Abstract

This study aimed to investigate the role of chemical and autogenous shrinkage as well as microstructure of a hybrid system composed of alkali-activated ash blended with portland cement. Three alkali-activated binders were produced with 30% portland cement and different types of ash (70% of bottom ash, 70% of rice husk ash, or 35% of each type of ash). Chemical shrinkage was measured by the buoyancy method. The microstructural and surface analysis were investigated by scanning electron microscopy (SEM), nitrogen adsorption-desorption isotherms, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analyses. Autogenous shrinkage, rather than chemical shrinkage, was mainly responsible for the shrinkage observed in these sealed systems. The results showed that the main mechanism involved in the shrinkage of this hybrid system is associated with the microstructural reorganization of the aluminosilicates phases resulting from polymerization.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in published article.

Acknowledgments

This study was partially supported by the Brazilian National Council for Scientific and Technological Development (CNPq) and CAPES. We are grateful for LCME-UFSC for assistance in scanning electron microscopy operation.

References

ABNT (Brazilian National Standards Organization). 2005. Mortars applied on walls and ceilings—Determination of the flexural and the compressive strength in the hardened stage. [In Portuguese.] NBR 13279. Rio de Janeiro, Brazil: ABNT.
ABNT (Brazilian National Standards Organization). 2016. Mortars applied on walls and ceilings—Preparation of mortar mixture for tests. NBR 16541:2016. Rio de Janeiro, Brazil: ABNT.
ACI (American Concrete Institute). 2010. Report on early-age cracking: Causes, measurement, and mitigation. ACI 231R-10. Farmington Hills, MI: ACI.
Angulo-Ramírez, D. E., R. Mejía de Gutiérrez, and F. Puertas. 2017. “Alkali-activated portland blast-furnace slag cement: Mechanical properties and hydration.” Constr. Build. Mater. 140 (Jun): 119–128. https://doi.org/10.1016/j.conbuildmat.2017.02.092.
ASTM. 2019. Standard test method for autogenous strain of cement paste and mortar. ASTM C1698-19. West Conshohocken, PA: ASTM.
ASTM. 2021. Standard specification for standard sand. ASTM C778-21. West Conshohocken, PA: ASTM.
Ballekere Kumarappa, D., S. Peethamparan, and M. Ngami. 2018. “Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods.” Cem. Concr. Res. 109 (Jul): 1–9. https://doi.org/10.1016/j.cemconres.2018.04.004.
Ben Haha, M., G. Le Saout, F. Winnefeld, and B. Lothenbach. 2011. “Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags.” Cem. Concr. Res. 41 (3): 301–310. https://doi.org/10.1016/j.cemconres.2010.11.016.
Cartwright, C., F. Rajabipour, and A. Radlińska. 2013. “Measuring the chemical shrinkage of alkali-activated slag cements using the buoyancy method.” Mech. Phys. Creep Shrinkage Durability Concr. 1 (1): 308–315. https://doi.org/10.1061/9780784413111.036.
Cartwright, C., F. Rajabipour, and A. Radlińska. 2015. “Shrinkage characteristics of alkali-activated slag cements.” J. Mater. Civ. Eng. 27 (7): 1–9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001058.
Carvalho, R., R. V. Silva, J. de Brito, and M. F. C. Pereira. 2021. “Alkali activation of bottom ash from municipal solid waste incineration: Optimization of NaOH- and Na2SiO3-based activators.” J. Cleaner Prod. 291 (Apr): 125930. https://doi.org/10.1016/j.jclepro.2021.125930.
Collins, F., and J. Sanjayan. 2000a. “Effect of pore size distribution on drying shrinking of alkali-activated slag concrete.” Cem. Concr. Res. 30 (9): 1401–1406. https://doi.org/10.1016/S0008-8846(00)00327-6.
Collins, F., and J. G. Sanjayan. 2000b. “Numerical modeling of alkali-activated slag concrete beams subjected to restrained shrinkage.” ACI Struct. J. 97 (5): 594–602. https://doi.org/10.1016/S0008-8846(00)00243-X.
Criado, M., A. Fernández-Jiménez, and A. Palomo. 2007. “Alkali activation of fly ash: Effect of the SiO2/Na2O ratio Part I: FTIR study.” Microporous Mesoporous Mater. 106 (1–3): 180–191. https://doi.org/10.1016/j.micromeso.2007.02.055.
Donatello, S., O. Maltseva, A. Fernandez-Jimenez, and A. Palomo. 2014. “The early age hydration reactions of a hybrid cement containing a very high content of coal bottom ash.” J. Am. Ceram. Soc. 97 (3): 929–937. https://doi.org/10.1111/jace.12751.
Duxson, P., J. L. Provis, G. C. Lukey, S. W. Mallicoat, W. M. Kriven, and J. S. J. Van Deventer. 2005. “Understanding the relationship between geopolymer composition, microstructure and mechanical properties.” Colloids Surf., A 269 (1–3): 47–58. https://doi.org/10.1016/j.colsurfa.2005.06.060.
Fan, Y., S. Yin, Z. Wen, and J. Zhong. 1999. “Activation of fly ash and its effects on cement properties.” Cem. Concr. Res. 29 (4): 467–472. https://doi.org/10.1016/S0008-8846(98)00178-1.
Fang, G., H. Bahrami, and M. Zhang. 2018. “Mechanisms of autogenous shrinkage of alkali-activated fly ash-slag pastes cured at ambient temperature within 24 h.” Constr. Build. Mater. 171 (May): 377–387. https://doi.org/10.1016/j.conbuildmat.2018.03.155.
Fernández-Jiménez, A., A. G. de la Torre, A. Palomo, G. López-Olmo, M. M. Alonso, and M. A. G. Aranda. 2006. “Quantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reaction.” Fuel 85 (14–15): 1960–1969. https://doi.org/10.1016/j.fuel.2006.04.006.
Fernández-Jiménez, A., Á. Palomo, T. Vazquez, R. Vallepu, T. Terai, and K. Ikeda. 2008. “Alkaline activation of blends of metakaolin and calcium aluminate.” J. Am. Ceram. Soc. 91 (4): 1231–1236. https://doi.org/10.1111/j.1551-2916.2007.02002.x.
Fernández-Jiménez, A., I. Sobrados, J. Sanz, and A. Palomo. 2011. “Hybrid cements with very low OPC content alkaline activation of metakaolin-slag-clinker blends.” In Proc., 3th Int. Congress on the Chemistry of Cement (XIII ICCC). Madrid, Spain: International Congress on the Chemistry of Cement.
Garcia-Lodeiro, I., N. Boudissa, A. Fernandez-Jimenez, and A. Palomo. 2018. “Use of clays in alkaline hybrid cement preparation. The role of bentonites.” Mater. Lett. 233 (Dec): 134–137. https://doi.org/10.1016/j.matlet.2018.08.098.
Garcia-Lodeiro, I., S. Donatello, A. Fernández-Jiménez, and Á. Palomo. 2016. “Hydration of hybrid alkaline cement containing a very large proportion of fly ash: A descriptive model.” Materials 9 (7): 605. https://doi.org/10.3390/ma9070605.
Garcia-Lodeiro, I., A. Fernandez-Jimenez, and A. Palomo. 2013a. “Hydration kinetics in hybrid binders: Early reaction stages.” Cem. Concr. Compos. 39 (May): 82–92. https://doi.org/10.1016/j.cemconcomp.2013.03.025.
Garcia-Lodeiro, I., A. Palomo, A. Fernández-Jiménez, and D. E. MacPhee. 2011. “Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O.” Cem. Concr. Res. 41 (9): 923–931. https://doi.org/10.1016/j.cemconres.2011.05.006.
García-Lodeiro, I., A. Fernández-Jiménez, and A. Palomo. 2013b. “Variation in hybrid cements over time. Alkaline activation of fly ash-portland cement blends.” Cem. Concr. Res. 52 (Oct): 112–122. https://doi.org/10.1016/j.cemconres.2013.03.022.
Haha, M. B., K. De Weerdt, and B. Lothenbach. 2010. “Quantification of the degree of reaction of fly ash.” Cem. Concr. Res. 40 (11): 1620–1629. https://doi.org/10.1016/j.cemconres.2010.07.004.
Hanjitsuwan, S., T. Phoo-ngernkham, and N. Damrongwiriyanupap. 2017. “Comparative study using portland cement and calcium carbide residue as a promoter in bottom ash geopolymer mortar.” Constr. Build. Mater. 133 (Feb): 128–134. https://doi.org/10.1016/j.conbuildmat.2016.12.046.
Hojati, M., and A. Radlińska. 2017. “Shrinkage and strength development of alkali-activated fly ash-slag binary cements.” Constr. Build. Mater. 150 (Sep): 808–816. https://doi.org/10.1016/j.conbuildmat.2017.06.040.
Huang, G., Y. Ji, J. Li, L. Zhang, X. Liu, and B. Liu. 2019. “Effect of activated silica on polymerization mechanism and strength development of MSWI bottom ash alkali-activated mortars.” Constr. Build. Mater. 201 (Mar): 90–99. https://doi.org/10.1016/j.conbuildmat.2018.12.125.
Jansen, D., F. Goetz-Neunhoeffer, B. Lothenbach, and J. Neubauer. 2012. “The early hydration of ordinary portland cement (OPC): An approach comparing measured heat flow with calculated heat flow from QXRD.” Cem. Concr. Res. 42 (1): 134–138. https://doi.org/10.1016/j.cemconres.2011.09.001.
Juenger, M. C. G., F. Winnefeld, J. L. Provis, and J. H. Ideker. 2011. “Advances in alternative cementitious binders.” Cem. Concr. Res. 41 (12): 1232–1243. https://doi.org/10.1016/j.cemconres.2010.11.012.
Kapeluszna, E., Ł. Kotwica, A. Różycka, and Ł. Gołek. 2017. “Incorporation of Al in C-A-S-H gels with various Ca/Si and Al/Si ratio: Microstructural and structural characteristics with DTA/TG, XRD, FTIR and TEM analysis.” Constr. Build. Mater. 155 (Nov): 643–653. https://doi.org/10.1016/j.conbuildmat.2017.08.091.
Lee, N. K., J. G. Jang, and H. K. Lee. 2014. “Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages.” Cem. Concr. Compos. 53 (Oct): 239–248. https://doi.org/10.1016/j.cemconcomp.2014.07.007.
Lee, Y., S. T. Yi, M. S. Kim, and J. K. Kim. 2006. “Evaluation of a basic creep model with respect to autogenous shrinkage.” Cem. Concr. Res. 36 (7): 1268–1278. https://doi.org/10.1016/j.cemconres.2006.02.011.
Lolli, F., J. J. Thomas, K. E. Kurtis, F. Cucinotta, and E. Masoero. 2021. “Early age volume changes in metakaolin geopolymers: Insights from molecular simulations and experiments.” Cem. Concr. Res. 144 (Jun): 106428. https://doi.org/10.1016/j.cemconres.2021.106428.
Lu, B., C. Shi, J. Zheng, and T. C. Ling. 2018. “Carbon dioxide sequestration on recycled aggregates.” In Carbon dioxide sequestration in cementitious construction materials. Amsterdam, Netherlands: Elsevier.
Ma, Y., and G. Ye. 2015. “The shrinkage of alkali activated fly ash.” Cem. Concr. Res. 68 (Feb): 75–82. https://doi.org/10.1016/j.cemconres.2014.10.024.
Melo Neto, A. A., M. A. Cincotto, and W. Repette. 2008. “Drying and autogenous shrinkage of pastes and mortars with activated slag cement.” Cem. Concr. Res. 38 (4): 565–574. https://doi.org/10.1016/j.cemconres.2007.11.002.
Nguyen, H. T., T. K. Pham, and M. A. B. Promentilla. 2018. “Development of geopolymer-based materials from coal bottom ash and rice husk ash with sodium silicate solutions.” Civ. Eng. 8 (1): 402–410. https://doi.org/10.1007/978-981-10-6713-6_40.
Palomo, A., P. Krivenko, I. Garcia-Lodeiro, E. Kavalerova, O. Maltseva, and A. Fernández-Jiménez. 2014. “A review on alkaline activation: New analytical perspectives.” Materiales de Construcción 64 (315): e022. https://doi.org/10.3989/mc.2014.00314.
Qu, B., A. Martin, J. Y. Pastor, A. Palomo, and A. Fernández-Jiménez. 2016. “Characterisation of pre-industrial hybrid cement and effect of pre-curing temperature.” Cem. Concr. Compos. 73 (Oct): 281–288. https://doi.org/10.1016/j.cemconcomp.2016.07.019.
Ruiz-Santaquiteria, C., A. Fernández-Jiménez, J. Skibsted, and A. Palomo. 2013. “Clay reactivity: Production of alkali activated cements.” Appl. Clay Sci. 73 (1): 11–16. https://doi.org/10.1016/j.clay.2012.10.012.
Sant, G., P. Lura, and J. Weiss. 2006. “Measurement of volume change in cementitious materials at early ages review of testing protocols and interpretation of results.” Transp. Res. Rec. 1979 (1): 21–29. https://doi.org/10.1177/0361198106197900104.
Shafaei, D., S. Yang, L. Berlouis, and J. Minto. 2020. “Multiscale pore structure analysis of nano titanium dioxide cement mortar composite.” Mater. Today Commun. 22 (Mar): 100779. https://doi.org/10.1016/j.mtcomm.2019.100779.
Shi, C., A. F. Jiménez, and A. Palomo. 2011. “New cements for the 21st century: The pursuit of an alternative to portland cement.” Cem. Concr. Res. 41 (7): 750–763. https://doi.org/10.1016/j.cemconres.2011.03.016.
Sing, K. S. W. 1982. “Reporting physisorption data for gas/solid systems.” Pure Appl. Chem. 54 (11): 2201–2218. https://doi.org/10.1351/pac198254112201.
Tambara Júnior, L. U. D., M. Cheriaf, and J. C. Rocha. 2018. “Development of alkaline-activated self-leveling hybrid mortar ash-based composites.” Materials 11 (10): 1829. https://doi.org/10.3390/ma11101829.
Tambara Júnior, L. U. D., J. C. Rocha, M. Cheriaf, P. Padilla-Encinas, A. Fernández-Jiménez, and A. Palomo. 2021. “Effect of alkaline salts on calcium sulfoaluminate cement hydration.” Molecules 26 (7): 1938. https://doi.org/10.3390/molecules26071938.
Tambara Júnior, L. U. D., M. Taborda-Barraza, M. Cheriaf, P. J. P. Gleize, and J. C. Rocha. 2022. “Effect of bottom ash waste on the rheology and durability of alkali activation pastes.” Case Stud. Constr. Mater. 16 (Jun): e00790. https://doi.org/10.1016/j.cscm.2021.e00790.
Thang, N. H., N. N. Hoa, P. V. T. H. Quyen, N. N. K. Tuyen, T. V. T. Anh, and P. T. Kien. 2018. “Engineering properties of lightweight geopolymer synthesized from coal bottom ash and rice husk ash.” In Proc., AIP Conf. Ho Chi Minh City, Vietnam: AIP Publishing. https://doi.org/10.1063/1.5033409.
Topçu, I. B., M. U. Toprak, and T. Uygunoǧlu. 2014. “Durability and microstructure characteristics of alkali activated coal bottom ash geopolymer cement.” J. Cleaner Prod. 81 (Oct): 211–217. https://doi.org/10.1016/j.jclepro.2014.06.037.
Xue, L., Z. Zhang, H. Liu, Y. Jiang, and H. Wang. 2022. “Drying shrinkage behavior of hybrid alkali activated cement (HAAC) mortars.” Constr. Build. Mater. 316 (Jan): 126068. https://doi.org/10.1016/j.conbuildmat.2021.126068.
Yang, G., T. Wu, C. Fu, and H. Ye. 2021. “Effects of activator dosage and silica fume on the properties of Na2SO4 -activated high-volume fly ash.” Constr. Build. Mater. 278 (Apr): 122346. https://doi.org/10.1016/j.conbuildmat.2021.122346.
Ye, H., C. Cartwright, F. Rajabipour, and A. Radlińska. 2017. “Understanding the drying shrinkage performance of alkali-activated slag mortars.” Cem. Concr. Compos. 76 (Feb): 13–24. https://doi.org/10.1016/j.cemconcomp.2016.11.010.
Ye, H., and A. Radlińska. 2016. “Shrinkage mechanisms of alkali-activated slag.” Cem. Concr. Res. 88 (Oct): 126–135. https://doi.org/10.1016/j.cemconres.2016.07.001.
Yuan, Q., S. Zuo, and D. Deng. 2020. “Early-age deformation of cement emulsified asphalt mortar with aluminum powder and expansive agent.” Constr. Build. Mater. 260 (Nov): 120484. https://doi.org/10.1016/j.conbuildmat.2020.120484.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 35Issue 6June 2023

History

Received: Nov 9, 2021
Accepted: Oct 25, 2022
Published online: Apr 7, 2023
Published in print: Jun 1, 2023
Discussion open until: Sep 7, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Maryah Costa De Moraes [email protected]
Master’s Student, Postgraduate Program in Civil Engineering (PPGEC), Laboratory of Waste Valorization and Sustainable Materials (ValoRes), Bloco B, Dept. of Civil Engineering, Federal Univ. of Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, CEP 88040-900, Brazil. Email: [email protected]
Luís Urbano Durlo Tambara Júnior, Ph.D. [email protected]
Postdoctoral Researcher CNPq, Postgraduate Program in Civil Engineering (PPGEC), Laboratory of Waste Valorization and Sustainable Materials (ValoRes), Bloco B, Dept. of Civil Engineering, Federal Univ. of Santa Catarina (UFSC), Campus Trindade, Florianópolis, SC, CEP 88040-900, Brazil. Email: [email protected]
Professor, Postgraduate Program in Civil Engineering (PPGEC), Laboratory of Waste Valorization and Sustainable Materials (ValoRes), Bloco B, Dept. of Civil Engineering, Federal Univ. of Santa Catarina (UFSC), Florianópolis, SC, CEP 88040-900, Brazil. ORCID: https://orcid.org/0000-0001-5440-2636. Email: [email protected]
Full Professor, Postgraduate Program in Civil Engineering (PPGEC), Laboratory of Waste Valorization and Sustainable Materials (ValoRes), Dept. of Civil Engineering, Federal Univ. of Santa Catarina (UFSC), Florianópolis, SC, CEP 88040-900, Brazil (corresponding author). ORCID: https://orcid.org/0000-0003-1074-3230. Email: [email protected]
Caroline Angulski da Luz, Ph.D. [email protected]
Professor, Dept. of Civil Engineering, Federal Technological Univ. of Paraná, UFTPR 85501-970, Pato Branco, Paraná CEP 85501-970, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share