Technical Papers
Feb 13, 2023

Bias Correction of Satellite Precipitation Products for Hydrologic Modeling in Western Ghats Region, India

Publication: Journal of Hydrologic Engineering
Volume 28, Issue 4

Abstract

A comprehensive examination of regional errors in Satellite Precipitation Products (SPPs) is crucial for accurate hydrometeorological modelling. In this study, a multiplicative error-based approach was used for correcting systematic bias in the SPPs at Western Ghats (WG) region of India. Most of the SPPs available so far underestimate the monsoon rainfall in WG. Quality controlled gridded rain gauge data from the Indian Meteorological Department (IMD) was used as the ground data for bias correction. Bias correction of three multi-satellite precipitation products, namely, Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 Version 7, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) and Climate Prediction Center (CPC) MORPHed (CMORPH) precipitation, were performed in this study. The results show that bias correction remarkably reduced the bias between the SPPs and IMD rainfall measurements. The efficacy of bias-corrected SPPs in hydrologic modelling was investigated with the help of two conceptual rainfall runoff models, GR4J and HYMOD. The bias-corrected SPPs were able to provide improved streamflow simulations with daily Nash-Sutcliffe efficiency (NSE) and correlation coefficients greater than 0.4 and 0.7, respectively. It was also found that the performance of the model HYMOD was marginally better than that of GR4J in predicting streamflow in terms of NSE, linear correlation coefficient, and p-factor for all five validation catchments in the WG region. This study contributes to the ongoing research on error characterization of SPPs for improved global hydrometeorological modelling.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The SPPs are available via the respective websites of the dataset producers, as provided in Table 2. Discharge data used in this study is available from CWC, Ministry of Water Resources, Government of India, and is categorized as classified government data. Solar radiation min/max temperature and windspeed data required for PET calculation were downloaded from the freely available NASA MERRA climate forecasting dataset (Ruane et al. 2015). Relative humidity data is available via NASA POWER project (The Power Project 2019).

References

AghaKouchak, A., A. Mehran, H. Norouzi, and A. Behrangi. 2012. “Systematic and random error components in satellite precipitation data sets.” Geophys. Res. Lett. 39 (9): L09406. https://doi.org/10.1029/2012GL051592.
Ajaaj, A. A., A. K. Mishra, and A. A. Khan. 2016. “Comparison of BIAS correction techniques for GPCC rainfall data in semi-arid climate.” Stochastic Environ. Res. Risk Assess. 30 (6): 1659–1675. https://doi.org/10.1007/s00477-015-1155-9.
Anshuman, A., A. Kunnath-Poovakka, and T. I. Eldho. 2018. “Performance evaluation of conceptual rainfall-runoff models GR4J and AWBM.” ISH J. Hydraul. Eng. 27 (4): 365–374. https://doi.org/10.1080/09715010.2018.1556124.
Anshuman, A., A. Kunnath-Poovakka, and T. I. Eldho. 2019. “Towards the use of conceptual models for water resource assessment in Indian tropical watersheds under monsoon-driven climatic conditions.” Environ. Earth Sci. 78 (9): 282. https://doi.org/10.1007/s12665-019-8281-5.
Bajracharya, S. R., W. Palash, M. S. Shrestha, V. R. Khadgi, C. Duo, P. J. Das, and C. Dorji. 2015. “Systematic evaluation of satellite-based rainfall products over the Brahmaputra basin for hydrological applications.” Adv. Meteorol. 2015: 398687. https://doi.org/10.1155/2015/398687.
Bitew, M. M., and M. Gebremichael. 2011. “Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model.” Water Resour. Res. 47 (6): W06526. https://doi.org/10.1029/2010WR009917.
Boushaki, F. I., K.-L. Hsu, S. Sorooshian, G.-H. Park, S. Mahani, and W. Shi. 2009. “Bias adjustment of satellite precipitation estimation using ground-based measurement: A case study evaluation over the southwestern United States.” J. Hydrometeorol. 10 (5): 1231–1242. https://doi.org/10.1175/2009JHM1099.1.
Broderick, C., T. Matthews, R. L. Wilby, S. Bastola, and C. Murphy. 2016. “Transferability of hydrological models and ensemble averaging methods between contrasting climatic periods.” Water Resour. Res. 52 (10): 8343–8373. https://doi.org/10.1002/2016WR018850.
Choubin, B., S. Khalighi-Sigaroodi, A. Mishra, M. Goodarzi, S. Shamshirband, E. Ghaljaee, and F. Zhang. 2019. “A novel bias correction framework of TMPA 3B42 daily precipitation data using similarity matrix/homogeneous conditions.” Sci. Total Environ. 694 (Dec): 133680. https://doi.org/10.1016/j.scitotenv.2019.133680.
Climate Prediction Center, National Centers for Environmental Prediction, National Weather Service, NOAA, and US Department of Commerce. 2011. NOAA CPC morphing technique (CMORPH) global precipitation analyses. Boulder, CO: Computational and Information Systems Laboratory.
Derin, Y., and K. K. Yilmaz. 2014. “Evaluation of multiple satellite-based precipitation products over complex topography.” J. Hydrometeorol. 15 (4): 1498–1516. https://doi.org/10.1175/JHM-D-13-0191.1.
Duan, Q., S. Sorooshian, and V. Gupta. 1992. “Effective and efficient global optimization for conceptual rainfall-runoff models.” Water Resour. Res. 28 (4): 1015–1031. https://doi.org/10.1029/91WR02985.
Duan, Z., J. Liu, Y. Tuo, G. Chiogna, and M. Disse. 2016. “Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales.” Sci. Total Environ. 573 (Dec): 1536–1553. https://doi.org/10.1016/j.scitotenv.2016.08.213.
Edijatno, M. C., N. DeOliveira Nascimento, X. Yang, Z. Makhlouf, and C. Michel. 1999. “GR3J: A daily watershed model with three free parameters.” Hydrol. Sci. J. 44 (2): 263–277. https://doi.org/10.1080/02626669909492221.
Gebremichael, M., M. M. Bitew, F. A. Hirpa, and G. N. Tesfay. 2014. “Accuracy of satellite rainfall estimates in the Blue Nile Basin: Lowland plain versus highland mountain.” Water Resour. Res. 50 (11): 8775–8790. https://doi.org/10.1002/2013WR014500.
Gosain, A., S. Rao, and A. Arora. 2011. “Climate change impact assessment of water resources of India.” Curr. Sci. 101 (3): 356–371.
Goswami, B. 2005. “South Asian monsoon.” In Intraseasonal variability in the atmosphere-ocean climate system, 19–61. Berlin: Springer.
Gumindoga, W., T. H. Rientjes, A. T. Haile, H. Makurira, and P. Reggiani. 2019. “Performance of bias-correction schemes for CMORPH rainfall estimates in the Zambezi River basin.” Hydrol. Earth Syst. Sci. 23 (7): 2915–2938. https://doi.org/10.5194/hess-23-2915-2019.
Habib, E., A. Haile, N. Sazib, Y. Zhang, and T. Rientjes. 2014. “Effect of bias correction of satellite-rainfall estimates on runoff simulations at the source of the Upper Blue Nile.” Remote Sens. 6 (7): 6688–6708. https://doi.org/10.3390/rs6076688.
Himanshu, S. K., A. Pandey, and A. Patil. 2018. “Hydrologic evaluation of the TMPA-3B42V7 precipitation data set over an agricultural watershed using the SWAT model.” J. Hydrol. Eng. 23 (4): 05018003. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001629.
Højberg, A. L., and J. C. Refsgaard. 2005. “Model uncertainty—Parameter uncertainty versus conceptual models.” Water Sci. Technol. 52 (6): 177–186. https://doi.org/10.2166/wst.2005.0166.
Hong, Y., K.-L. Hsu, H. Moradkhani, and S. Sorooshian. 2006. “Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response.” Water Resour. Res. 42 (8): W08421. https://doi.org/10.1029/2005WR004398.
Hsu, K.-L., X. Gao, S. Sorooshian, and H. V. Gupta. 1997. “Precipitation estimation from remotely sensed information using artificial neural networks.” J. Appl. Meteorol. 36 (9): 1176–1190. https://doi.org/10.1175/1520-0450(1997)036%3C1176:PEFRSI%3E2.0.CO;2.
Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, Y. Hong, E. F. Stocker, and D. B. Wolff. 2007. “The TRMM multi-satellite precipitation analysis: Quasi-global, multi-year, combined sensor precipitation estimates at fine scales.” J. Hydrometeorol. 8 (Mar): 28–55. https://doi.org/10.1175/JHM560.1.
Huffman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin. 2010. “The TRMM multi-satellite precipitation analysis (TMPA).” In Satellite rainfall applications for surface hydrology, 3–22. New York: Springer.
Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, P. Xie, and S.-H. Yoo. 2015. “NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG).” In Algorithm Theoretical Basis Document (ATBD) Version, 26. Greenbelt, MD: NASA Goddard Space Flight Center.
Ines, A. V., and J. W. Hansen. 2006. “Bias correction of daily GCM rainfall for crop simulation studies.” Agric. For. Meteorol. 138 (1–4): 44–53. https://doi.org/10.1016/j.agrformet.2006.03.009.
Islam, M. A., B. Yu, and N. Cartwright. 2020. “Assessment and comparison of five satellite precipitation products in Australia.” J. Hydrol. 590 (Nov): 125474. https://doi.org/10.1016/j.jhydrol.2020.125474.
Jiang, Q., W. Li, J. Wen, Z. Fan, Y. Chen, M. Scaioni, and J. Wang. 2019. “Evaluation of satellite-based products for extreme rainfall estimations in the eastern coastal areas of China.” J. Integr. Environ. Sci. 16 (1): 191–207. https://doi.org/10.1080/1943815X.2019.1707233.
Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie. 2004. “CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution.” J. Hydrometeorol. 5 (3): 487–503. https://doi.org/10.1175/1525-7541(2004)005%3C0487:CAMTPG%3E2.0.CO;2.
Kharin, V. V., and F. W. Zwiers. 2002. “Climate predictions with multimodel ensembles.” J. Clim. 15 (7): 793–799. https://doi.org/10.1175/1520-0442(2002)015%3C0793:CPWME%3E2.0.CO;2.
Kidd, C., A. Becker, G. J. Huffman, C. L. Muller, P. Joe, G. Skofronick-Jackson, and D. B. Kirschbaum. 2017. “So, how much of the Earth’s surface is covered by rain gauges?” Bull. Am. Meteorol. Soc. 98 (1): 69–78. https://doi.org/10.1175/BAMS-D-14-00283.1.
Kolluru, V., S. Kolluru, and P. Konkathi. 2020. “Evaluation and integration of reanalysis rainfall products under contrasting climatic conditions in India.” Atmos. Res. 246 (Dec): 105121. https://doi.org/10.1016/j.atmosres.2020.105121.
Krishnakumar, K., G. Prasada Rao, and C. Gopakumar. 2009. “Rainfall trends in twentieth century over Kerala, India.” Atmos. Environ. 43 (11): 1940–1944. https://doi.org/10.1016/j.atmosenv.2008.12.053.
Kubota, T., et al. 2007. “Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation.” IEEE Trans. Geosci. Remote Sens. 45 (7): 2259–2275. https://doi.org/10.1109/TGRS.2007.895337.
Kunnath-Poovakka, A., and T. Eldho. 2019. “A comparative study of conceptual rainfall-runoff models GR4J, AWBM and Sacramento at catchments in the upper Godavari river basin, India.” J. Earth Syst. Sci. 128 (2): 33. https://doi.org/10.1007/s12040-018-1055-8.
Li, Z., et al. 2021. “Two-decades of GPM IMERG early and final run products intercomparison: Similarity and difference in climatology, rates, and extremes.” J. Hydrol. 594 (Mar): 125975. https://doi.org/10.1016/j.jhydrol.2021.125975.
Li, Z., M. Chen, S. Gao, Z. Hong, G. Tang, Y. Wen, J. J. Gourley, and Y. Hong. 2020. “Cross-examination of similarity, difference and deficiency of gauge, radar and satellite precipitation measuring uncertainties for extreme events using conventional metrics and multiplicative triple collocation.” Remote Sens. 12 (8): 1258. https://doi.org/10.3390/rs12081258.
Liu, Z. 2015. “Comparison of precipitation estimates between Version 7 3-hourly TRMM Multi-Satellite Precipitation Analysis (TMPA) near-real-time and research products.” Atmos. Res. 153 (Feb): 119–133. https://doi.org/10.1016/j.atmosres.2014.07.032.
Madhusoodhanan, C. G., K. G. Sreeja, and T. I. Eldho. 2017. “Assessment of uncertainties in global land cover products for hydro-climate modeling in India.” Water Resour. Res. 53 (2): 1713–1734. https://doi.org/10.1002/2016WR020193.
McMillan, H., B. Jackson, M. Clark, D. Kavetski, and R. Woods. 2011. “Rainfall uncertainty in hydrological modelling: An evaluation of multiplicative error models.” J. Hydrol. 400 (1–2): 83–94. https://doi.org/10.1016/j.jhydrol.2011.01.026.
Mishra, A., R. Gairola, A. Varma, and V. K. Agarwal. 2010. “Remote sensing of precipitation over Indian land and oceanic regions by synergistic use of multisatellite sensors.” J. Geophys. Res. Atmos. 115 (D8): D08106. https://doi.org/10.1029/2009JD012157.
Moore, R. 1985. “The probability-distributed principle and runoff production at point and basin scales.” Hydrol. Sci. J. 30 (2): 273–297. https://doi.org/10.1080/02626668509490989.
Nair, S., G. Srinivasan, and R. Nemani. 2009. “Evaluation of multi-satellite TRMM derived rainfall estimates over a western state of India.” J. Meteorol. Soc. Jpn. Ser. II 87 (6): 927–939. https://doi.org/10.2151/jmsj.87.927.
Nash, J. E., and J. V. Sutcliffe. 1970. “River flow forecasting through conceptual models part I—A discussion of principles.” J. Hydrol. 10 (3): 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
Nguyen, P., et al. 2019. “The CHRS Data Portal, an easily accessible public repository for PERSIANN global satellite precipitation data.” Sci. Data 6 (1): 180296. https://doi.org/10.1038/sdata.2018.296.
Pai, D., L. Sridhar, M. Rajeevan, O. Sreejith, N. Satbhai, and B. Mukhopadhyay. 2014. “Development of a new high spatial resolution (0.25×0.25) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region.” Mausam 65 (1): 1–18. https://doi.org/10.54302/mausam.v65i1.851.
Perrin, C., C. Michel, and V. Andréassian. 2003. “Improvement of a parsimonious model for streamflow simulation.” J. Hydrol. 279 (1–4): 275–289. https://doi.org/10.1016/S0022-1694(03)00225-7.
Prakash, S. 2019. “Performance assessment of CHIRPS, MSWEP, SM2RAIN-CCI, and TMPA precipitation products across India.” J. Hydrol. 571 (Apr): 50–59. https://doi.org/10.1016/j.jhydrol.2019.01.036.
Prakash, S., C. Mahesh, and R. Gairola. 2013. “Comparison of TRMM Multi-satellite Precipitation Analysis (TMPA)-3B43 version 6 and 7 products with rain gauge data from ocean buoys.” Remote Sens. Lett. 4 (7): 677–685. https://doi.org/10.1080/2150704X.2013.783248.
Prakash, S., A. K. Mitra, E. Rajagopal, and D. Pai. 2016. “Assessment of TRMM-based TMPA-3B42 and GSMaP precipitation products over India for the peak southwest monsoon season.” Int. J. Climatol. 36 (4): 1614–1631. https://doi.org/10.1002/joc.4446.
Prakash, S., V. Sathiyamoorthy, C. Mahesh, and R. Gairola. 2014. “An evaluation of high-resolution multisatellite rainfall products over the Indian monsoon region.” Int. J. Remote Sens. 35 (9): 3018–3035. https://doi.org/10.1080/01431161.2014.894661.
Quan, Z., J. Teng, W. Sun, T. Cheng, and J. Zhang. 2015. “Evaluation of the HYMOD model for rainfall–runoff simulation using the GLUE method.” Proc. Int. Assoc. Hydrol. Sci. 368 (May): 180–185. https://doi.org/10.5194/piahs-368-180-2015.
Rahman, S., D. Sengupta, and M. Ravichandran. 2009. “Variability of Indian summer monsoon rainfall in daily data from gauge and satellite.” J. Geophys. Res. Atmos. 114: D17113. https://doi.org/10.1029/2008JD011694.
Rajeevan, M., and J. Bhate. 2009. “A high resolution daily gridded rainfall dataset (1971–2005) for mesoscale meteorological studies.” Curr. Sci. 96 (4): 558–562. https://doi.org/10.5194/piahs-368-180-2015.
Reddy, M. V., A. K. Mitra, I. M. Momin, A. K. Mitra, and D. Pai. 2019. “Evaluation and inter-comparison of high-resolution multi-satellite rainfall products over India for the southwest monsoon period.” Int. J. Remote Sens. 40 (12): 4577–4603. https://doi.org/10.1080/01431161.2019.1569786.
Ruane, A. C., R. Goldberg, and J. Chryssanthacopoulos. 2015. “Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation.” Agric. For. Meteorol. 200 (Jan): 233–248. https://doi.org/10.1016/j.agrformet.2014.09.016.
Sapiano, M., and P. Arkin. 2009. “An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data.” J. Hydrometeorol. 10 (1): 149–166. https://doi.org/10.1175/2008JHM1052.1.
Satgé, F., D. Defrance, B. Sultan, M. P. Bonnet, F. Seyler, N. Rouche, F. Pierron, and J. E. Paturel. 2020. “Evaluation of 23 gridded precipitation datasets across West Africa.” J. Hydrol. 581 (Feb): 124412. https://doi.org/10.1016/j.jhydrol.2019.124412.
Satgé, F., D. Ruelland, M.-P. Bonnet, J. Molina, and R. Pillco. 2019. “Consistency of satellite-based precipitation products in space and over time compared with gauge observations and snow-hydrological modelling in the Lake Titicaca region.” Hydrol. Earth Syst. Sci. 23 (1): 595–619. https://doi.org/10.5194/hess-23-595-2019.
Shukla, A. K., C. S. P. Ojha, R. P. Singh, L. Pal, and D. Fu. 2019. “Evaluation of TRMM precipitation dataset over Himalayan catchment: The Upper Ganga Basin, India.” Water 11 (3): 613. https://doi.org/10.3390/w11030613.
Sorooshian, S., K.-L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite. 2000. “Evaluation of PERSIANN system satellite-based estimates of tropical rainfall.” Bull. Am. Meteorol. Soc. 81 (9): 2035–2046. https://doi.org/10.1175/1520-0477(2000)081%3C2035:EOPSSE%3E2.3.CO;2.
Sreedevi, S., A. Kunnath-Poovakka, and T. I. Eldho. 2021. “Comparison of Conceptual and Distributed Hydrological Models for Runoff Estimation in a River Basin.” In The Ganga River Basin: A hydrometeorological approach, 135–148. Cham, Switzerland: Springer.
Sun, W., J. Ma, G. Yang, and W. Li. 2018. “Statistical and hydrological evaluations of multi-satellite precipitation products over Fujiang River Basin in Humid Southeast China.” Remote Sens. 10 (12): 1898. https://doi.org/10.3390/rs10121898.
Sunilkumar, K., T. Narayana Rao, K. Saikranthi, and M. Purnachandra Rao. 2015. “Comprehensive evaluation of multisatellite precipitation estimates over India using gridded rainfall data.” J. Geophys. Res. 120 (17): 8987–9005. https://doi.org/10.1002/2015JD023437.
Tang, G., M. P. Clark, S. M. Papalexiou, Z. Ma, and Y. Hong. 2020. “Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets.” Remote Sens. Environ. 240 (Apr): 111697. https://doi.org/10.1016/j.rse.2020.111697.
The Power Project. 2019. “Relative humidity at 2 meters. The power Project, NASA prediction of worldwide energy resources.” Accessed July 22, 2019. https://power.larc.nasa.gov/.
Tian, Y., G. J. Huffman, R. F. Adler, L. Tang, M. Sapiano, V. Maggioni, and H. Wu. 2013. “Modeling errors in daily precipitation measurements: Additive or multiplicative?” Geophys. Res. Lett. 40 (10): 2060–2065. https://doi.org/10.1002/grl.50320.
Tian, Y., and C. D. Peters-Lidard. 2010. “A global map of uncertainties in satellite-based precipitation measurements.” Geophys. Res. Lett. 37: L24407. https://doi.org/10.1029/2010GL046008.
Tian, Y., C. D. Peters-Lidard, J. B. Eylander, R. J. Joyce, G. J. Huffman, R. F. Adler, K. Hsu, F. J. Turk, M. Garcia, and J. Zeng. 2009. “Component analysis of errors in satellite-based precipitation estimates.” J. Geophys. Res. Atmos. 114 (Dec): D24101. https://doi.org/10.1029/2009JD011949.
TRMM (Tropical Rainfall Measuring Mission). 2011. TRMM (TMPA) rainfall estimate L3 3 hour 0.25 degree x 0.25 degree V7. Greenbelt, MD: Goddard Earth Sciences Data and Information Services Center. https://doi.org/10.5067/TRMM/TMPA/3H/7.
Uma, R., T. L. Kumar, M. Narayanan, M. Rajeevan, J. Bhate, and K. N. Kumar. 2013. “Large scale features and assessment of spatial scale correspondence between TMPA and IMD rainfall datasets over Indian landmass.” J. Earth Syst. Sci. 122 (3): 573–588. https://doi.org/10.1007/s12040-013-0312-0.
Uniyal, B., M. K. Jha, and A. K. Verma. 2015. “Assessing climate change impact on water balance components of a river basin using SWAT model.” Water Resour. Manage. 29 (13): 4767–4785. https://doi.org/10.1007/s11269-015-1089-5.
Vaze, J., D. Post, F. Chiew, J.-M. Perraud, J. Teng, and N. Viney. 2011. “Conceptual rainfall–runoff model performance with different spatial rainfall inputs.” J. Hydrometeorol. 12 (5): 1100–1112. https://doi.org/10.1175/2011JHM1340.1.
Villarini, G., P. V. Mandapaka, W. F. Krajewski, and R. J. Moore. 2008. “Rainfall and sampling uncertainties: A rain gauge perspective.” J. Geophys. Res. Atmos. 113: D11102. https://doi.org/10.1029/2007JD009214.
Wei, G., H. Lü, W. T. Crow, Y. Zhu, J. Wang, and J. Su. 2018. “Comprehensive evaluation of GPM-IMERG, CMORPH, and TMPA precipitation products with gauged rainfall over mainland China.” Adv. Meteorol. 2018: 3024190. https://doi.org/10.1155/2018/3024190.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 28Issue 4April 2023

History

Received: Dec 31, 2021
Accepted: Dec 14, 2022
Published online: Feb 13, 2023
Published in print: Apr 1, 2023
Discussion open until: Jul 13, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Postdoctoral Fellow, Dept. of Civil Engineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, Maharashtra 400076, India (corresponding author). ORCID: https://orcid.org/0000-0001-8670-409X. Email: [email protected]
T. I. Eldho
Professor, Dept. of Civil Engineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, Maharashtra 400076, India.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share