cemconres.2017.05.010.
Ren, P., T.-C. Ling, and K. H. Mo. 2021. “Recent advances in artificial aggregate production.” J. Cleaner Prod. 291 (Apr): 125215. https://doi.org/10.1016/j.jclepro.2020.125215.
Revilla-Cuesta, V., M. Skaf, F. Faleschini, J. M. Manso, and V. Ortega-López. 2020. “Self-compacting concrete manufactured with recycled concrete aggregate: An overview.” J. Cleaner Prod. 262 (Jul): 121362. https://doi.org/10.1016/j.jclepro.2020.121362.
Risdanareni, P., K. Schollbach, J. Wang, and N. De Belie. 2020. “The effect of NaOH concentration on the mechanical and physical properties of alkali activated fly ash-based artificial lightweight aggregate.” Constr. Build. Mater. 259 (Oct): 119832. https://doi.org/10.1016/j.conbuildmat.2020.119832.
Sagoe-Crentsil, K., and L. Weng. 2007. “Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II. High Si/Al ratio systems.” J. Mater. Sci. 42 (9): 3007–3014. https://doi.org/10.1007/s10853-006-0818-9.
Saloma, H., D. O. Elysandi, and D. G. Meykan. 2017. “Effect of Na2SiO3/NaOH on mechanical properties and microstructure of geopolymer mortar using fly ash and rice husk ash as precursor.” AIP Conf. Proc. 1903 (1): 050013. https://doi.org/10.1063/1.5011552.
Shah, S. N., K. H. Mo, S. P. Yap, J. Yang, and T.-C. Ling. 2021. “Lightweight foamed concrete as a promising avenue for incorporating waste materials: A review.” Resour. Conserv. Recycl. 164 (Jan): 105103. https://doi.org/10.1016/j.resconrec.2020.105103.
Shemi, A., R. N. Mpana, S. Ndlovu, L. D. Van Dyk, V. Sibanda, and L. Seepe. 2012. “Alternative techniques for extracting alumina from coal fly ash.” Miner. Eng. 34 (Jul): 30–37. https://doi.org/10.1016/j.mineng.2012.04.007.
Silva, R. V., J. de Brito, C. J. Lynn, and R. K. Dhir. 2019. “Environmental impacts of the use of bottom ashes from municipal solid waste incineration: A review.” Resour. Conserv. Recycl. 140 (Jan): 23–35. https://doi.org/10.1016/j.resconrec.2018.09.011.
Thomas, C., J. De Brito, A. I. A. I. Cimentada, and J. A. Sainz-Aja. 2020a. “Macro-and micro-properties of multi-recycled aggregate concrete.” J. Cleaner Prod. 245 (Feb): 118843. https://doi.org/10.1016/j.jclepro.2019.118843.
Thomas, J., A. Mohan, and P. V. Rajesh. 2020b. “Properties of concrete containing quarry dust–fly-ash cold-bonded aggregates subjected to elevated temperature.” J. Mater. Civ. Eng. 32 (7): 04020178. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003250.
Tsai, C. T. 2012. “Cold-bonding technique—A new approach to recycle innocuous construction residual soil, sludge, and sediment as coarse aggregates.” In Sintering of ceramics—New emerging techniques, 95–120. Rijeka, Croatia: InTech.
Venkata Suresh, G., and J. Karthikeyan. 2016. “Influence of chemical curing technique on the properties of fly ash aggregates prepared without conventional binders.” J. Struct. Eng. 43 (4): 381–389.
Wang, Q., D. Wang, and S. Zhuang. 2017. “The soundness of steel slag with different free CaO and MgO contents.” Constr. Build. Mater. 151 (Oct): 138–146. https://doi.org/10.1016/j.conbuildmat.2017.06.077.
Wang, S., X. Ma, L. He, Z. Zhang, L. Li, and Y. Li. 2019a. “High strength inorganic-organic polymer composites (IOPC) manufactured by mold pressing of geopolymers.” Constr. Build. Mater. 198 (Feb): 501–511. https://doi.org/10.1016/j.conbuildmat.2018.11.281.
Wang, X., W. Ni, J. Li, S. Zhang, M. Hitch, and R. Pascual. 2019b. “Carbonation of steel slag and gypsum for building materials and associated reaction mechanisms.” Cem. Concr. Res. 125 (Nov): 105893. https://doi.org/10.1016/j.cemconres.2019.105893.
Wongkeo, W., and A. Chaipanich. 2010. “Compressive strength, microstructure and thermal analysis of autoclaved and air cured structural lightweight concrete made with coal bottom ash and silica fume.” Mater. Sci. Eng. A 527 (16–17): 3676–3684. https://doi.org/10.1016/j.msea.2010.01.089.
Yang, K.-H., and J.-K. Song. 2009. “Workability loss and compressive strength development of cementless mortars activated by combination of sodium silicate and sodium hydroxide.” J. Mater. Civ. Eng. 21 (3): 119–127. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:3(119).
Yang, K.-H., J.-K. Song, A. F. Ashour, and E.-T. Lee. 2008. “Properties of cementless mortars activated by sodium silicate.” Constr. Build. Mater. 22 (9): 1981–1989. https://doi.org/10.1016/j.conbuildmat.2007.07.003.
Ye, W., S. Li, T. Qiu, X. Cong, and Y. Tan. 2022. “Effects of plastic coating on the physical and mechanical properties of the artificial aggregate made by fly ash.” J. Cleaner Prod. 360 (Aug): 132187. https://doi.org/10.1016/j.jclepro.2022.132187.
Yliniemi, J., H. Nugteren, M. Illikainen, M. Tiainen, R. Weststrate, and J. Niinimäki. 2016. “Lightweight aggregates produced by granulation of peat-wood fly ash with alkali activator.” Int. J. Miner. Process. 149 (Apr): 42–49. https://doi.org/10.1016/j.minpro.2016.02.006.
Zeng, Q., K. Li, T. Fen-chong, and P. Dangla. 2012a. “Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes.” Constr. Build. Mater. 27 (1): 560–569. https://doi.org/10.1016/j.conbuildmat.2011.07.007.
Zeng, Q., K. Li, T. Fen-Chong, and P. Dangla. 2012b. “Pore structure characterization of cement pastes blended with high-volume fly-ash.” Cem. Concr. Res. 42 (1): 194–204. https://doi.org/10.1016/j.cemconres.2011.09.012.
Zhu, P., M. Hua, H. Liu, X. Wang, and C. Chen. 2020. “Interfacial evaluation of geopolymer mortar prepared with recycled geopolymer fine aggregates.” Constr. Build. Mater. 259 (Oct): 119849. https://doi.org/10.1016/j.conbuildmat.2020.119849.
Zhu, S., S. Liu, H. Zhang, E. Lü, and J. Ren. 2014. “Investigation of synthesis and hydroisomerization performance of SAPO-11/Beta composite molecular sieve.” Chin. J. Catal. 35 (10): 1676–1686. https://doi.org/10.1016/S1872-2067(14)60133-9.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 5May 2023

History

Received: Apr 13, 2022
Accepted: Sep 8, 2022
Published online: Feb 28, 2023
Published in print: May 1, 2023
Discussion open until: Jul 28, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, School of Transportation Science and Engineering, Harbin Institute of Technology, No. 92, Xidazhi St., Nangang District, Harbin 150090, China. ORCID: https://orcid.org/0000-0001-8164-0517. Email: [email protected]
Professor, School of Transportation Science and Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 92, Xidazhi St., Nangang District, Harbin 150090, China (corresponding author). Email: [email protected]
Lecturer, School of Transportation Science and Engineering, Harbin Institute of Technology, No. 92, Xidazhi St., Nangang District, Harbin 150090, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share