Technical Papers
Apr 18, 2023

Effect of Activator Concentrations on the Postfire Impact Behavior of Alkali-Activated Slag Concrete

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 7

Abstract

Changing concrete ingredients significantly affects its performance due to changing the type of hydration products formed. The stability of these hydration products will dominate concrete impact behavior before and after exposure to fire. Limited research had explored the role of activators, as the main ingredient of alkali-activated slag concrete (AASC), on impact performance. Hence, this study highlights the effects of activator characteristics on the impact behavior of AASC at an ambient condition (23°C) and after exposure to elevated temperatures (200°C, 400°C, and 600°C). Conventional ordinary portland cement (OPC) concrete was also tested for general performance comparison. Besides the drop weight impact test, compressive and indirect splitting tensile strength, shrinkage, ultrasonic pulse velocity and water absorption tests were conducted to evaluate AASC performance. In addition, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to confirm and analyze findings. Results confirmed the better impact performance of AASC compared to OPC concrete. Activator concentrations showed contrary effects on AASC performance at ambient and elevated temperatures. High activation levels improved strength and impact capacity at ambient temperature, showing lower internal defects and higher hydration product formation. Conversely, lowering the activation level at elevated temperatures was preferable and resulted in a higher residual strength and impact absorption capacity. This was ascribed to the high unreacted slag particle crystallization to akermanite at higher temperatures, leading to strength gain, fewer hydration products to decompose, and high microstructure ductility that accommodated the thermal incompatibility. Hence, designing AASC while focusing only on maximizing strength can be misleading based on the targeted performance and exposure conditions.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

Acknowledgments

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding under the Discovery program.

References

Abubakr, A., A. Soliman, and S. Diab. 2020. “Effect of activator nature on the impact behaviour of alkali-activated slag mortar.” Constr. Build. Mater. 257 (2): 119531. https://doi.org/10.1016/j.conbuildmat.2020.119531.
ACI (American Concrete Institute). 2017. Report on measuring mechanical properties of hardened fiber-reinforced concrete. Farmington Hills, MI: ACI.
Aıtcin, P. 2003. “The durability characteristics of high performance concrete: A review.” Cem. Concr. Compos. 25 (5): 409–420. https://doi.org/10.1016/S0958-9465(02)00081-1.
Akca, A., and N. Zihnioğlu. 2013. “High performance concrete under elevated temperatures.” Constr. Build. Mater. 44 (3): 317–328. https://doi.org/10.1016/j.conbuildmat.2013.03.005.
Alarcon-Ruiz, L., G. Platret, E. Massieu, and A. Ehrlacher. 2005. “The use of thermal analysis in assessing the effect of temperature on a cement paste.” Cem. Concr. Res. 35 (6): 609–613. https://doi.org/10.1016/j.cemconres.2004.06.015.
Al-Tayeb, M., B. Bakar, H. Ismail, and H. Akil. 2012. “Impact resistance of concrete with partial replacements of sand and cement by waste rubber.” Polym. Plast. Technol. Eng. 51 (12): 1230–1236. https://doi.org/10.1080/03602559.2012.696767.
Arioz, O. 2007. “Effects of elevated temperatures on properties of concrete.” Fire Saf. J. 42 (7): 516–522. https://doi.org/10.1016/j.firesaf.2007.01.003.
ASTM. 2017a. Standard test method for length change of hardened hydraulic-cement mortar and concrete. ASTM C157/C157M-17. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard test method for splitting tensile strength of cylindrical concrete specimens. ASTM C496/C496M-17. West Conshohocken, PA: ASTM.
ASTM. 2019a. Standard practice for making and curing concrete test specimens in the laboratory. West Conshohocken, PA: ASTM.
ASTM. 2019b. Standard test method for linear thermal expansion of solid materials by thermomechanical analysis. ASTM E831-19. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes. ASTM C1585-20. West Conshohocken, PA: ASTM.
ASTM. 2021. Standard test method for compressive strength of cylindrical concrete specimens. ASTM C39/C39M-21. West Conshohocken, PA: ASTM.
Backman, M., and W. Goldsmith. 1978. “The mechanics of penetration of projectiles into targets.” Int. J. Eng. Sci. 16 (4): 1–99. https://doi.org/10.1016/0020-7225(78)90002-2.
Bailey, C., and W. Toh. 2007. “Behaviour of concrete floor slabs at ambient and elevated temperatures.” Fire Saf. J. 42 (Jun): 425–436. https://doi.org/10.1016/j.firesaf.2006.11.009.
Bakharev, T. 2005. “Geopolymeric materials prepared using class F fly ash and elevated temperature curing.” Cem. Concr. Res. 35 (6): 1224–1232. https://doi.org/10.1016/j.cemconres.2004.06.031.
Bakharev, T., J. Sanjayan, and Y. Cheng. 1999. “Alkali activation of Australian slag cements.” Cem. Concr. Res. 29 (98): 113–120. https://doi.org/10.1016/S0008-8846(98)00170-7.
Bernal, S. 2015. “Effect of the activator dose on the compressive strength and accelerated carbonation resistance of alkali silicate-activated slag/metakaolin blended materials.” Constr. Build. Mater. 98 (5): 217–226. https://doi.org/10.1016/j.conbuildmat.2015.08.013.
Bisschop, J., and J. Mier. 2002. “Effect of aggregates on drying shrinkage microcracking in cement-based composites.” Mater. Struct. 35 (8): 453–461. https://doi.org/10.1007/BF02483132.
Cai, J., J. Pan, J. Han, Y. Lin, and Z. Sheng. 2021. “Impact behaviours of engineered geopolymer composite exposed to elevated temperatures.” Constr. Build. Mater. 312 (Dec): 125421. https://doi.org/10.1016/j.conbuildmat.2021.125421.
Carabba, L., R. Moricone, G. Scarponi, A. Tugnoli, and M. Bignozzi. 2019. “Alkali activated lightweight mortars for passive fire protection: A preliminary study.” Constr. Build. Mater. 195 (Jun): 75–84. https://doi.org/10.1016/j.conbuildmat.2018.11.005.
Cheema, D., N. Lloyd, and B. Rangan. 2009. “Durability of geopolymer concrete box culverts—A green alternative.” In Proc., 34th Conf. on Our World in Concrete and Structures. Singapore: CI-Premier PTE.
Chi, F., X. Jianhe, Z. Bingxue, Y. Bing, and W. Chonghao. 2017. “Impact properties of geopolymeric concrete: A state-of-the-art review.” Mater. Sci. Eng. 284 (1): 012012. https://doi.org/10.1088/1757-899X/284/1/012012.
CSA (Canadian Standards Association). 2013. Cementitious materials compendium. Toronto: CSA Group.
Cusatis, G. 2011. “Strain-rate effects on concrete behavior.” Int. J. Impact Eng. 38 (4): 162–170. https://doi.org/10.1016/j.ijimpeng.2010.10.030.
Dener, M., M. Karatas, and M. Mohabbi. 2021. “High temperature resistance of self-compacting alkali activated slag/portland cement composite using lightweight aggregate.” Constr. Build. Mater. 290 (Jul): 123250. https://doi.org/10.1016/j.conbuildmat.2021.123250.
Dombrowski, K., A. Buchwald, and M. Weil. 2007. “The influence of calcium content on the structure and thermal performance of fly ash based geopolymers.” J. Mater. Sci. 42 (5): 3033–3043. https://doi.org/10.1007/s10853-006-0532-7.
Duxson, P., A. Fernandez-Jimenez, J. Provis, G. Lukey, A. Palomo, and J. Deventer. 2007. “Geopolymer technology: The current state of the art.” J. Mater. Sci. 42 (9): 2917–2933. https://doi.org/10.1007/s10853-006-0637-z.
Escalante-García, J., A. Fuentes, A. Gorokhovsky, P. Fraire-Luna, and G. Mendoza-Suarez. 2003. “Hydration products and reactivity of blast-furnace slag activated by various alkalis.” J. Am. Ceram. Soc. 86 (12): 2148–2153. https://doi.org/10.1111/j.1151-2916.2003.tb03623.x.
Fan, F., J. Xu, W. Li, J. Yang, and Y. Zhai. 2009. “Impact mechanical properties of slag- and fly ash-based geopolymer concrete.” Explosion Shock Waves 29 (23): 516–522.
Fu, Y., and L. Li. 2011. “Study on mechanism of thermal spalling in concrete exposed to elevated temperatures.” Mater. Struct. 44 (1): 361–376. https://doi.org/10.1617/s11527-010-9632-6.
Fu, Y., Y. Wong, C. Poon, C. Tang, and P. Lin. 2004. “Experimental study of micro/macro crack development and stress-strain relations of cement-based composite materials at elevated temperatures.” Cem. Concr. Res. 34 (5): 789–797. https://doi.org/10.1016/j.cemconres.2003.08.029.
Grassl, P., H. Wong, and N. Buenfeld. 2010. “Influence of aggregate size and volume fraction on shrinkage induced micro-cracking of concrete and mortar.” Cem. Concr. Res. 40 (1): 85–93. https://doi.org/10.1016/j.cemconres.2009.09.012.
Gruskovnjak, A., B. Lothenbach, L. Holzer, R. Figi, and F. Winnefeld. 2006. “Hydration of alkali-activated slag: Comparison with ordinary portland cement.” Adv. Cem. Res. 18 (3): 119–128. https://doi.org/10.1680/adcr.2006.18.3.119.
Guerrieri, M., J. Sanjayan, and F. Collins. 2010. “Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated temperatures.” Mater. Struct. 43 (6): 765–773. https://doi.org/10.1617/s11527-009-9546-3.
Hager, I., M. Sitarz, and K. Mróz. 2021. “Fly-ash based geopolymer mortar for high-temperature application—Effect of slag addition.” J. Cleaner Prod. 316 (Sep): 128168. https://doi.org/10.1016/j.jclepro.2021.128168.
Haha, M. B., G. Le Saout, F. Winnefeld, and B. Lothenbach. 2011. “Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags.” Cem. Concr. Res. 41 (3): 301–310. https://doi.org/10.1016/j.cemconres.2010.11.016.
Hajilar, S., and B. Shafei. 2016. “Assessment of structural, thermal, and mechanical properties of portlandite through molecular dynamics simulations.” J. Solid State Chem. 244 (5): 164–174. https://doi.org/10.1016/j.jssc.2016.09.026.
Handoo, S., S. Agarwal, and S. Agarwal. 2002. “Physicochemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures.” Cem. Concr. Res. 32 (7): 1009–1018. https://doi.org/10.1016/S0008-8846(01)00736-0.
Hughes, G. 1984. “Hard missile impact on reinforced concrete.” Nucl. Eng. Des. 77 (Apr): 23–35. https://doi.org/10.1016/0029-5493(84)90058-X.
Idiart, A., J. Bisschop, and A. Caballero, and P. Lura. 2012. “A numerical and experimental study of aggregate-induced shrinkage cracking in cementitious composites.” Cem. Concr. Res. 42 (Feb): 272–281. https://doi.org/10.1016/j.cemconres.2011.09.013.
Jumppanen, U., U. Diederichs, and K. Hinrichsmeyer. 1986. Material properties of F-concrete at high temperatures: VTT technical research Centre of Finland. Espoo, Finland: VTT Technical Research Centre of Finland.
Karahan, O., and A. Yakupoğlu. 2011. “Resistance of alkali-activated slag mortar to abrasion and fire.” Adv. Cem. Res. 23 (6): 289–297. https://doi.org/10.1680/adcr.2011.23.6.289.
Kennedy, R. 1976. “A review of procedures for the analysis and design of concrete structures to resist missile impact effects.” Nucl. Eng. Des. 37 (2): 183–203. https://doi.org/10.1016/0029-5493(76)90015-7.
Khoury, G. 1992. “Compressive strength of concrete at high temperatures: Reassessment.” Mag. Concr. Res. 44 (161): 291. https://doi.org/10.1680/macr.1992.44.161.291.
Kong, D., and J. Sanjayan. 2008. “Damage behavior of geopolymer composites exposed to elevated temperatures.” Cem. Concr. Compos. 30 (10): 986–991. https://doi.org/10.1016/j.cemconcomp.2008.08.001.
Kong, D., and J. Sanjayan. 2010. “Effect of elevated temperatures on geopolymer paste, mortar and concrete.” Cem. Concr. Res. 40 (2): 334–339. https://doi.org/10.1016/j.cemconres.2009.10.017.
Kong, D., J. Sanjayan, and K. Sagoe-Crentsil. 2007. “Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures.” Cem. Concr. Res. 37 (12): 1583–1589. https://doi.org/10.1016/j.cemconres.2007.08.021.
Krizan, D., and B. Zivanovic. 2002. “Effects of dosage and modulus of water glass on early hydration of alkali–slag cements.” Cem. Concr. Res. 32 (8): 1181–1188. https://doi.org/10.1016/S0008-8846(01)00717-7.
Li, W., and J. Xu. 2009. “Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar.” J. Mater. Sci. A 513 (Jul): 145–153.https://doi.org/10.1016/j.msea.2009.02.033.
Li, Y., X. Zhao, R. Raman, and S. Al-Saadi. 2018. “Thermal and mechanical properties of alkali-activated slag paste, mortar and concrete utilising seawater and sea sand.” Constr. Build. Mater. 159 (5): 704–724. https://doi.org/10.1016/j.conbuildmat.2017.10.104.
Mainstone, R. 1975. “Properties of materials at high rates of straining or loading.” Matériaux et Constr. 8 (2): 102–116. https://doi.org/10.1007/BF02476328.
Malvar, L., and C. Ross. 1998. “Review of strain rate effects for concrete in tension.” ACI Mater. J. 95 (6): 735–739.
Morsy, M. S., A. Galal, and S. Abo-El-Enein. 1998. “Effect of temperature on phase composition and microstructure of artificial pozzolana-cement pastes containing burnt kaolinite clay.” Cem. Concr. Res. 28 (8): 1157–1163. https://doi.org/10.1016/S0008-8846(98)00083-0.
Nasr, D., A. Pakshir, and H. Ghayour. 2018. “The influence of curing conditions and alkaline activator concentration on elevated temperature behavior of alkali activated slag (AAS) mortars.” Constr. Build. Mater. 190 (14): 108–119. https://doi.org/10.1016/j.conbuildmat.2018.09.099.
Neupane, K., D. Chalmers, and P. Kidd. 2018. “High-strength geopolymer concrete—Properties, advantages and challenges.” Adv. Mater. 7 (2): 15–25. https://doi.org/10.11648/j.am.20180702.11.
Pacheco-Torgal, F., J. Castro-Gomes, and S. Jalali. 2008. “Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products.” Constr. Build. Mater. 22 (7): 1305–1314. https://doi.org/10.1016/j.conbuildmat.2007.10.015.
Papanastasiou, P., and E. Sarris. 2017. “Cohesive zone models.” In Porous rock fracture mechanics, 119–144. Amsterdam, Netherlands: Elsevier.
Park, S., J. Jang, N. Lee, and H. Lee. 2016. “Physicochemical properties of binder gel in alkali-activated fly ash/slag exposed to high temperatures.” Cem. Concr. Res. 89 (Nov): 72–79. https://doi.org/10.1016/j.cemconres.2016.08.004.
Phan, L., and N. Carino. 2001. Mechanical properties of high-strength concrete at elevated temperatures. Gaithersburg, MD: National Institute of Standards and Technology.
Pourfalah, S. 2018. “Behaviour of engineered cementitious composites and hybrid engineered cementitious composites at high temperatures.” Constr. Build. Mater. 158 (Jan): 921–937. https://doi.org/10.1016/j.conbuildmat.2017.10.077.
Provis, J., and S. Bernal. 2014. “Geopolymers and related alkali-activated materials.” Annu. Rev. Mater. Res. 44 (Jul): 299–327. https://doi.org/10.1146/annurev-matsci-070813-113515.
Puertas, F., A. Gil-Maroto, M. Palacios, and T. Amat. 2006. “Alkali-activated slag mortars reinforced with AR glass fibre. Performance and properties.” Materiales de Construcción 56 (283): 79–90.
Rashad, A., Y. Bai, P. Basheer, N. Collier, and N. Milestone. 2012. “Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature.” Cem. Concr. Res. 42 (20): 333–343. https://doi.org/10.1016/j.cemconres.2011.10.007.
Rashad, A., Y. Bai, P. Basheer, N. Milestone, and N. Collier. 2013. “Hydration and properties of sodium sulfate activated slag.” Cem. Concr. Compos. 37 (5): 20–29. https://doi.org/10.1016/j.cemconcomp.2012.12.010.
Rashad, A., D. Sadek, and H. Hassan. 2016. “An investigation on blast-furnace slag as fine aggregate in alkali-activated slag mortars subjected to elevated temperatures.” J. Cleaner Prod. 112 (Jan): 1086–1096. https://doi.org/10.1016/j.jclepro.2015.07.127.
Rashad, A. M., D. M. Sadek, and H. A. Hassan. 2016. “An investigation on blast-furnace slag as fine aggregate in alkali-activated slag mortars subjected to elevated temperatures.” J. Cleaner Prod. 112: 1086–1096. https://doi.org/10.1016/j.jclepro.2015.07.127.
Reddy, A., D. Tulyaganov, A. Goel, S. Kapoor, M. Pascual, and J. Ferreira. 2013. “Sintering and devitrification of glass-powder compacts in the akermanite–gehlenite system.” J. Mater. Sci. 48 (11): 4128–4136. https://doi.org/10.1007/s10853-013-7225-9.
Richardson, I., A. Brough, G. Groves, and C. Dobson. 1994. “The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (CSH) phase.” Cem. Concr. Res. 24 (9): 813–829. https://doi.org/10.1016/0008-8846(94)90002-7.
Rovnaník, P., P. Bayer, and P. Rovnaníková. 2013. “Characterization of alkali activated slag paste after exposure to high temperatures.” Constr. Build. Mater. 47 (Oct): 1479–1487. https://doi.org/10.1016/j.conbuildmat.2013.06.070.
Sa, C., F. Benboudjema, M. Thiery, and J. Sicard. 2008. “Analysis of microcracking induced by differential drying shrinkage.” Cem. Concr. Compos. 30 (10): 947–956. https://doi.org/10.1016/j.cemconcomp.2008.06.015.
Sarker, P., P. Kelly, and Z. Yao. 2014. “Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete.” Mater. Des. 63 (Nov): 584–592. https://doi.org/10.1016/j.matdes.2014.06.059.
Sayed, D., F. El-Hosiny, S. El-Gamal, M. Hazem, and M. Ramadan. 2022. “Synergetic impacts of mesoporous α-Fe2O3 nanoparticles on the performance of alkali-activated slag against fire, gamma rays, and some microorganisms.” J. Build. Eng. 57 (Oct): 104947. https://doi.org/10.1016/j.jobe.2022.104947.
Seleem, H., A. Rashad, and T. Elsokary. 2011. “Effect of elevated temperature on physico-mechanical properties of blended cement concrete.” Constr. Build. Mater. 25 (2): 1009–1017. https://doi.org/10.1016/j.conbuildmat.2010.06.078.
Shoaei, P., P. Ghassemi, F. Ameri, H. Musaeei, C. Ban, and T. Ozbakkaloglu. 2021. “Comparative study on the effect of fiber type and content on the fire resistance of alkali-activated slag composites.” Constr. Build. Mater. 288 (Jun): 123136. https://doi.org/10.1016/j.conbuildmat.2021.123136.
Shouwen, Y., and F. Xiqiao. 1997. Damage mechanics, 319–325. Beijing: Tsinghua University Press.
Singh, B., G. Ishwarya, M. Gupta, and S. Bhattacharyya. 2015. “Geopolymer concrete: A review of some recent developments.” Constr. Build. Mater. 85 (Apr): 78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036.
Singh, B., M. Rahman, R. Paswan, and S. Bhattacharyya. 2016. “Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete.” Constr. Build. Mater. 118 (Aug): 171–179. https://doi.org/10.1016/j.conbuildmat.2016.05.008.
Soufeiani, L., S. Raman, M. Jumaat, U. Alengaram, G. Ghadyani, and P. Mendis. 2016. “Influences of the volume fraction and shape of steel fibers on fiber-reinforced concrete subjected to dynamic loading—A review.” Eng. Struct. 124 (Oct): 405–417. https://doi.org/10.1016/j.engstruct.2016.06.029.
Stetsko, Y., N. Shanahan, H. Deford, and A. Zayed. 2017. “Quantification of supplementary cementitious content in blended Portland cement using an iterative Rietveld-PONKCS technique.” J. Appl. Crystallogr. 50 (2): 498–507. https://doi.org/10.1107/S1600576717002965.
Su, H., J. Xu, and W. Ren. 2016. “Mechanical properties of geopolymer concrete exposed to dynamic compression under elevated temperatures.” Ceram. Int. 42 (3): 3888–3898. https://doi.org/10.1016/j.ceramint.2015.11.055.
Sun, Z., X. Lin, P. Liu, D. Wang, A. Vollpracht, and M. Oeser. 2018. “Study of alkali activated slag as alternative pavement binder.” Constr. Build. Mater. 186 (Oct): 626–634. https://doi.org/10.1016/j.conbuildmat.2018.07.154.
Sun, Z., and A. Vollpracht. 2018. “Isothermal calorimetry and in-situ XRD study of the NaOH activated fly ash, metakaolin and slag.” Cem. Concr. Res. 103 (Jan): 110–122. https://doi.org/10.1016/j.cemconres.2017.10.004.
Vaičiukynienė, D., D. Nizevičienė, A. Kielė, E. Janavičius, and D. Pupeikis. 2018. “Effect of phosphogypsum on the stability upon firing treatment of alkali-activated slag.” Constr. Build. Mater. 184 (Sep): 485–491. https://doi.org/10.1016/j.conbuildmat.2018.06.213.
Vossoughi, F., C. Ostertag, P. Monteiro, and G. Johnson. 2007. “Resistance of concrete protected by fabric to projectile impact.” Cem. Concr. Res. 37 (1): 96–106. https://doi.org/10.1016/j.cemconres.2006.09.003.
Wang, S., and K. Scrivener. 1995. “Hydration products of alkali activated slag cement.” Cem. Concr. Res. 25 (3): 561–571. https://doi.org/10.1016/0008-8846(95)00045-E.
Williams, R., R. Hart, and A. van Riessen. 2011. “Quantification of the extent of reaction of metakaoli-based geopolymers using X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy.” J. Am. Ceram. Soc. 94 (8): 2663–2670. https://doi.org/10.1111/j.1551-2916.2011.04410.x.
Wu, H., X. Lin, and A. Zhou. 2020. “A review of mechanical properties of fibre reinforced concrete at elevated temperatures.” Cem. Concr. Res. 135 (Sep): 106117. https://doi.org/10.1016/j.cemconres.2020.106117.
Wu, Z., H. Wong, and N. Buenfeld. 2015. “Influence of drying-induced microcracking and related size effects on mass transport properties of concrete.” Cem. Concr. Res. 68 (Feb): 35–48. https://doi.org/10.1016/j.cemconres.2014.10.018.
Wu, Z., H. Wong, C. Chen, and N. Buenfeld. 2019. “Anomalous water absorption in cement-based materials caused by drying shrinkage induced microcracks.” Cem. Concr. Res. 115 (Jan): 90–104. https://doi.org/10.1016/j.cemconres.2018.10.006.
Xu, J., W. Li, F. Fan, and E. Bai. 2009. “Study on mechanical properties of geopolymeric concrete under impact loading.” J. Vib. Shock 28 (5): 46–50.
Yadollahi, M., and M. Dener. 2019. “Investigation of elevated temperature on compressive strength and microstructure of alkali activated slag-based cements.” Eur. J. Environ. Civ. Eng. 25 (5): 924–938. https://doi.org/10.1080/19648189.2018.1557562.
Yang, A., Y. Lin, C. Hsiao, and J. Liu. 2009. “Evaluating residual compressive strength of concrete at elevated temperatures using ultrasonic pulse velocity.” Fire Saf. J. 44 (5): 121–130. https://doi.org/10.1016/j.firesaf.2008.05.003.
Yang, T., Q. Wu, H. Zhu, and Z. Zhang. 2017. “Geopolymer with improved thermal stability by incorporating high-magnesium nickel slag.” Constr. Build. Mater. 155 (5): 475–484. https://doi.org/10.1016/j.conbuildmat.2017.08.081.
Yankelevsky, D. 1997. “Local response of concrete slabs to low velocity missile impact.” Int. J. Impact Eng. 19 (4): 331–343. https://doi.org/10.1016/S0734-743X(96)00041-3.
Yardimci, M., S. Aydın, and M. Tuyan. 2017. “Flexural performance of alkali-activated slag cements under quasi-static and impact loading.” J. Mater. Civ. Eng. 29 (1): 04016192. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001701.
Yunsheng, Z., S. Wei, and L. Zongjin. 2006. “Impact behavior and microstructural characteristics of PVA fiber reinforced fly ash-geopolymer boards prepared by extrusion technique.” J. Mater. Sci. 41 (10): 2787–2794. https://doi.org/10.1007/s10853-006-6293-5.
Zhang, M., V. Shim, G. Lu, and C. Chew. 2005. “Resistance of high-strength concrete to projectile impact.” Int. J. Impact Eng. 31 (7): 825–841. https://doi.org/10.1016/j.ijimpeng.2004.04.009.
Zhang, Q., T. Ji, Z. Yang, C. Wang, and H. Wu. 2020. “Influence of different activators on microstructure and strength of alkali-activated nickel slag cementitious materials.” Constr. Build. Mater. 235 (6): 117449. https://doi.org/10.1016/j.conbuildmat.2019.117449.
Zhu, P., J. Sanjayan, and B. Rangan. 2009. “An investigation of the mechanisms for strength gain or loss of geopolymer mortar after exposure to elevated temperature.” J. Mater. Sci. 44 (7): 1873–1880. https://doi.org/10.1007/s10853-009-3243-z.
Zineddin, M., and T. Krauthammer. 2007. “Dynamic response and behavior of reinforced concrete slabs under impact loading.” Int. J. Impact Eng. 34 (9): 1517–1534. https://doi.org/10.1016/j.ijimpeng.2006.10.012.
Zuo, Y., M. Nedeljković, and G. Ye. 2018. “Coupled thermodynamic modelling and experimental study of sodium hydroxide activated slag.” Constr. Build. Mater. 188 (9): 262–279. https://doi.org/10.1016/j.conbuildmat.2018.08.087.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 7July 2023

History

Received: Mar 29, 2022
Accepted: Oct 20, 2022
Published online: Apr 18, 2023
Published in print: Jul 1, 2023
Discussion open until: Sep 18, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Professor, Dept. of Building, Civil and Environmental Engineering, Concordia Univ., Montreal, QC, Canada H3G 1M8 (corresponding author). ORCID: https://orcid.org/0000-0002-4785-9280. Email: [email protected]
A. E. Abubakr [email protected]
Ph.D. Candidate, Dept. of Building, Civil and Environmental Engineering, Concordia Univ., Montreal, QC, Canada H3G 1M8. Email: [email protected]
Ph.D. Candidate, Dept. of Building, Civil and Environmental Engineering, Concordia Univ., Montreal, QC, Canada H3G 1M8. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share