Abstract

Ground precipitation measurements face obstacles in many regions of Egypt, where gauge stations are sparse. It is thus necessary to find reliable sources such as satellite-based precipitation products, which provide uninterrupted precipitation time-series with high spatial resolution. This work evaluated the performance of four well-known global satellite precipitation products, i.e., Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), Tropical Rainfall Measuring Mission (TRMM3B42V7), Integrated Multi-satellitE Retrievals for global precipitation measurement-Final (IMERG-F), and Global Satellite Mapping of Precipitation (GSMaP)-Gauge, against gauged data of 23 stations in Egypt. GSMaP-Gauge revealed its outstanding abilities over the other three products in detecting rainfall occurrences and estimating the amount of rainfall. Further, Global Satellite Mapping of Precipitation (GSMaP-Gauge) was corrected by three commonly used bias-correction methods: linear scaling; local intensity scaling; and empirical quantile mapping (EQM). All three methods are effective in reducing biases to some extent, especially on the annual scale, with EQM being the best for most cases. This study demonstrates that satellite products can provide an alternative source of rainfall information for Egypt.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

Partial financial support was received from the Natural Sciences and Engineering Research Council of Canada.
Author contributions: Conceptualization, Tamer A. Gado and Ibrahim M. H. Rashwan; methodology, Basma A. Shalaby and Tamer A. Gado; writing and original draft preparation, Basma A. Shalaby; and writing, review, and editing, Tamer A. Gado and Yiping Guo. All authors have read and agreed to the published version of the manuscript.

References

Abera, W., L. Brocca, and R. Rigon. 2016. “Comparative evaluation of different satellite rainfall estimation products and bias correction in the Upper Blue Nile (UBN) basin.” Atmos. Res. 178 (Sep): 471–483. https://doi.org/10.1016/j.atmosres.2016.04.017.
Aghakouchak, A., A. Behrangi, S. Sorooshian, K. Hsu, and E. Amitai. 2011. “Evaluation of satellite-retrieved extreme precipitation rates across the central United States.” Geophys. Res. Atmos. 116 (2): 1–11. https://doi.org/10.1029/2010JD014741.
Almazroui, M. 2011. “Calibration of TRMM rainfall climatology over Saudi Arabia.” Atmos. Res. 99 (3–4): 400–414. https://doi.org/10.1016/j.atmosres.2010.11.006.
Aonashi, K., et al. 2009. “GSMaP passive microwave precipitation retrieval algorithm: Algorithm description and validation.” J. Meteorol. Soc. Japan 87A: 119–136. https://doi.org/10.2151/jmsj.87A.119.
Ashouri, H., K. Lin Hsu, and S. Sorooshian. 2015. “PERSIANN-CDR: Daily precipitation climate data record from multi-satellite observations for hydrological and climate studies.” Bull. Am. Meteorol. Soc. 96 (1): 69–83. https://doi.org/10.1175/BAMS-D-13-00068.1.
Aslami, F., A. Ghorbani, B. Sobhani, and A. Esmali. 2019. “Comprehensive comparison of daily IMERG and GSMaP satellite precipitation products in Ardabil Province, Iran.” Int. J. Remote Sens. 40 (8): 3139–3153. https://doi.org/10.1080/01431161.2018.1539274.
Ayugi, B., G. Tan, W. Ullah, R. Boiyo, and V. Ongoma. 2019. “Inter-comparison of remotely sensed precipitation datasets over Kenya during 1998–2016.” Atmos. Res. 225 (Sep): 96–109. https://doi.org/10.1016/j.atmosres.2019.03.032.
Babaousmail, H., R. Hou, B. Ayugi, and G. T. Gnitou. 2019. “Evaluation of satellite-based precipitation estimates over Algeria during 1998–2016.” J. Atmos. Sol. Terr. Phys. 195 (Oct): 105139. https://doi.org/10.1016/j.jastp.2019.105139.
Bitew, M. M., M. Gebremichael, L. Ghebremichael, and Y. A. Bayissa. 2012. “Evaluation of high-resolution satellite rainfall products through streamflow simulation in a hydrological modeling of a small mountainous watershed in Ethiopia.” J. Hydrometeorol. 13 (1): 338–350. https://doi.org/10.1175/2011JHM1292.1.
Boushaki, F. I., K. L. Hsu, S. Sorooshian, G. H. Park, S. Mahani, and W. Shi. 2009. “Bias adjustment of satellite precipitation estimation using ground-based measurement: A case study evaluation over the Southwestern United States.” J. Hydrometeorol. 10 (5): 1231–1242. https://doi.org/10.1175/2009JHM1099.1.
Chen, C., Q. Chen, B. Qin, S. Zhao, and Z. Duan. 2020. “Comparison of different methods for spatial downscaling of GPM IMERG V06B satellite precipitation product over a typical arid to semi-arid area.” Front. Earth Sci. 8 (Nov): 1–16. https://doi.org/10.3389/feart.2020.536337.
Chua, Z., Y. Kuleshov, and A. Watkins. 2020. “Evaluation of satellite precipitation estimates over Australia.” Remote Sens. 12 (4): 678. https://doi.org/10.3390/rs12040678.
Dinku, T., F. Ruiz, S. J. Connor, and P. Ceccato. 2010. “Validation and intercomparison of satellite rainfall estimates over Colombia.” J. Appl. Meteorol. Climatol. 49 (5): 1004–1014. https://doi.org/10.1175/2009JAMC2260.1.
El Kenawy, A. M., et al. 2019. “Spatial assessment of the performance of multiple high-resolution satellite-based precipitation data sets over the Middle East.” Int. J. Climatol. 39 (5): 2522–2543. https://doi.org/10.1002/joc.5968.
Elmenoufy, H. M., M. Morsy, M. M. Eid, A. El Ganzoury, F. M. El-Hussainy, and M. M. Abdel Wahab. 2017. “Towards enhancing rainfall projection using bias correction method: Case study Egypt.” IJSRSET 3 (6): 187–194.
Fang, G. H., J. Yang, Y. N. Chen, and C. Zammit. 2014. “Comparing bias correction methods in downscaling meteorological variables for hydrologic impact study in an arid area in China.” Hydrol. Earth Syst. Sci. 11 (Jun): 12659–12696. https://doi.org/10.5194/hessd-11-12659-2014.
Fatkhuroyan, and TrinahWati. 2018. “Accuracy assessment of global satellite mapping of precipitation (GSMaP) product over Indonesian maritime continent.” IOP Conf. Ser.: Earth Environ. Sci. 187 (2018): 012060. https://doi.org/10.1088/1755-1315/187/1/012060.
FloodList. 2021. “Eastern Mediterranean—Deadly flash floods after heavy rain.” Accessed November 15, 2021. http://www.webcitation.org/76Iv1Fxmq.
Fu, Q., R. Ruan, and Y. Liu. 2011. “Accuracy assessment of global satellite mapping of precipitation (GSMaP) product over Poyang Lake Basin, China.” Procedia Environ. Sci. 10 (Jan): 2265–2271. https://doi.org/10.1016/j.proenv.2011.09.354.
Gado, T. A. 2020. “Statistical behavior of rainfall in Egypt.” In Flash floods in Egypt. Advances in science, technology & innovation (IEREK interdisciplinary series for sustainable development), edited by A. Negm. Cham, Switzerland: Springer.
Gado, T. A., and D. E. El-Agha. 2020. “Feasibility of rainwater harvesting for sustainable water management in urban areas of Egypt.” Environ. Sci. Pollut. Res. 27 (26): 32304–32317. https://doi.org/10.1007/s11356-019-06529-5.
Gado, T. A., R. M. El-Hagrsy, and I. M. H. Rashwan. 2019. “Spatial and temporal rainfall changes in Egypt.” Environ. Sci. Pollut. Res. 26 (Sep): 28228–28242. https://doi.org/10.1007/s11356-019-06039-4.
Gado, T. A., K. Hsu, and S. Sorooshian. 2017. “Rainfall frequency analysis for ungauged sites using satellite precipitation products.” J. Hydrol. 554 (Nov): 646–655. https://doi.org/10.1016/j.jhydrol.2017.09.043.
Gado, T. A., A. M. Salama, and B. A. Zeidan. 2021. “Selection of the best probability models for daily annual maximum rainfalls in Egypt.” Theor. Appl. Climatol. 144 (May): 1267–1284. https://doi.org/10.1007/s00704-021-03594-0.
Gado, T. A., D. H. Zamzam, Y. Guo, and B. A. Zeidan. 2023. “Evaluation of satellite-based rainfall estimates in the Upper Blue Nile Basin.” J. Earth Syst. Sci.
Gebremicael, T. G., Y. A. Mohamed, P. van der Zaag, A. G. Berhe, G. G. Haile, E. Y. Hagos, and M. K. Hagos. 2017. “Comparison and validation of eight satellite rainfall products over the rugged topography of Tekeze-Atbara Basin at different spatial and temporal scales.” Hydrol. Earth Syst. Sci. Discuss. 2017 (Aug): 1–31. https://doi.org/10.5194/hess-2017-504.
Gumindoga, W., T. H. Rientjes, A. T. Haile, H. Makurira, and P. Reggiani. 2019. “Performance of bias correction schemes for CMORPH rainfall estimates in the Zambezi River Basin.” Hydrol. Earth Syst. Sci. 23 (7): 2915–2938. https://doi.org/10.5194/hess-23-2915-2019.
Habib, E., A. T. Haile, N. Sazib, Y. Zhang, and T. Rientjes. 2014. “Effect of bias correction of satellite-rainfall estimates on runoff simulations at the source of the Upper Blue Nile.” Remote Sens. 6 (7): 6688–6708. https://doi.org/10.3390/rs6076688.
Habib, E., A. Henschke, and R. F. Adler. 2009. “Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, USA.” Atmos. Res. 94 (3): 373–388. https://doi.org/10.1016/j.atmosres.2009.06.015.
Hashemi, H., M. Nordin, V. Lakshmi, G. J. Huffman, and R. Knight. 2017. “Bias correction of long-term satellite monthly precipitation product (TRMM 3B43) over the conterminous United States.” J. Hydrometeorol. 18 (9): 2491–2509. https://doi.org/10.1175/JHM-D-17-0025.1.
Hong, Y., K. L. Hsu, S. Sorooshian, and X. Gao. 2004. “Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system.” J. Appl. Meteorol. Climatol. 43 (12): 1834–1853. https://doi.org/10.1175/JAM2173.1.
Hsu, K.-L., X. Gao, S. Sorooshian, and H. V. Gupta. 1997. “Precipitation estimation from remotely sensed information using artificial neural networks.” J. Appl. Meteorol. Climatol. 36 (9): 1176–1190. https://doi.org/10.1175/1520-0450(1997)036%3C1176:PEFRSI%3E2.0.CO;2.
Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, Y. Hong, E. F. Stocker, and D. B. Wolff. 2007. “The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales.” J. Hydrometeorol. 8 (1): 38–55. https://doi.org/10.1175/JHM560.1.
Huffman, G. J., N. Gsfc, D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, C. Kidd, E. J. Nelkin, S. Sorooshian, J. Tan, and P. Xie. 2020. Algorithm theoretical basis document (ATBD) version 06 NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Washington, DC: National Aeronautics and Space Administration.
Ines, A. V. M., and J. W. Hansen. 2006. “Bias correction of daily GCM rainfall for crop simulation studies.” Agric. For. Meteorol. 138 (1–4): 44–53. https://doi.org/10.1016/j.agrformet.2006.03.009.
Katiraie-Boroujerdy, P. S., N. Nasrollahi, K. L. Hsu, and S. Sorooshian. 2013. “Evaluation of satellite-based precipitation estimation over Iran.” J. Arid Environ. 97 (Oct): 205–219. https://doi.org/10.1016/j.jaridenv.2013.05.013.
Khan, A. J., and M. Koch. 2018. “Evaluation of gridded multi-satellite precipitation estimation (TRMM-3B42-V7) performance in the upper Indus Basin (UIB).” Climate 6 (3): 76. https://doi.org/10.3390/cli6030076.
Kheimi, M. M., and S. Gutub. 2015. “Assessment of remotely-sensed precipitation products across the Saudi Arabia region.” Int. J. Water Resour. Arid Environ. 4 (1): 76–88.
Kimani, M. W., J. C. B. Hoedjes, and Z. Su. 2018. “Bayesian bias correction of satellite rainfall estimates for climate studies.” Remote Sens. 10 (7): 1074. https://doi.org/10.3390/rs10071074.
Leander, R., and T. A. Buishand. 2007. “Resampling of regional climate model output for the simulation of extreme river flows.” J. Hydrol. 332 (3–4): 487–496. https://doi.org/10.1016/j.jhydrol.2006.08.006.
Lenderink, G., A. Buishand, and W. Van Deursen. 2007. “Estimates of future discharges of the River Rhine using two scenario methodologies: Direct versus delta approach.” Hydrol. Earth Syst. Sci. 11 (3): 1145–1159. https://doi.org/10.5194/hess-11-1145-2007.
Luo, M., T. Liu, and F. Meng. 2018. “Comparing bias correction methods used in downscaling precipitation and temperature from regional climate models: A case study from the Kaidu River Basin in Western China.” Water 10 (8): 1046. https://doi.org/10.3390/w10081046.
Mahmoud, M. T., M. A. Al-Zahrani, and H. O. Sharif. 2018. “Assessment of global precipitation measurement satellite products over Saudi Arabia.” J. Hydrol. 559 (Apr): 1–12. https://doi.org/10.1016/j.jhydrol.2018.02.015.
Mahmoud, M. T., M. A. Hamouda, and M. M. Mohamed. 2019. “Spatiotemporal evaluation of the GPM satellite precipitation products over the United Arab Emirates.” Atmos. Res. 219 (Dec): 200–212. https://doi.org/10.1016/j.atmosres.2018.12.029.
McCollum, J. R., W. F. Krajewski, R. R. Ferraro, and M. B. Ba. 2002. “Evaluation of biases of satellite rainfall estimation algorithms over the continental United States.” J. Appl. Meteorol. Climatol. 41 (11): 1065–1080. https://doi.org/10.1175/1520-0450(2002)041%3C1065:EOBOSR%3E2.0.CO;2.
Mega, T., T. Ushio, T. Kubota, M. Kachi, K. Aonashi, and S. Shige. 2014. “Gauge adjusted global satellite mapping of precipitation (GSMaP_Gauge).” In Proc., 2014 31st URSI General Assembly and Scientific Symp., 1–4. New York: IEEE.
Miao, C., H. Ashouri, K. L. Hsu, S. Sorooshian, and Q. Duan. 2015. “Evaluation of the PERSIANN-CDR daily rainfall estimates in capturing the behavior of extreme precipitation events over China.” J. Hydrometeorol. 16 (3): 1387–1396. https://doi.org/10.1175/JHM-D-14-0174.1.
Milewski, A., R. Elkadiri, and M. Durham. 2015. “Assessment and comparison of TMPA satellite precipitation products in varying climatic and topographic regimes in Morocco.” Remote Sens. 7 (5): 5697–5717. https://doi.org/10.3390/rs70505697.
Müller, M. F., and S. E. Thompson. 2013. “Bias adjustment of satellite rainfall data through stochastic modeling: Methods development and application to Nepal.” Adv. Water Resour. 60 (2013): 121–134. https://doi.org/10.1016/j.advwatres.2013.08.004.
Nash, J. E., and J. V. Sutcliffe. 1970. “River flow forecasting through conceptual models part I–A discussion of principles.” J. Hydrol. 10 (3): 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
Nashwan, M. S., S. Shahid, A. Dewan, T. Ismail, and N. Alias. 2020. “Performance of five high resolution satellite-based precipitation products in arid region of Egypt: An evaluation.” Atmos. Res. 236 (Oct): 104809. https://doi.org/10.1016/j.atmosres.2019.104809.
Nashwan, M. S., S. Shahid, and N. A. Rahim. 2018. “Unidirectional trends in annual and seasonal climate and extremes in Egypt.” Theor. Appl. Climatol. 136 (Apr): 457–473. https://doi.org/10.1007/s00704-018-2498-1.
Nashwan, M. S., S. Shahid, and X. Wang. 2019. “Assessment of satellite-based precipitation measurement products over the hot desert climate of Egypt.” Remote Sens. 11 (5): 555. https://doi.org/10.3390/rs11050555.
NCEI (National Centers for Environmental Information). n.d. “Looking for data?” Accessed October 31, 2023. https://www.ncdc.noaa.gov.
Nijssen, B., and D. P. Lettenmaier. 2004. “Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipating the global precipitation measurement satellites.” J. Geophys. Res.: Atmos. 109 (Jan): 1–15. https://doi.org/10.1029/2003JD003497.
Okamoto, K., T. Ushio, T. Iguchi, N. Takahashi, and I. Koyuru. 2005. “The global satellite mapping of precipitation (GSMaP) project.” In Vol. 3 of Proc., IGARSS ’05. Proc. 2005 IEEE Int., 3414–3416. New York: IEEE.
Ombadi, M., P. Nguyen, S. Sorooshian, and K. L. Hsu. 2021. “How much information on precipitation is contained in satellite infrared imagery?” Atmos. Res. 256 (Jul): 105578. https://doi.org/10.1016/j.atmosres.2021.105578.
Panofsky, H. A., and G. W. Brier. 1958. Some applications of statistics to meteorology. University Park, PA: Mineral Industries Extension Services College of Mineral Industries Pennsylvania State Univ.
Perera, H., S. Fernando, M. B. Gunathilake, and T. A. J. G. Sirisena. 2022. “Evaluation of satellite rainfall products over the Mahaweli River Basin in Sri Lanka.” Adv. Meteorol. 2022 (Apr): 1. https://doi.org/10.1155/2022/1926854.
Piani, C., J. O. Haerter, and E. Coppola. 2010. “Statistical bias correction for daily precipitation in regional climate models over Europe.” Theor. Appl. Climatol. 99 (1–2): 187–192. https://doi.org/10.1007/s00704-009-0134-9.
Ringard, J., M. Becker, F. Seyler, and L. Linguet. 2015. “Temporal and spatial assessment of four satellite rainfall estimates over French Guiana and North Brazil.” Remote Sens. 7 (12): 16441–16459. https://doi.org/10.3390/rs71215831.
Roushdi, M. 2022. “Spatio-temporal assessment of satellite estimates and gauge-based rainfall products in northern part of Egypt.” Climate 10 (9): 134. https://doi.org/10.3390/cli10090134.
Schmidli, J., C. Frei, and P. L. Vidale. 2006. “Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods.” Int. J. Climatol. 26 (5): 679–689. https://doi.org/10.1002/joc.1287.
Shawky, M., A. Moussa, Q. K. Hassan, and N. El-Sheimy. 2019. “Performance assessment of sub-daily and daily precipitation estimates derived from GPM and GSMaP products over an arid environment.” Remote Sens. 11 (23): 2840. https://doi.org/10.3390/rs11232840.
Smitha, P. S., B. Narasimhan, K. P. Sudheer, and H. Annamalai. 2018. “An improved bias correction method of daily rainfall data using a sliding window technique for climate change impact assessment.” J. Hydrol. 556 (Jan): 100–118. https://doi.org/10.1016/j.jhydrol.2017.11.010.
Stampoulis, D., and E. N. Anagnostou. 2012. “Evaluation of global satellite rainfall products over continental Europe.” J. Hydrometeorol. 13 (2): 588–603. https://doi.org/10.1175/JHM-D-11-086.1.
Sultana, R., and N. Nasrollahi. 2018. “Evaluation of remote sensing precipitation estimates over Saudi Arabia.” J. Arid Environ. 151 (Oct): 90–103. https://doi.org/10.1016/j.jaridenv.2017.11.002.
Tan, M. L., and S. Harrif. 2018. “Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia.” Atmos. Res. 202 (Apr): 63–76. https://doi.org/10.1016/j.atmosres.2017.11.006.
Tan, M. L., A. L. Ibrahim, Z. Duan, A. P. Cracknell, V. Chaplot, J. Bahru, Y. Liou, Q. Liu, and P. S. Thenkabail. 2015. “Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia.” Remote Sens. 7 (2): 1504–1528. https://doi.org/10.3390/rs70201504.
Taniguchi, A., S. Shige, M. K. Yamamoto, T. Mega, S. Kida, T. Kubota, Mi Kachi, T. Ushio, and K. Aonashi. 2013. “Improvement of high-resolution satellite rainfall product for Typhoon Morakot (2009) over Taiwan.” J. Hydrometeorol. 14 (6): 1859–1871. https://doi.org/10.1175/JHM-D-13-047.1.
Tesfagiorgis, K., S. E. Mahani, N. Y. Krakauer, and R. Khanbilvardi. 2011. “Bias correction of satellite rainfall estimates using a radar-gauge product—A case study in Oklahoma (USA).” Hydrol. Earth Syst. Sci. 15 (8): 2631–2647. https://doi.org/10.5194/hess-15-2631-2011.
Tian, Y., C. D. Peters-Lidard, C. R. F. Adler, T. Kubota, and T. Ushio. 2010a. “Evaluation of GSMaP precipitation estimates over the contiguous United States.” J. Hydrometeorol. 11 (2): 566–574. https://doi.org/10.1175/2009JHM1190.1.
Tian, Y., C. D. Peters-Lidard, and J. B. Eylander. 2010b. “Real-time bias reduction for satellite-based precipitation estimates.” J. Hydrometeorol. 11 (6): 1275–1285. https://doi.org/10.1175/2010JHM1246.1.
Vernimmen, R., A. M. Hooijer, and E. Aldrian. 2012. “Evaluation and bias correction of satellite rainfall data for drought monitoring evaluation and bias correction of satellite rainfall data for drought monitoring in Indonesia.” Hydrol. Earth Syst. Sci. Discuss. 16 (1): 133–146. https://doi.org/10.5194/hess-16-133-2012.
Villarini, G., W. F. Krajewski, and J. A. Smith. 2009. “New paradigm for statistical validation of satellite precipitation estimates: Application to a large sample of the TMPA 0.25° 3-hourly estimates over Oklahoma.” J. Geophys. Res. Atmos. 114 (12): 1–12. https://doi.org/10.1029/2008JD011475.
Wang, Z., R. Zhong, C. Lai, and J. Chen. 2017. “Evaluation of the GPM IMERG satellite based precipitation products and the hydrological utility.” Atmos. Res. 196 (Nov): 151–163. https://doi.org/10.1016/j.atmosres.2017.06.020.
Wehbe, Y., D. Ghebreyesus, M. Temimi, A. Milewski, and A. Al. 2017. “Assessment of the consistency among global precipitation products over the United Arab Emirates.” J. Hydrol.: Reg. Stud. 12 (May): 122–135. https://doi.org/10.1016/j.ejrh.2017.05.002.
Worqlul, A. W., B. Maathuis, A. A. Adem, S. S. Demissie, S. Langan, and T. S. Steenhuis. 2014. “Comparison of rainfall estimations by TRMM 3B42, MPEG and CFSR with ground-observed data for the Lake Tana Basin in Ethiopia.” Hydrol. Earth Syst. Sci. 18 (12): 4871–4881. https://doi.org/10.5194/hess-18-871-2014.
Wu, Y., Z. Zhang, Y. Huang, Q. Jin, X. Chen, and J. Chang. 2019. “Evaluation of the GPM IMERG v5 and TRMM 3B42 v7 precipitation products in the Yangtze River Basin, China.” Water 11 (7): 1459. https://doi.org/10.3390/w11071459.
Yamamoto, M. K., K. Ueno, and K. Nakamura. 2011. “Comparison of satellite precipitation products with rain gauge data for the Khumb Region, Nepal Himalayas.” J. Meteorol. Soc. Jpn. 89 (6): 597–610. https://doi.org/10.2151/jmsj.2011-601.
Yang, L., Y. Yang, P. Liu, and L. Wang. 2016. “Radar-derived quantitative precipitation estimation based on precipitation classification.” Adv. Meteorol. 2016: 1–16. https://doi.org/10.1155/2016/2457489.
Yang, Y., and Y. Luo. 2014. “Evaluating the performance of remote sensing precipitation products CMORPH, PERSIANN, and TMPA, in the arid region of Northwest China.” Theor. Appl. Climatol. 118 (3): 429–445. https://doi.org/10.1007/s00704-013-1072-0.
Yeggina, S., R. S. V. Teegavarapu, and S. Muddu. 2020. “Evaluation and bias corrections of gridded precipitation data for hydrologic modelling support in Kabini River basin, India.” Theor. Appl. Climatol. 140 (3–4): 1495–1513. https://doi.org/10.1007/s00704-020-03175-7.
Yong, B., Y. Hong, L.-L. Ren, J. J. Gourley, G. J. Huffman, X. Chen, W. Wang, and S. I. Khan. 2012. “Assessment of evolving TRMM-based multisatellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin.” J. Geophys. Res. 117: D09108. https://doi.org/10.1029/2011JD017069.
Yuan, F., L. Zhang, K. W. Wah Win, L. Ren, C. Zhao, Y. Zhu, S. Jiang, and Y. Liu. 2017. “Assessment of GPM and TRMM multi-satellite precipitation products in streamflow simulations in a data sparse mountainous watershed in Myanmar.” Remote Sens. 9 (3): 302. https://doi.org/10.3390/rs9030302.
Zhang, X., and Q. Tang. 2015. “Combining satellite precipitation and long-term ground observations for hydrological monitoring in China.” J. Geophys. Res.: Atmos. 120 (13): 6426–6443. https://doi.org/10.1002/2015JD023400.
Zhang, Y., Y. Li, X. Ji, and X. Li. 2018. “Evaluation and hydrologic validation of three satellite-based precipitation products in the upper catchment of the Red River Basin, China.” Remote Sens. 10 (12): 1881. https://doi.org/10.3390/rs10121881.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 29Issue 1February 2024

History

Received: Mar 31, 2023
Accepted: Sep 5, 2023
Published online: Nov 21, 2023
Published in print: Feb 1, 2024
Discussion open until: Apr 21, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Professor, Dept. of Irrigation and Hydraulics Engineering, Faculty of Engineering, Tanta Univ., Tanta 31527, Egypt (corresponding author). ORCID: https://orcid.org/0000-0002-4367-2902. Email: [email protected]; [email protected]
Basma A. Shalaby [email protected]
Assistant Lecturer, Dept. of Irrigation and Hydraulics Engineering, Faculty of Engineering, Tanta Univ., Tanta 31527, Egypt. Email: [email protected]
Professor, Dept. of Civil Engineering, McMaster Univ., Hamilton, ON, Canada L8S 4L7. ORCID: https://orcid.org/0000-0001-6840-1298. Email: [email protected]
Ibrahim M. H. Rashwan [email protected]
Professor, Dept. of Irrigation and Hydraulics Engineering, Faculty of Engineering, Tanta Univ., Tanta 31527, Egypt. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share