Technical Papers
Dec 13, 2023

Phase-Field Modeling of Dendrite Growth in Lithium Electrodeposition Process in Lithium Metal Batteries

Publication: Journal of Energy Engineering
Volume 150, Issue 1

Abstract

The lithium metal anode represents an excellent choice of material for rechargeable batteries, while lithium dendrites growth has adverse effects on the manufacturing and performance of batteries because the lithium ions deposit unevenly on the electrode surface during the electrochemical process, which can lead to short circuits and safety issues within the battery. This work studied the morphology of lithium dendrites under two initial conditions: initial nuclei and smooth planar interface. By introducing the noise to the order parameter and concentration ratio, the model is able to simulate mossy dendrites, which is highly influenced by the nonuniformity of deposition and the charging conditions. Through the investigation of the fluctuations in lithium-ion concentration near the metal/electrolyte interface, it is found that with increased applied voltage, branches of the second order appeared orthogonal to the direction of growth. The simulation results reported in this work can shed light on the foundational principles of lithium dendritic growth and offer a regulation strategy for inhibition of lithium dendrite growth.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

We thank the National Natural Science Foundation of China (No. U21A20313).

References

Akolkar, R. 2013. “Mathematical model of the dendritic growth during lithium electrodeposition.” J. Power Sources 232 (Jun): 23–28. https://doi.org/10.1016/j.jpowsour.2013.01.014.
Albertus, P., S. Babinec, S. Litzelman, and A. Newman. 2018. “Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries.” Nat. Energy 3 (1): 16–21. https://doi.org/10.1038/s41560-017-0047-2.
Bazant, M. Z. 2013. “Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.” Acc. Chem. Res. 46 (5): 1144–1160. https://doi.org/10.1021/ar300145c.
Brissot, C., M. Rosso, and J. Chazalviela. 1999. “Dendritic growth mechanisms in lithium/polymer cells.” J. Power Sources 81 (9): 925–929. https://doi.org/10.1016/S0378-7753(98)00242-0.
Chang, H. J., A. J. Ilott, N. M. Trease, M. Mohammadi, A. Jerschow, and C. P. Grey. 2015. “Correlating microstructural lithium metal growth with electrolyte salt depletionin lithium batteries using Li7 MRI.” J. Am. Chem. Soc. 137 (48): 15209–15216. https://doi.org/10.1021/jacs.5b09385.
Chazalviel, J. N. 1991. “Electrochemical aspects of the generation of ramified metallic deposits.” Phys. Rev. 42 (12): 7355–7367. https://doi.org/10.1103/PhysRevA.42.7355.
Chen, C. H., and C. W. Pao. 2021. “Phase-field study of dendritic morphology in lithium metal batteries.” J. Power Sources 484 (Feb): 229203. https://doi.org/10.1016/j.jpowsour.2020.229203.
Chen, L., H. W. Zhang, L. Y. Liang, Z. Liu, Y. Qi, P. Lu, J. Chen, and L. Q. Chen. 2015. “Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model.” J. Power Sources 300 (Dec): 376–385. https://doi.org/10.1016/j.jpowsour.2015.09.055.
Chen, X. R., B. C. Zhao, C. Yan, and Q. Zhang. 2021. “Review on Li deposition in working batteries: From nucleation to early growth.” Adv. Mater. 33 (8): 2004128. https://doi.org/10.1002/adma.202004128.
Cheng, X., R. Zhang, C. Zhao, and Q. Zhang. 2017. “Toward safe lithium metal anode in rechargeable batteries: A review.” Chem. Rev. 117 (Feb): 10403–10473. https://doi.org/10.1021/acs.chemrev.7b00115.
Chung, S. H., and A. Manthiram. 2019. “Current status and future prospects of metal–Sulfur batteries.” Adv. Mater. 31 (27): 1901125. https://doi.org/10.1002/adma.201901125.
Cogswell, D. A. 2015. “Quantitative phase-field modeling of dendritic electrodeposition.” Phys. Rev. E 92 (1): 011301. https://doi.org/10.1103/PhysRevE.92.011301.
Dunn, B., H. Kamath, and J. M. Tarascon. 2011. “Electrical energy storage for the grid: A battery of choices.” Science 334 (6058): 928–935. https://doi.org/10.1126/science.1212741.
Ely, D. R., A. Jana, and R. E. Garcia. 2014. “Phase field kinetics of lithium electrodeposits.” J. Power Sources 272 (Dec): 581–594. https://doi.org/10.1016/j.jpowsour.2014.08.062.
Gao, L., and Z. Guo. 2020. “Phase-field simulation of Li dendrites with multiple parameters influence.” Comput. Mater. Sci 183 (Dec): 109919. https://doi.org/10.1016/j.commatsci.2020.109919.
Goodenough, J. B. 2013. “Evolution of strategies for modern rechargeable batteries.” Acc. Chem. Res. 46 (5): 1053–1061. https://doi.org/10.1021/ar2002705.
Goodenough, J. B., and Y. Kim. 2010. “Challenges for rechargeable Li batteries.” Chem. Mater. 22 (3): 587–603. https://doi.org/10.1021/cm901452z.
Guan, P., L. Liu, and G. Yang. 2018. “Phase-field modeling of solid electrolyte interphase (SEI) cracking in lithium batteries.” ECS Trans. 85 (13): 1041–1051. https://doi.org/10.1149/08513.1041ecst.
Guyer, J. E., W. J. Boettinger, J. A. Warren, and G. B. McFadden. 2004. “Phase field modeling of electrochemistry. I. Equilibrium.” Phys. Rev. E 69 (2): 021603. https://doi.org/10.1103/PhysRevE.69.021603.
Hong, Z., and V. Viswanathan. 2018. “Phase-field simulations of lithium dendrite growth with open-source software.” ACS Energy Lett. 3 (Jun): 1737–1743. https://doi.org/10.1021/acsenergylett.8b01009.
Hu, B., et al. 2023. “Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes.” Adv. Energy Mater. 13 (10): 2203540. https://doi.org/10.1002/aenm.202203540.
Jana, A., D. R. Ely, and R. E. García. 2015. “Dendrite-separator interactions in lithium-based batteries.” J. Power Sources 275 (Feb): 912–921. https://doi.org/10.1016/j.jpowsour.2014.11.056.
Jeon, J., G. H. Yoon, T. Vegge, and J. H. Chang. 2022. “Phase-field investigation of lithium electrodeposition under different applied overpotentials and operating temperatures.” ACS Appl. Mater. Interfaces 14 (13): 15275–15286. https://doi.org/10.1021/acsami.2c00900.
Jing, H., H. Xing, X. Dong, and Y. Han. 2022. “Nonlinear phase-field modeling of lithium dendritic growth during electrodeposition.” J. Electrochem. Soc. 169 (3): 032511. https://doi.org/10.1149/1945-7111/ac5fed.
Liang, L., and L. Q. Chen. 2014. “Nonlinear phase field model for electrodeposition in electrochemical systems.” Appl. Phys. Lett. 105 (26): 1457–1459. https://doi.org/10.1063/1.4905341.
Liu, G., and W. Lu. 2017. “A model of concurrent lithium dendrite growth, SEI growth, SEI penetration and regrowth.” J. Electrochem. Soc. 164 (9): A1826–A1833. https://doi.org/10.1149/2.0381709jes.
Liu, Y., X. Xu, O. O. Kapitanova, P. V. Evdokimov, Z. Song, A. Matic, and S. Xiong. 2022. “Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes.” Adv. Energy Mater. 12 (9): 2103589. https://doi.org/10.1002/aenm.202103589.
Mizushima, K., P. C. Jones, P. J. Wiseman, and J. B. Goodenough. 1980. “LixCoO2 (0<x<1): A new cathode material for batteries of high energy density.” Mater. Res. Bull. 15 (6): 783–789. https://doi.org/10.1016/0025-5408(80)90012-4.
Monroe, C., and J. Newman. 2003. “Dendrite growth in lithium/polymer systems—A propagation model for liquid electrolytes under galvanostatic conditions.” J. Electrochem. Soc. 150 (10): A1377–A1384. https://doi.org/10.1149/1.1606686.
Ni, S., S. Tan, Q. An, and L. Mai. 2020. “Three dimensional porous frameworks for lithium dendrite suppression.” J. Energy Chem. 44 (May): 73–89. https://doi.org/10.1016/j.jechem.2019.09.031.
Nitta, N., F. Wu, J. T. Lee, and G. Yushin. 2015. “Li-ion battery materials: Present and future.” Mater. Today 18 (5): 252–264. https://doi.org/10.1016/j.mattod.2014.10.040.
Padhi, A. K., K. S. Nanjundaswamy, and J. B. Goodenough. 1997. “Phospho-olivines as positive-electrode materials for rechargeable lithium batteries.” J. Electrochem. Soc. 144 (4): 1188. https://doi.org/10.1149/1.1837571.
Peng, H. J., J. Q. Huang, X. B. Cheng, and Q. Zhang. 2017. “Review on high-loading and high-energy lithium–sulfur batteries.” Adv. Energy Mater. 7 (24): 1700260. https://doi.org/10.1002/aenm.201700260.
Ren, Y., Y. Zhou, and Y. Cao. 2020. “Inhibit of lithium dendrite growth in solid composite electrolyte by phase-field modeling.” J. Phys. Chem. C 124 (23): 12195–12204. https://doi.org/10.1021/acs.jpcc.0c01116.
Rosso, M., C. Brissot, A. Teyssot, M. Dollé, L. Sannier, J. M. Tarascon, R. Bouchet, and S. Lascaud. 2006. “Dendrite short-circuit and fuse effect on Li/polymer/Li cells.” Electrochim. Acta 51 (25): 5334–5340. https://doi.org/10.1016/j.electacta.2006.02.004.
Shi, P., T. Li, R. Zhang, X. Shen, X. B. Cheng, R. Xu, J. Q. Huang, X. R. Chen, H. Liu, and Q. Zhang. 2019. “Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries.” Adv. Mater. 31 (8): 1807131. https://doi.org/10.1002/adma.201807131.
Shibuta, Y., Y. Okajima, and T. Suzuki. 2007. “Phase-field modeling for electrodeposition process.” Sci. Tech. Adv. Mater 8 (6): 511–518. https://doi.org/10.1016/j.stam.2007.08.001.
Steiger, J., D. Kramer, and R. Moenig. 2014. “Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium.” J. Power Sources 261 (Sep): 112–119. https://doi.org/10.1016/j.jpowsour.2014.03.029.
Steiger, J., G. Richter, M. Wenk, D. Kramer, and R. Mönig. 2015. “Comparison of the growth of lithium filaments and dendrites under different conditions.” Electrochem. Commun. 50 (Jan): 11–14. https://doi.org/10.1016/j.elecom.2014.11.002.
Suo, L., Y. S. Hu, H. Li, M. Armand, and L. Chen. 2013. “A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries.” Nat. Commun. 4 (1): 1481. https://doi.org/10.1038/ncomms2513.
Tarascon, J. M., and M. Armand. 2001. “Issues and challenges facing rechargeable lithium batteries.” Nature 414 (6861): 359–367. https://doi.org/10.1038/35104644.
Whittingham, M. S. 2004. “Lithium batteries and cathode materials.” Chem. Rev. 104 (10): 4271–4302. https://doi.org/10.1021/cr020731c.
Xiao, J. 2019. “How lithium dendrites form in liquid batteries.” Science 366 (6464): 426–427. https://doi.org/10.1126/science.aay8672.
Yamaki, J. I., S. I. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, and M. Arakawa. 1998. “A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte.” J. Power Sources 74 (2): 219–227. https://doi.org/10.1016/S0378-7753(98)00067-6.
Yan, C., H. R. Li, X. Chen, X. Q. Zhang, X. B. Cheng, R. Xu, J. Q. Huang, and Q. Zhang. 2019. “Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes.” J. Am. Chem. Soc. 141 (23): 9422–9429. https://doi.org/10.1021/jacs.9b05029.
Yang, Z., J. Zhang, M. C. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, and J. Liu. 2011. “Electrochemical energy storage for green grid.” Chem. Rev. 111 (5): 3577–3613. https://doi.org/10.1021/cr100290v.
Yurkiv, V., T. Foroozan, A. Ramasubramanian, R. Shahbazian-Yassar, and F. Mashayek. 2018. “Phase-field modeling of solid electrolyte interface (SEI) influence on Li dendritic behavior.” Electrochim. Acta 265 (Mar): 609–619. https://doi.org/10.1016/j.electacta.2018.01.212.
Zhang, R., X. Shen, X. B. Cheng, and Q. Zhang. 2019a. “The dendrite growth in 3D structured lithium metal anodes: Electron or ion transfer limitation?” Energy Storage Mater. 23 (Dec): 556–565. https://doi.org/10.1016/j.ensm.2019.03.029.
Zhang, X. Y., A. Wang, X. Liu, and J. Luo. 2019b. “Dendrites in lithium metal anodes: Suppression, regulation, and elimination.” Acc. Chem. Res. 52 (11): 3223–3232. https://doi.org/10.1021/acs.accounts.9b00437.

Information & Authors

Information

Published In

Go to Journal of Energy Engineering
Journal of Energy Engineering
Volume 150Issue 1February 2024

History

Received: Jun 30, 2023
Accepted: Oct 31, 2023
Published online: Dec 13, 2023
Published in print: Feb 1, 2024
Discussion open until: May 13, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Associate Professor, Dept. of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong Univ., 800 Dongchuan Rd., Minhang District, Shanghai 200240, PR China. Email: [email protected]
Hui-Long Wei [email protected]
Associate Professor, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia Univ., 539 Helan Mountain West Rd., Xixia District, Yinchuan 750021, China (corresponding author). Email: [email protected]
Zheng-Hong Luo [email protected]
Professor, Dept. of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong Univ., 800 Dongchuan Rd., Minhang District, Shanghai 200240, PR China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share