Technical Papers
May 29, 2023

Feasibility of Concurrent Improvement of Pollutants-Absorption Ability from Surface Runoff and Mechanical Performance of Asphalt Mixtures by Using Photocatalytic Nanomodified Porous Asphalt

Publication: Journal of Materials in Civil Engineering
Volume 35, Issue 8

Abstract

There has been an ever-climbing trend toward environmental concerns in addition to road technical issues, resulting in the testing of new high-quality pavements. First, due to the presence of acidic contaminants in surface runoffs in developed areas rooted in acid rainfall, researchers have discovered that these polluted runoffs can pollute groundwater reserves and are harmful to humans. Second, the porous asphalt (PA) mixtures as a hot mix pavement with an empty space structure have significant performance limitations such as low strength and durability because of their large amount of air voids. Therefore, a novel high-quality and photocatalyst PA pavement with the ability to absorb contaminants from acidic water was introduced at the lab scale in this study. For this aim, PA mixes modified with photocatalytic nanoparticles such as nano zinc oxide (ZnO) and nanosilica (SiO2) were fabricated. The sol-gel method was used to manufacture photocatalytic based on ZnO/SiO2 (ZS) in this research. The aforementioned compound reacts with UV light and oxidizes pollutant particles, including nitrogen oxides (NOx) and sulfur oxides (SOx). This novel PA mix was tested by environmental tests (pollutants absorption) and mechanical performance tests (dynamic creep, resilient modulus, moisture susceptibility, and fatigue life). The results demonstrated that adding the photocatalytic nano-ZS to the bitumen effectively removed acidic contaminants such as NO3 and SO4 from the water by an average of 48% in 24 hours. Besides, results showed that the addition of nano-ZS increased the moisture susceptibility and stiffness of PA mixtures by an average of 45% and caused a dramatic improvement in the rutting resistance of mixes. Moreover, nano-ZS-modified PA mixes had longer fatigue lives than conventional ones. It should be noted that the optimum amount of nano-ZS in PA mixes in this study was 7%.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

AASHTO. 1986. AASHTO guide for design of pavement structures. Washington, DC: AASHTO.
AASHTO. 2014. Standard method of test for resistance of compacted asphalt mixtures to moisture-induced damage. AASHTO T 283-14. Washington, DC: AASHTO.
AASHTO. 2017a. Standard method of test for determining the fatigue life of compacted asphalt mixtures subjected to repeated flexural bending. AASHTO T 321-17. West Conshohocken, PA: ASTM.
AASHTO. 2017b. Standard specification for stone matrix asphalt (SMA). AASHTO M 325-08. Washington, DC: AASHTO.
Aljubory, A., Z. T. Teama, H. T. Salman, and H. M. Abd Alkareem. 2021. “Effects of cellulose fibers on the properties of asphalt mixtures.” Mater. Today. Proc. 42 (2): 2941–2947. https://doi.org/10.1016/j.matpr.2020.12.772.
Al-Kaissi, Z. A., and O. G. Mashkoor. 2016. “Durability of porous asphalt pavement.” J. Eng. Sustainable Develop. 20 (4): 53–70.
Ameri, M., A. H. Sheikhmotevali, and A. Fasihpour. 2014. “Evaluation and comparison of flow number calculation methods.” Road Mater. Pavement Des. 15 (1): 182–206. https://doi.org/10.1080/14680629.2013.868819.
Arabzadeh, A., H. Ceylan, S. Kim, K. Gopalakrishnan, and A. Sassani. 2016. “Superhydrophobic coatings on asphalt concrete surfaces: Toward smart solutions for winter pavement maintenance.” Transp. Res. Rec. 2551 (1): 10–17. https://doi.org/10.3141/2551-02.
Arshad, A. K., J. Ahmad, and K. A. Masri. 2019. “Rutting resistance of nanosilica modified porous asphalt.” Int. J. Civ. Eng. Technol. 10 (1): 2274–2284.
Ashish, P. K., and D. Singh. 2022. “Performance-based laboratory evaluation of asphaltic mixture containing asphalt binder-Carbon Nano Tube composite.” Road Mater. Pavement Des. 23 (6): 1370–1389. https://doi.org/10.1080/14680629.2021.1888779.
ASTM. 1995. Standard test method for indirect tension test for resilient modulus of bituminous mixtures. ASTM D4123. West Conshohocken, PA: ASTM.
Badroodi, S. K., M. R. Keymanesh, and G. Shafabakhsh. 2020. “Experimental investigation of the fatigue phenomenon in nano silica-modified warm mix asphalt containing recycled asphalt considering self-healing behavior.” Constr. Build. Mater. 246 (3): 117558. https://doi.org/10.1016/j.conbuildmat.2019.117558.
Behbahani, H., H. Ziari, N. Kamboozia, A. M. Khaki, and S. Mirabdolazimi. 2015. “Evaluation of performance and moisture sensitivity of glasphalt mixtures modified with nanotechnology zycosoil as an anti-stripping additive.” Constr. Build. Mater. 78 (Dec): 60–68. https://doi.org/10.1016/j.conbuildmat.2014.12.053.
Bonaquist, R., B. Underwood, L. Mohammad, M. Eseifi, and T. Bennert. 2014. Enhancing the durability of asphalt pavements. Washington, DC: Transportation Research Circular.
Bonaquist, R. F. 2008. Ruggedness testing of the dynamic modulus and flow number tests with the simple performance tester. Washington, DC: Transportation Research Board.
Cândido, C., R. de Dear, and M. Ohba. 2012. “Effects of artificially induced heat acclimatization on subjects’ thermal and air movement preferences.” Build. Environ. 49 (Jun): 251–258. https://doi.org/10.1016/j.buildenv.2011.09.032.
Cao, X., X. Yang, H. Li, W. Huang, and X. Liu. 2017. “Investigation of Ce-TiO2 photocatalyst and its application in asphalt-based specimens for NO degradation.” Constr. Build. Mater. 148 (Apr): 824–832. https://doi.org/10.1016/j.conbuildmat.2017.05.095.
Carneiro, J., S. Azevedo, V. Teixeira, F. Fernandes, E. Freitas, H. Silva, and J. Oliveira. 2013. “Development of photocatalytic asphalt mixtures by the deposition and volumetric incorporation of TiO2 nanoparticles.” Constr. Build. Mater. 38 (Jan): 594–601. https://doi.org/10.1016/j.conbuildmat.2012.09.005.
Chandraboss, V. L., B. Karthikeyan, J. Kamalakkannan, S. Prabha, and S. Senthilvelan. 2013. “Sol-Gel synthesis of TiO2/SiO2 and ZnO/SiO2 composite films and evaluation of their photocatalytic activity towards Methyl Green.” J. Nanoparticles 2013 (1): 13–15. https://doi.org/10.1155/2013/507161.
Cong, L., M. Ren, J. Shi, F. Yang, and G. Guo. 2020. “Experimental investigation on performance deterioration of asphalt mixture under freeze–thaw cycles.” Int. J. Transp. Sci. Technol. 9 (3): 218–228. https://doi.org/10.1016/j.ijtst.2020.04.004.
Daryaee, D., M. Ameri, and A. Mansourkhaki. 2020. “Utilizing of waste polymer modified bitumen in combination with rejuvenator in high reclaimed asphalt pavement mixtures.” Constr. Build. Mater. 235 (9): 117516. https://doi.org/10.1016/j.conbuildmat.2019.117516.
Fan, W., K. Y. Chan, C. Zhang, K. Zhang, Z. Ning, and M. K. Leung. 2018. “Solar photocatalytic asphalt for removal of vehicular NOx: A feasibility study.” Appl. Energy 225 (Sep): 535–541. https://doi.org/10.1016/j.apenergy.2018.04.134.
Feng, X., Q. Liu, S. Wang, L. Cen, and H. Li. 2021. “Arsenopyrite weathering in acid rain: Arsenic transfer and environmental implications.” J. Hazard. Mater. 420 (Oct): 126612. https://doi.org/10.1016/j.jhazmat.2021.126612.
Francken, L. 1977. “Permanent deformation law of bituminous road mixes in repeated triaxial compression.” In Vol. 1 of Proc., 4th Int. Conf. on Structural Design of Asphalt Pavements. Ann Arbor, MI: Univ. of Michigan.
Gao, W., X. Zhang, X. Su, F. Wang, Z. Liu, B. Liu, J. Zhan, H. Liu, and Y. Sang. 2018. “Construction of bimetallic Pd-Ag enhanced AgBr/TiO2 hierarchical nanostructured photocatalytic hybrid capillary tubes and devices for continuous photocatalytic degradation of VOCs.” Chem. Eng. J. 346 (Jun): 77–84. https://doi.org/10.1016/j.cej.2018.04.017.
Gharaibeh, H. M. 2013. “Managing the cost of power transmission projects: Lessons learned.” J. Constr. Eng. Manage. 139 (8): 1063–1067. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000665.
Guo, G., and H. Zhang. 2021. “The effect of morphology of ZnO particle on properties of asphalt binder and mixture.” Int. J. Transp. Sci. Technol. 11 (3): 437–454. https://doi.org/10.1016/j.ijtst.2021.05.005.
Guo, W., X. Guo, M. Chang, and W. Dai. 2018. “Evaluating the effect of hydrophobic nanosilica on the viscoelasticity property of asphalt and asphalt mixture.” Materials (Basel) 11 (11): 2328. https://doi.org/10.3390/ma11112328.
Hamedi, G. H., F. M. Nejad, and K. Oveisi. 2016. “Estimating the moisture damage of asphalt mixture modified with nano zinc oxide.” Mater. Struct. 49 (4): 1165–1174. https://doi.org/10.1617/s11527-015-0566-x.
Hu, Z., T. Xu, P. Liu, and G. Jin. 2020. “Developed photocatalytic semi-flexible pavement for automobile exhaust purification using iron-doped titanium dioxide.” Constr. Build. Mater. 262 (11): 119924. https://doi.org/10.1016/j.conbuildmat.2020.119924.
Hu, Z., T. Xu, P. Liu, and M. Oeser. 2021. “Developed photocatalytic asphalt mixture of open graded friction course for degrading vehicle exhaust.” J. Cleaner Prod. 279 (Apr): 123453. https://doi.org/10.1016/j.jclepro.2020.123453.
Jiang, W., A. Sha, J. Xiao, Y. Li, and Y. Huang. 2015. “Experimental study on filtration effect and mechanism of pavement runoff in permeable asphalt pavement.” Constr. Build. Mater. 100 (Jun): 102–110. https://doi.org/10.1016/j.conbuildmat.2015.09.055.
Jiménez-Relinque, E., R. Hingorani, F. Rubiano, M. Grande, Á. Castillo, and M. Castellote. 2019. “In situ evaluation of the NOx removal efficiency of photocatalytic pavements: Statistical analysis of the relevance of exposure time and environmental variables.” Environ. Sci. Pollut. Res. 26 (36): 36088–36095. https://doi.org/10.1007/s11356-019-04322-y.
JKR/SPJ/-S4. 2008. Standard specification for road works. Kuala Lumpur, Malaysia: Malaysian Public Works Department.
Jomoor, N. B., M. Fakhri, and M. R. Keymanesh. 2019. “Determining the optimum amount of recycled asphalt pavement (RAP) in warm stone matrix asphalt using dynamic creep test.” Constr. Build. Mater. 228 (Apr): 116736. https://doi.org/10.1016/j.conbuildmat.2019.116736.
Kamboozia, N., S. Mousavi Rad, and S. A. Saed. 2022. “Laboratory investigation of the effect of Nano-ZnO on the fracture and rutting resistance of porous asphalt mixture under the aging condition and freeze–Thaw cycle.” J. Mater. Civ. Eng. 34 (5): 04022052. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004187.
Kamboozia, N., S. A. Saed, and S. M. Rad. 2021. “Rheological behavior of asphalt binders and fatigue resistance of SMA mixtures modified with nano-silica containing RAP materials under the effect of mixture conditioning.” Constr. Build. Mater. 303 (Dec): 124433. https://doi.org/10.1016/j.conbuildmat.2021.124433.
Karahancer, S. S., M. Kiristi, S. Terzi, M. Saltan, A. U. Oksuz, and L. Oksuz. 2014. “Performance evaluation of nano-modified asphalt concrete.” Constr. Build. Mater. 71 (Jun): 283–288. https://doi.org/10.1016/j.conbuildmat.2014.08.072.
Kordi, Z., and G. Shafabakhsh. 2017. “Evaluating mechanical properties of stone mastic asphalt modified with Nano Fe2O3.” Constr. Build. Mater. 134 (Dec): 530–539. https://doi.org/10.1016/j.conbuildmat.2016.12.202.
Leiva-Villacorta, F., and A. Vargas-Nordcbeck. 2019. “Optimum content of nano-silica to ensure proper performance of an asphalt binder.” Road Mater. Pavement Des. 20 (2): 414–425. https://doi.org/10.1080/14680629.2017.1385510.
Li, R., F. Xiao, S. Amirkhanian, Z. You, and J. Huang. 2017. “Developments of nano materials and technologies on asphalt materials–A review.” Constr. Build. Mater. 143 (Mar): 633–648. https://doi.org/10.1016/j.conbuildmat.2017.03.158.
Ma, X., Q. Li, Y.-C. Cui, and A.-Q. Ni. 2018. “Performance of porous asphalt mixture with various additives.” Int. J. Pavement Eng. 19 (4): 355–361. https://doi.org/10.1080/10298436.2016.1175560.
Mahdavi, M., P. Clouston, and S. Arwade. 2011. “Development of laminated bamboo lumber: Review of processing, performance, and economical considerations.” J. Mater. Civ. Eng. 23 (7): 1036–1042. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000253.
Masri, K., H. Awang, R. P. Jaya, M. Ali, N. Ramli, and A. Arshad. 2019. “Moisture susceptibility of porous asphalt mixture with Nano silica modified asphalt binder.” In Proc., IOP Conf. Series: Earth and Environmental Science. 012028. Bristol, UK: IOP Publishing.
Masri, K. A., A. K. Arshad, and M. S. Samsudin. 2016. “Mechanical properties of porous asphalt with nanosilica modified binder.” Jurnal Teknologi 78 (7–2): 95. https://doi.org/10.11113/jt.v78.9509.
Mirbaha, B., A. Abdi, M. Zarei, and A. Zarei. 2017. “Experimental determination of the optimum percentage of asphalt mixtures reinforced with Nano-carbon black and polyester fiber industries.” Eng. Solid Mech. 5 (4): 285–292. https://doi.org/10.5267/j.esm.2017.8.002.
Mirdarsoltany, M., A. Rahai, and F. Hatami. 2021. “Experimental investigation on the ductility of concrete deep beams reinforced with basalt-carbon and basalt-steel wire hybrid composite bars.” Shock Vib. 2021 (1): 1–8. https://doi.org/10.1155/2021/6866993.
MolaAbasi, H., M. Saberian, and J. Li. 2019. “Prediction of compressive and tensile strengths of zeolite-cemented sand using porosity and composition.” Constr. Build. Mater. 202 (6): 784–795. https://doi.org/10.1016/j.conbuildmat.2019.01.065.
Mousavi Rad, S., N. Kamboozia, K. Anupam, and S. A. Saed. 2022. “Experimental evaluation of the fatigue performance and self-healing behavior of nanomodified porous asphalt mixtures containing RAP materials under the aging condition and freeze–Thaw cycle.” J. Mater. Civ. Eng. 34 (12): 04022323. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004488.
Nazari, H., K. Naderi, and F. M. Nejad. 2018. “Improving aging resistance and fatigue performance of asphalt binders using inorganic nanoparticles.” Constr. Build. Mater. 170 (Jun): 591–602. https://doi.org/10.1016/j.conbuildmat.2018.03.107.
Nevshupa, R., E. Jimenez-Relinque, M. Grande, E. Martinez, and M. Castellote. 2020. “Assessment of urban air pollution related to potential nanoparticle emission from photocatalytic pavements.” J. Environ. Manage. 272 (Oct): 111059. https://doi.org/10.1016/j.jenvman.2020.111059.
Ni, M., and M. K. Leung. 2007. “DYC, and K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production.” J. Renewable Sustainable Energy Rev. 11 (Jun): 401–425. https://doi.org/10.1016/j.rser.2005.01.009.
Pantohan, E., R. Candidato, and R. Vequizo. 2015. “Surface characteristics and structural properties of sol-gel prepared ZnO-SiO2 nanocomposite powders.” In Proc., IOP Conf. Series: Materials Science and Engineering, 012024. Bristol, UK: IOP Publishing.
Pasquier, A., and M. André. 2017. “Considering criteria related to spatial variabilities for the assessment of air pollution from traffic.” Transp. Res. Procedia 25 (May): 3354–3369. https://doi.org/10.1016/j.trpro.2017.05.210.
Poulikakos, L., and M. Partl. 2009. “Evaluation of moisture susceptibility of porous asphalt concrete using water submersion fatigue tests.” Constr. Build. Mater. 23 (12): 3475–3484. https://doi.org/10.1016/j.conbuildmat.2009.08.016.
Qian, G., X. Zhu, H. Yu, C. Shi, and D. Yao. 2022. “The oil pollution and nitric oxide photocatalytic degradation evaluation of composite nanomaterials for asphalt pavement.” Constr. Build. Mater. 314 (3): 125497. https://doi.org/10.1016/j.conbuildmat.2021.125497.
Razavi, S.-H., and A. Kavussi. 2020. “The role of nanomaterials in reducing moisture damage of asphalt mixes.” Constr. Build. Mater. 239 (8): 117827. https://doi.org/10.1016/j.conbuildmat.2019.117827.
Rocha Segundo, I., E. Freitas, S. Landi, M. F. Costa, and J. O. Carneiro. 2019. “Smart, photocatalytic and self-cleaning asphalt mixtures: A literature review.” Coatings 9 (11): 696. https://doi.org/10.3390/coatings9110696.
Saed, S. A., N. Kamboozia, and S. Mousavi Rad. 2022a. “Performance evaluation of stone matrix asphalt mixtures and low-temperature properties of asphalt binders containing reclaimed asphalt pavement materials modified with nanosilica.” J. Mater. Civ. Eng. 34 (1): 04021380. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004016.
Saed, S. A., H. R. Karimi, S. M. Rad, M. Aliha, X. Shi, and P. J. Haghighatpour. 2022b. “Full range I/II fracture behavior of asphalt mixtures containing RAP and rejuvenating agent using two different 3-point bend type configurations.” Constr. Build. Mater. 314 (6): 125590. https://doi.org/10.1016/j.conbuildmat.2021.125590.
Saeli, M., D. M. Tobaldi, N. Rozman, A. S. Škapin, J. A. Labrincha, and R. C. Pullar. 2017. “Photocatalytic nano-composite architectural lime mortar for degradation of urban pollutants under solar and visible (interior) light.” Constr. Build. Mater. 152 (Oct): 206–213. https://doi.org/10.1016/j.conbuildmat.2017.06.167.
Segundo, I. R., C. Ferreira, E. Freitas, J. Carneiro, F. Fernandes, S. L. Júnior, and M. Costa. 2018. “Assessment of photocatalytic, superhydrophobic and self-cleaning properties on hot mix asphalts coated with TiO2 and/or ZnO aqueous solutions.” Constr. Build. Mater. 166 (Mar): 500–509. https://doi.org/10.1016/j.conbuildmat.2018.01.106.
Segundo, I. R., E. Freitas, V. C. Branco, S. Landi, M. Costa, and J. Carneiro. 2021. “Review and analysis of advances in functionalized, smart, and multifunctional asphalt mixtures.” Renewable Sustainable Energy Rev. 151 (9): 111552. https://doi.org/10.1016/j.rser.2021.111552.
Sezavar, R., G. Shafabakhsh, and S. Mirabdolazimi. 2019. “New model of moisture susceptibility of nano silica-modified asphalt concrete using GMDH algorithm.” Constr. Build. Mater. 211 (Jun): 528–538. https://doi.org/10.1016/j.conbuildmat.2019.03.114.
Shadman, M., and H. Ziari. 2017. “Laboratory evaluation of fatigue life characteristics of polymer modified porous asphalt: A dissipated energy approach.” Constr. Build. Mater. 138 (May): 434–440. https://doi.org/10.1016/j.conbuildmat.2017.02.043.
Shafabakhsh, G., and O. J. Ani. 2015. “Experimental investigation of effect of Nano TiO2/SiO2 modified bitumen on the rutting and fatigue performance of asphalt mixtures containing steel slag aggregates.” Constr. Build. Mater. 98 (Nov): 692–702. https://doi.org/10.1016/j.conbuildmat.2015.08.083.
Shafabakhsh, G. A., M. Sadeghnejad, B. Ahoor, and E. Taheri. 2020. “Laboratory experiment on the effect of nano SiO2 and TiO2 on short and long-term aging behavior of bitumen.” Constr. Build. Mater. 237 (5): 117640. https://doi.org/10.1016/j.conbuildmat.2019.117640.
Slebi-Acevedo, C. J., P. Lastra-González, I. Indacoechea-Vega, and D. Castro-Fresno. 2020. “Laboratory assessment of porous asphalt mixtures reinforced with synthetic fibers.” Constr. Build. Mater. 234 (Dec): 117224. https://doi.org/10.1016/j.conbuildmat.2019.117224.
Taherkhani, H., and S. Afroozi. 2016. “The properties of nanosilica-modified asphalt cement.” Pet. Sci. Technol. 34 (15): 1381–1386. https://doi.org/10.1080/10916466.2016.1205604.
Taherkhani, H., S. Afroozi, and S. Javanmard. 2017. “Comparative study of the effects of nanosilica and zyco-soil nanomaterials on the properties of asphalt concrete.” J. Mater. Civ. Eng. 29 (8): 04017054. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001889.
Tanzadeh, J., R. Tanzadeh, H. Nazari, and N. Kamvar. 2017. “Fatigue evaluation of hot mix asphalt (HMA) mixtures modified by optimum percent of TiO2 nanoparticles.” In Proc., Advanced Engineering Forum. 55–62. Zurich, Switzerland: Trans Tech Publ.
Tanzadeh, J., F. Vahedi, P. T. Kheiry, and R. Tanzadeh. 2013. “Laboratory study on the effect of nano TiO2 on rutting performance of asphalt pavements.” In Proc., Advanced Materials Research, 990–994. Zurich, Switzerland: Trans Tech Publ.
Wang, D., Z. Leng, M. Hüben, M. Oeser, and B. Steinauer. 2016. “Photocatalytic pavements with epoxy-bonded TiO2-containing spreading material.” Constr. Build. Mater. 107 (4): 44–51. https://doi.org/10.1016/j.conbuildmat.2015.12.164.
Wang, D., Z. Leng, H. Yu, M. Hüben, J. Kollmann, and M. Oeser. 2017. “Durability of epoxy-bonded TiO2-modified aggregate as a photocatalytic coating layer for asphalt pavement under vehicle tire polishing.” Wear 382 (Jul): 1–7. https://doi.org/10.1016/j.wear.2017.04.004.
Wu, J., Y. Wang, Q. Liu, Y. Wang, C. Ago, and M. Oeser. 2020. “Investigation on mechanical performance of porous asphalt mixtures treated with laboratory aging and moisture actions.” Constr. Build. Mater. 238 (Mar): 117694. https://doi.org/10.1016/j.conbuildmat.2019.117694.
Xu, X., H. Guo, X. Wang, M. Zhang, Z. Wang, and B. Yang. 2019. “Physical properties and anti-aging characteristics of asphalt modified with nano-zinc oxide powder.” Constr. Build. Mater. 224 (Nov): 732–742. https://doi.org/10.1016/j.conbuildmat.2019.07.097.
Yao, H., Z. You, L. Li, C. H. Lee, D. Wingard, Y. K. Yap, X. Shi, and S. W. Goh. 2013. “Rheological properties and chemical bonding of asphalt modified with nanosilica.” J. Mater. Civ. Eng. 25 (11): 1619–1630. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000690.
Yousefi, A., A. Behnood, A. Nowruzi, and H. Haghshenas. 2021. “Performance evaluation of asphalt mixtures containing warm mix asphalt (WMA) additives and reclaimed asphalt pavement (RAP).” Constr. Build. Mater. 268 (Jan): 121200. https://doi.org/10.1016/j.conbuildmat.2020.121200.
Zhang, H., K. Anupam, A. Scarpas, C. Kasbergen, and S. Erkens. 2020. “Effect of stone-on-stone contact on porous asphalt mixes: Micromechanical analysis.” Int. J. Pavement Eng. 21 (8): 990–1001. https://doi.org/10.1080/10298436.2019.1654105.
Zhang, K., Y. Liu, S. Nassiri, H. Li, and K. Englund. 2021. “Performance evaluation of porous asphalt mixture enhanced with high dosages of cured carbon fiber composite materials.” Constr. Build. Mater. 274 (Mar): 122066. https://doi.org/10.1016/j.conbuildmat.2020.122066.
Zhong, J. B., J. Z. Li, X. Y. He, J. Zeng, Y. Lu, J. J. He, and F. Zhong. 2014. “Fabrication and catalytic performance of SiO2-ZnO composite photocatalyst.” Synth. Reactivity Inorganic Metal-Organic Nano-Metal Chemis. 44 (8): 1203–1207. https://doi.org/10.1080/15533174.2013.799208.
Ziari, H., M. Aliha, A. Moniri, and Y. Saghafi. 2020. “Crack resistance of hot mix asphalt containing different percentages of reclaimed asphalt pavement and glass fiber.” Constr. Build. Mater. 230 (Jan): 117015. https://doi.org/10.1016/j.conbuildmat.2019.117015.
Ziari, H., M. Nakhaei, A. Akbari Nasrekani, and A. Moniri. 2016. “Characterization of rutting resistance of EBS-modified asphalt mixtures.” Pet. Sci. Technol. 34 (13): 1107–1112. https://doi.org/10.1080/10916466.2016.1181655.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 8August 2023

History

Received: Mar 18, 2022
Accepted: Jan 3, 2023
Published online: May 29, 2023
Published in print: Aug 1, 2023
Discussion open until: Oct 29, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

M.Sc. Student, School of Civil Engineering, Iran Univ. of Science and Technology, P.O. Box 16765-163, Tehran, Iran. ORCID: https://orcid.org/0000-0002-2234-0108. Email: [email protected]
Assistant Professor, School of Civil Engineering, Iran Univ. of Science and Technology, P.O. Box 16765-163, Tehran, Iran (corresponding author). ORCID: https://orcid.org/0000-0002-6625-7680. Email: [email protected]
Mahmoud Ameri [email protected]
Professor, School of Civil Engineering, Iran Univ. of Science and Technology, P.O. Box 16765-163, Tehran, Iran. Email: [email protected]
Assistant Professor, Faculty of Engineering, Univ. of Guilan, P.O. Box 41625-1841, Guilan, Iran. ORCID: https://orcid.org/0000-0001-9089-1406. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share