Case Studies
Aug 3, 2023

Spatiotemporal Variation of Extreme Precipitation in the Lixia River Basin, China, between 1960 and 2019 under Global Warming, Atmospheric Circulation, and Local Effects

Publication: Journal of Hydrologic Engineering
Volume 28, Issue 10

Abstract

As a consequence of global warming, extreme weather events are becoming more prevalent, which influences socioeconomic development. It is vital to reveal the variations of regional extreme precipitation for flood prevention and mitigation. This research presents a comprehensive analysis of spatiotemporal variation and segmentation trend of extreme precipitation indices (EPIs) from the spectrum of intensity, frequency, and duration in the Lixia River Basin (LRB), China, from 1960 to 2019. The influence of global warming [global mean near-surface temperature (GSTEMP)], atmospheric circulation [e.g., multivariate ENSO index (MEI), and East Asian summer monsoon index (EASMI)], and local effects (e.g., relative humidity and local temperature) are examined to explore the dominant driving factors on the trend of EPIs. Results show that the intensity and frequency of EPIs increase across the LRB, whereas the durations of extreme precipitation are decreasing. And the lower reach has more frequent extreme precipitation than the upper reach. And most stations in segmentation trend analysis of EPIs show UUD (i.e., increasing from 1960 to 1980, increasing from 1981 to 2000, and decreasing from 2001 to 2019). What is more, the intensity and frequency of extreme precipitation are more actively related to local temperature and relative humidity than others, with local temperature being the primary negative impact while other factors are positive. And relative humidity and GSTEMP have a greater impact on the duration of EPIs than others. The findings will help figure out how regional global warming affect the trends of extreme precipitation, and can be used on a regional scale for the development of socioeconomic activities.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This study was supported by the Water Resources Science and Technology Project of Jiangsu Province (Grant No. 2022006).

References

Beck, S., and M. Mahony. 2018. “The IPCC and the new map of science and politics.” Wiley Interdiscip. Rev. Clim. Change 9 (6): e547. https://doi.org/10.1002/wcc.547.
Berg, P., J. O. Haerter, P. Thejll, C. Piani, S. Hagemann, and J. H. Christensen. 2009. “Seasonal characteristics of the relationship between daily precipitation intensity and surface temperature.” J. Geophys. Res. 114 (D18): D18102. https://doi.org/10.1029/2009JD012008.
Bhatti, A. S., G. J. Wang, W. Ullah, S. Ullah, D. F. T. Hagan, I. K. Nooni, D. Lou, and I. Ullah. 2020. “Trend in extreme precipitation indices based on long term in situ precipitation records over Pakistan.” Water 12 (3): 797. https://doi.org/10.3390/w12030797.
Cai, G. J., S. Y. Liu, and A. J. Puppala. 2016. “Evaluation of geotechnical parameters of a lagoonal clay deposit in Jiangsu Lixia River area of China by seismic piezocone tests.” KSCE J. Civ. Eng. 20 (5): 1769–1782. https://doi.org/10.1007/s12205-015-0164-z.
Chen, X. Y., Q. Quan, K. Zhang, and J. H. Wei. 2021. “Spatiotemporal characteristics and attribution of dry/wet conditions in the Weihe River Basin within a typical monsoon transition zone of East Asia over the recent 547 years.” Environ. Modell. Software 143 (Sep): 105116. https://doi.org/10.1016/j.envsoft.2021.105116.
Ding, Y. X., and S. Z. Peng. 2020. “Spatiotemporal trends and attribution of drought across China from 1901–2100.” Sustainability 12 (2): 477. https://doi.org/10.1016/j.gloplacha.2016.05.007.
Dong, L., L. R. Leung, J. Lu, and Y. Gao. 2019. “Contributions of extreme and non-extreme precipitation to California precipitation seasonality changes under warming.” Geophys. Res. Lett. 46 (22): 13470–13478. https://doi.org/10.1029/2019GL084225.
Dong, X. 2016. “Influences of the pacific decadal oscillation on the East Asian summer monsoon in non-ENSO years.” Atmos. Sci. Lett. 17 (1): 115–120. https://doi.org/10.1002/asl.634.
Dottori, F., et al. 2018. “Increased human and economic losses from river flooding with anthropogenic warming.” Nat. Clim. Change 8 (9): 781–786. https://doi.org/10.1038/s41558-018-0257-z.
Du, Y. H., R. Berndtsson, D. An, L. Zhang, F. F. Yuan, and Z. C. Hao. 2020. “Integrated large-scale circulation impact on rainy season precipitation in the source region of the Yangtze River.” Int. J. Climatol. 40 (4): 2285–2295. https://doi.org/10.1002/joc.6332.
Ezaz, G. T., K. Zhang, X. Li, M. H. Shalehy, M. A. Hossain, and L. X. Liu. 2022. “Spatiotemporal changes of precipitation extremes in Bangladesh during 1987–2017 and their connections with climate changes, climate oscillations, and monsoon dynamics.” Global Planet. Change 208 (Jan): 103712. https://doi.org/10.1016/j.gloplacha.2021.103712.
Gao, T., Q. Zhang, and M. Luo. 2020. “Intensifying effects of El Nino events on winter precipitation extremes in southeastern China.” Clim. Dyn. 54 (1–2): 631–648. https://doi.org/10.1007/s00382-019-05022-6.
Gocic, M., and S. Trajkovic. 2013. “Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia.” Global Planet. Change 100 (Mar): 172–182. https://doi.org/10.1016/j.gloplacha.2012.10.014.
Gu, X. H., Q. Zhang, J. F. Li, V. P. Singh, and P. Sun. 2019. “Impact of urbanization on nonstationarity of annual and seasonal precipitation extremes in China.” J. Hydrol. 575 (Aug): 638–655. https://doi.org/10.1016/j.jhydrol.2019.05.070.
Guan, Y. H., F. L. Zheng, X. C. Zhang, and B. Wang. 2017. “Trends and variability of daily precipitation and extremes during 1960–2012 in the Yangtze River Basin, China.” Int. J. Climatol. 37 (3): 1282–1298. https://doi.org/10.1002/joc.4776.
Gupta, V., and M. K. Jain. 2020. “Impact of ENSO, global warming, and land surface elevation on extreme precipitation in India.” J. Hydrol. Eng. 25 (1): 05019032. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001872.
Han, X. D., R. Mehrotra, and A. Sharma. 2020. “Measuring the spatial connectivity of extreme rainfall.” J. Hydrol. 590 (Nov): 125510. https://doi.org/10.1016/j.jhydrol.2020.125510.
Hand, D. J. 2012. “Statistical concepts: A second course, fourth edition by Richard G. Lomax, Debbie L. Hahs-Vaughn.” Int. Stat. Rev. 80 (3): 491. https://doi.org/10.1111/j.1751-5823.2012.00196_22.x.
Hansen, J., R. Ruedy, M. Sato, and K. Lo. 2010. “Global surface temperature change.” Rev. Geophys. 48: RG4004. https://doi.org/10.1029/2010RG000345.
Huang, J., Y. D. Lei, F. M. Zhang, and Z. H. Hu. 2017. “Spatio-temporal analysis of meteorological disasters affecting rice, using multi-indices, in Jiangsu province, Southeast China.” Food Secur. 9 (4): 661–672. https://doi.org/10.1007/s12571-017-0689-8.
Janssen, E., R. L. Sriver, D. J. Wuebbles, and K. E. Kunkel. 2016. “Seasonal and regional variations in extreme precipitation event frequency using CMIP5.” Geophys. Res. Lett. 43 (10): 5385–5393. https://doi.org/10.1002/2016GL069151.
Kang, C. X., Z. J. Luo, W. Zong, and J. Hua. 2021. “Impacts of urbanization on variations of extreme precipitation over the Yangtze River Delta.” Water 13 (2): 150. https://doi.org/10.3390/w13020150.
Kendall, M. G. 1955. “Further contributions to the theory of paired comparisons.” Biometrics 11 (1): 43–62. https://doi.org/10.2307/3001479.
Kenyon, J., and G. C. Hegerl. 2010. “Influence of modes of climate variability on global precipitation extremes.” J. Clim. 23 (23): 6248–6262. https://doi.org/10.1175/2010JCLI3617.1.
Kharin, V. V., F. W. Zwiers, X. Zhang, and M. Wehner. 2013. “Changes in temperature and precipitation extremes in the CMIP5 ensemble.” Clim. Change 119 (2): 345–357. https://doi.org/10.1007/s10584-013-0705-8.
Kobayashi, S., et al. 2015. “The JRA-55 Reanalysis: General specifications and basic characteristics.” J. Meteor. Soc. Jpn. 93: 5–48. https://doi.org/10.2151/jmsj.2015-001.
Lenssen, N. J. L., G. A. Schmidt, J. E. Hansen, M. J. Menne, A. Persin, R. Ruedy, and D. Zyss. 2019. “Improvements in the GISTEMP uncertainty model.” J. Geophys. Res. 124 (12): 6307–6326. https://doi.org/10.1029/2018JD029522.
Li, J. P., Z. W. Wu, Z. H. Jiang, and J. H. He. 2010. “Can global warming strengthen the East Asian summer monsoon?” J. Clim. 23 (24): 6696–6705. https://doi.org/10.1175/2010JCLI3434.1.
Li, P. X., Z. B. Yu, P. Jiang, and C. X. Wu. 2021a. “Spatiotemporal characteristics of regional extreme precipitation in Yangtze River basin.” J. Hydrol. 603 (Mar): 126910. https://doi.org/10.1016/j.jhydrol.2021.126910.
Li, X., K. Zhang, H. J. Bao, and H. D. Zhang. 2022. “Climatology and changes in hourly precipitation extremes over China during 1970–2018.” Sci. Total Environ. 839 (Sep): 156297. https://doi.org/10.1016/j.scitotenv.2022.156297.
Li, X., K. Zhang, P. R. Gu, H. T. Feng, Y. F. Yin, W. Chen, and B. C. Cheng. 2021b. “Changes in precipitation extremes in the Yangtze River Basin during 1960–2019 and the association with global warming, ENSO, and local effects.” Sci. Total Environ. 760 (Mar): 144244. https://doi.org/10.1016/j.scitotenv.2020.144244.
Lin, L., A. Gettelman, Y. Y. Xu, C. L. Wu, Z. L. Wang, N. Rosenbloom, S. C. Bates, and W. J. Dong. 2019. “CAM6 simulation of mean and extreme precipitation over Asia: Sensitivity to upgraded physical parameterizations and higher horizontal resolution.” Geosci. Model Dev. 12 (8): 3773–3793. https://doi.org/10.5194/gmd-12-3773-2019.
Liu, B., X. Q. Zhou, W. Li, C. P. Lu, and L. C. Shu. 2016. “Spatiotemporal characteristics of groundwater drought and its response to meteorological drought in Jiangsu Province, China.” Water 8 (11): 480. https://doi.org/10.3390/w8110480.
Lo, W. C., C. T. Huang, M. H. Wu, D. J. Doong, L. H. Tseng, C. H. Chen, and Y. J. Chen. 2021. “Evaluation of flood mitigation effectiveness of nature-based solutions potential cases with an assessment model for flood mitigation.” Water 13 (23): 3451. https://doi.org/10.3390/w13233451.
Loo, Y. Y., L. Billa, and A. Singh. 2015. “Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia.” Geosci. Front. 6 (6): 817–823. https://doi.org/10.1016/j.gsf.2014.02.009.
Lorenz, E. N. 1956. Empirical orthogonal functions and statistical weather prediction. Cambridge, MA: Massachusetts Institute of Technology.
Lu, M., Y. P. Xu, N. Shan, Q. Wang, J. Yuan, and J. Wang. 2019. “Effect of urbanisation on extreme precipitation based on nonstationary models in the Yangtze River Delta metropolitan region.” Sci. Total Environ. 673 (Jul): 64–73. https://doi.org/10.1016/j.scitotenv.2019.03.413.
Lu, M. Q., S. J. Wu, J. L. Chen, C. D. Chen, Z. F. Wen, and Y. Y. Huang. 2018. “Changes in extreme precipitation in the Yangtze River basin and its association with global mean temperature and ENSO.” Int. J. Climatol. 38 (4): 1989–2005. https://doi.org/10.1002/joc.5311.
Lv, M. X., Z. G. Ma, M. X. Li, and Z. Y. Zheng. 2019. “Quantitative analysis of terrestrial water storage changes under the grain for green program in the Yellow River Basin.” J. Geophys. Res. 124 (3): 1336–1351. https://doi.org/10.1029/2018JD029113.
Ma, X. X., L. C. Wang, H. Wu, N. Li, L. Ma, C. F. Zeng, Y. Zhou, and J. Yang. 2015. “Impact of Yangtze River water transfer on the water quality of the Lixia River Watershed, China.” PLoS One 10 (4): e0119720. https://doi.org/10.1371/journal.pone.0119720.
Mann, H. B. 1945. “Nonparametric test against trend.” Econometrica 13 (3): 245–259. https://doi.org/10.2307/1907187.
Mao, Y., Z. Y. Wu, H. He, G. H. Lu, H. T. Xu, and Q. X. Lin. 2017. “Spatio-temporal analysis of drought in a typical plain region based on the soil moisture anomaly percentage index.” Sci. Total Environ. 576 (Jan): 752–765. https://doi.org/10.1016/j.scitotenv.2016.10.116.
Min, S. K., X. B. Zhang, F. W. Zwiers, and G. C. Hegerl. 2013. “Human contribution to more-intense precipitation extremes.” Nature 498 (7455): 526. https://doi.org/10.1038/nature12197.
Nicholson, S. E., C. Funk, and A. H. Fink. 2018. “Rainfall over the African continent from the 19th through the 21st century.” Global Planet. Change 165 (Jun): 114–127. https://doi.org/10.1016/j.gloplacha.2017.12.014.
North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng. 1982. “Sampling errors in the estimation of empirical orthogonal functions.” Mon. Weather Rev. 110 (7): 699. https://doi.org/10.1175/1520-0493(1982)110%3C0699:SEITEO%3E2.0.CO;2.
O’Gorman, P. A. 2015. “Precipitation extremes under climate change.” Curr. Clim. Change Rep. 1 (2): 49–59. https://doi.org/10.1007/s40641-015-0009-3.
O’Gorman, P. A., and T. Schneider. 2009. “Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM.” J. Clim. 22 (21): 5676–5685. https://doi.org/10.1175/2009JCLI2701.1.
Otto, F. E. L., S. M. Rosier, M. R. Allen, N. R. Massey, C. J. Rye, and J. I. Quintana. 2015. “Attribution analysis of high precipitation events in summer in England and Wales over the last decade.” Clim. Change 132 (1): 77–91. https://doi.org/10.1007/s10584-014-1095-2.
Ouyang, R., W. Liu, G. Fu, C. Liu, L. Hu, and H. Wang. 2014. “Linkages between ENSO/PDO signals and precipitation, streamflow in China during the last 100 years.” Hydrol. Earth Syst. Sci. 18 (9): 3651–3661. https://doi.org/10.5194/hess-18-3651-2014.
Pall, P., M. R. Allen, and D. A. Stone. 2007. “Testing the clausius-clapeyron constraint on changes in extreme precipitation under CO2 warming.” Clim. Dyn. 28 (4): 351–363. https://doi.org/10.1007/s00382-006-0180-2.
Pan, G. B., Y. P. Xu, J. J. Ding, and Z. W. Ye. 2010. “Spatial-temporal variations of precipitation in the lower Jianghuai plain: A case study of the Inner Lixiahe Region, Jiangsu.” J. Nanjing Univ. 46 (6): 671–680.
Pendergrass, A. G. 2020. “Changing degree of convective organization as a mechanism for dynamic changes in extreme precipitation.” Curr. Clim. Change Rep. 6 (2): 47–54. https://doi.org/10.1007/s40641-020-00157-9.
Rodell, M., et al. 2004. “The global land data assimilation system.” Bull. Am. Meteorol. Soc. 85 (3): 381. https://doi.org/10.1175/BAMS-85-3-381.
Schroeer, K., and G. Kirchengast. 2018. “Sensitivity of extreme precipitation to temperature: The variability of scaling factors from a regional to local perspective.” Clim. Dyn. 50 (11–12): 3981–3994. https://doi.org/10.1007/s00382-017-3857-9.
Sen, P. K. 1968. “Estimates of the regression coefficient based on Kendall’s Tau.” J. Am. Stat. Assoc. 63 (324): 1379–1389. https://doi.org/10.1080/01621459.1968.10480934.
Shao, Y. H., J. Zhao, J. C. Xu, A. L. Fu, and J. M. Wu. 2021. “Revision of frequency estimates of extreme precipitation based on the annual maximum series in the Jiangsu Province in China.” Water 13 (13): 1832. https://doi.org/10.3390/w13131832.
Sun, W. Y., X. M. Mu, X. Y. Song, D. Wu, A. F. Cheng, and B. Qiu. 2016. “Changes in extreme temperature and precipitation events in the Loess Plateau (China) during 1960–2013 under global warming.” Atmos. Res. 168 (Feb): 33–48. https://doi.org/10.1016/j.atmosres.2015.09.001.
Tichavsky, R., J. A. Ballesteros-Canovas, K. Silhan, R. Tolasz, and M. Stoffel. 2019. “Dry spells and extreme precipitation are the main trigger of landslides in central Europe.” Sci. Rep. 9 (1): 14560. https://doi.org/10.1038/s41598-019-51148-2.
Wang, S., K. Zhang, L. P. H. van Beek, X. Tian, and T. A. Bogaard. 2020. “Physically-based landslide prediction over a large region: Scaling low-resolution hydrological model results for high-resolution slope stability assessment.” Environ. Modell. Software 124 (Feb): 104607. https://doi.org/10.1016/j.envsoft.2019.104607.
Wei, J., W. Wang, Q. Shao, Y. Rong, W. Xing, and C. Liu. 2020. “Influence of mature El Nino-Southern Oscillation phase on seasonal precipitation and streamflow in the Yangtze River Basin, China.” Int. J. Climatol. 40 (8): 3885–3905. https://doi.org/10.1002/joc.6433.
Whetton, P. H., A. M. Fowler, M. R. Haylock, and A. B. Pittock. 1993. “Implications of climate-change due to the enhanced greenhouse-effect on floods and droughts in Australia.” Clim. Change 25 (3–4): 289–317. https://doi.org/10.1007/BF01098378.
Wolter, K., and M. S. Timlin. 2011. “El Nino/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext).” Int. J. Climatol. 31 (7): 1074–1087. https://doi.org/10.1002/joc.2336.
Wu, R. G. 2017. “Relationship between Indian and East Asian summer rainfall variations.” Adv. Atmos. Sci. 34 (1): 4–15. https://doi.org/10.1007/s00376-016-6216-6.
Wu, X. F., and J. Y. Mao. 2018. “Spatial and interannual variations of spring rainfall over eastern China in association with PDO-ENSO events.” Theor. Appl. Climatol. 134 (3–4): 935–953. https://doi.org/10.1007/s00704-017-2323-2.
Wu, X. H., L. Zhou, G. Gao, J. Guo, and Z. H. Ji. 2016. “Urban flood depth-economic loss curves and their amendment based on resilience: Evidence from Lizhong Town in Lixia River and Houbai Town in Jurong River of China.” Nat. Hazards 82 (3): 1981–2000. https://doi.org/10.1007/s11069-016-2281-5.
Wu, Y. N., D. Long, U. Lall, B. R. Scanlon, F. Q. Tian, X. D. Fu, J. S. Zhao, J. Y. Zhang, H. Wang, and C. H. Hu. 2022. “Reconstructed eight-century streamflow in the Tibetan Plateau reveals contrasting regional variability and strong nonstationarity.” Nat. Commun. 13 (1): 6416. https://doi.org/10.1038/s41467-022-34221-9.
Xiao, M., Q. Zhang, and V. P. Singh. 2015. “Influences of ENSO, NAO, IOD and PDO on seasonal precipitation regimes in the Yangtze River basin, China.” Int. J. Climatol. 35 (12): 3556–3567. https://doi.org/10.1002/joc.4228.
Xu, Z. Q., K. Fan, and H. J. Wang. 2015. “Decadal variation of summer precipitation over China and associated atmospheric circulation after the late 1990s.” J. Clim. 28 (10): 4086–4106. https://doi.org/10.1175/JCLI-D-14-00464.1.
Yao, J. Q., Q. Yang, W. Y. Mao, Y. Zhao, and X. B. Xu. 2016. “Precipitation trend-Elevation relationship in arid regions of the China.” Global Planet. Change 143 (Aug): 1–9. https://doi.org/10.1016/j.gloplacha.2016.05.007.
Ye, Z. W., Y. P. Xu, and G. B. Pan. 2013. “Relationship between precipitation in flood season and ENSO warm and cold events in the lower reaches of Jianghuai Basin: A case study in the Inner Lixiahe Region.” Geogr. Res. 32 (10): 1824–1832. https://doi.org/1000-0585(2013)32:10<1824:JHXYXQ>2.0.TX;2-F.
Zhang, K., et al. 2015. “The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric CO2, and land use.” Global Change Biol. 21 (7): 2569–2587. https://doi.org/10.1111/gcb.12903.
Zhao, G. J., G. Huang, R. G. Wu, W. C. Tao, H. N. Gong, X. Qu, and K. M. Hu. 2015. “A new upper-level circulation index for the East Asian summer monsoon variability.” J. Clim. 28 (24): 9977–9996. https://doi.org/10.1175/JCLI-D-15-0272.1.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 28Issue 10October 2023

History

Received: Jan 17, 2023
Accepted: May 31, 2023
Published online: Aug 3, 2023
Published in print: Oct 1, 2023
Discussion open until: Jan 3, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Engineer, Dept. of Rural Water Conservancy and Soil Conservation, Jiangsu Hydraulic Research Institute, 97# Nanhu Rd., Nanjing 210017, China. ORCID: https://orcid.org/0000-0003-4868-6112. Email: [email protected]
Professor, Dept. of Rural Water Conservancy and Soil Conservation, Jiangsu Hydraulic Research Institute, 97# Nanhu Rd., Nanjing 210017, China (corresponding author). Email: [email protected]
Dongmei Wang [email protected]
Professor, Dept. of Lake Water Conservancy, Jiangsu Hydraulic Research Institute, 97# Nanhu Rd., Nanjing 210017, China. Email: [email protected]
Yihong Wang [email protected]
Senior Engineer, Dept. of Lake Water Conservancy, Jiangsu Hydraulic Research Institute, 97# Nanhu Rd., Nanjing 210017, China. Email: [email protected]
Assistant Engineer, Nanjing Research Institute of Hydrology and Water Conservation Automation, Ministry of Water Resources, 95# Tiexinqiao Rd., Nanjing 210012, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share