Technical Papers
Jul 10, 2024

Deoxygenation Pathways for Sustainable Aviation Fuel from Used Cooking Oil: A Review on Catalyst and Operating Parameters

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 28, Issue 4

Abstract

The aviation industry stands at the crossroads of a climate crisis, which significantly contributes to worldwide carbon (C) emissions. To combat this issue and embrace environmental sustainability, the production of sustainable aviation fuel (SAF) from triglyceride-based bio-oils has emerged as a pivotal research and industry pursuit. Traditional aviation fuels that are derived from fossil sources are a major contributor to carbon dioxide (CO2) emissions. However, SAF presents a sustainable and environmentally friendly alternative by harnessing the potential of a used cooking oil (UCO) (triglyceride source), an often-neglected waste stream with significant environmental implications when improperly managed. Among the various conversion methods, the deoxygenation (DO) reaction pathway has emerged as a promising method for converting triglycerides into SAF. However, this emerging technology has significant challenges, which primarily revolve around the selection of feedstocks, catalysts, reaction pathways, and operational parameters. Therefore, this study provides a holistic overview of the DO of a triglyceride-based UCO feedstock as a promising avenue for SAF production by navigating diverse SAF feedstocks, tailoring the DO to enhance versatility, exploring catalyst nuances that impact the DO, and unraveling the optimal operating conditions for superior SAF yields and selectivity. This study concludes that the optimal conditions for SAF production involve utilizing feedstocks with a low free fatty acid (FFA) content, such as canola or high oleic sunflower oils. Employing catalysts with a high surface area and abundant acid sites, such as Zeolite Socony Mobil–5 (ZSM–5), along with metal impregnators such as carbon monoxide (CO) and nickel (Ni) as active metal and promoters, in a down-trickle bed reactor within 300°C–380°C and pressure range of 10–50 bar, proves to be the most effective approach.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors gratefully acknowledge the UPES, Dehradun, and the Indian Institute of Technology, Mumbai.
All authors contributed equally to the preparation of this review paper.

References

Abrantes, I., A. F. Ferreira, A. Silva, and M. Costa. 2021. “Sustainable aviation fuels and imminent technologies - CO2 emissions evolution towards 2050.” J. Cleaner Prod. 313: 127937. https://doi.org/10.1016/j.jclepro.2021.127937.
Adewale, P., M.-J. Dumont, and M. Ngadi. 2015. “Recent trends of biodiesel production from animal fat wastes and associated production techniques.” Renewable Sustainable Energy Rev. 45: 574–588. https://doi.org/10.1016/j.rser.2015.02.039.
Aguilar, F. X., N. Song, and S. Shifley. 2011. “Review of consumption trends and public policies promoting woody biomass as an energy feedstock in the U.S.” Biomass Bioenergy 35 (8): 3708–3718. https://doi.org/10.1016/j.biombioe.2011.05.029.
Ahmad, M., R. Farhana, A. A. A. Raman, and S. K. Bhargava. 2016. “Synthesis and activity evaluation of heterometallic nano oxides integrated ZSM-5 catalysts for palm oil cracking to produce biogasoline.” Energy Convers. Manage. 119: 352–360. https://doi.org/10.1016/j.enconman.2016.04.069.
Alherbawi, M., G. McKay, H. R. Mackey, and T. Al-Ansari. 2021. “A novel integrated pathway for Jet biofuel production from whole energy crops: A Jatropha curcas case study.” Energy Convers. Manage. 229: 113662. https://doi.org/10.1016/j.enconman.2020.113662.
Al-Muhtaseb, A. H., F. Jamil, L. Al-Haj, M. A. Al-Hinai, M. Baawain, M. T. Z. Myint, and D. Rooney. 2016. “Efficient utilization of waste date pits for the synthesis of green diesel and jet fuel fractions.” Energy Convers. Manage. 127: 226–232. https://doi.org/10.1016/j.enconman.2016.09.004.
Anand, M., S. A. Farooqui, R. Kumar, R. Joshi, R. Kumar, M. G. Sibi, H. Singh, and A. K. Sinha. 2016a. “Kinetics, thermodynamics and mechanisms for hydroprocessing of renewable oils.” Appl. Catal., A 516: 144–152. https://doi.org/10.1016/j.apcata.2016.02.027.
Anand, M., S. A. Farooqui, R. Kumar, R. Joshi, R. Kumar, M. G. Sibi, H. Singh, and A. K. Sinha. 2016b. “Optimizing renewable oil hydrocracking conditions for aviation bio-kerosene production.” Fuel Process. Technol. 151: 50–58. https://doi.org/10.1016/j.fuproc.2016.05.028.
Anuar Sharuddin, S. D., F. Abnisa, W. M. A. Wan Daud, and M. K. Aroua. 2016. “A review on pyrolysis of plastic wastes.” Energy Convers. Manage. 115: 308–326. https://doi.org/10.1016/j.enconman.2016.02.037.
Arun, N., R. V. Sharma, and A. K. Dalai. 2015. “Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development.” Renewable Sustainable Energy Rev. 48: 240–255. https://doi.org/10.1016/j.rser.2015.03.074.
Bagheri, S., N. Muhd Julkapli, and S. Bee Abd Hamid. 2014. “Titanium dioxide as a catalyst support in heterogeneous catalysis.” Sci. World J. 2014: 727496. https://doi.org/10.1155/2014/727496.
Bann, S. J., R. Malina, M. D. Staples, P. Suresh, M. Pearlson, W. E. Tyner, J. I. Hileman, and S. Barrett. 2017. “The costs of production of alternative jet fuel: A harmonized stochastic assessment.” Bioresour. Technol. 227: 179–187. https://doi.org/10.1016/j.biortech.2016.12.032.
Bej, S. K. 2002. “Performance evaluation of hydroprocessing CatalystsA review of experimental techniques.” Energy Fuels 16 (3): 774–784. https://doi.org/10.1021/ef010254l.
Bhuiya, M. M. K., M. G. Rasul, M. M. K. Khan, N. Ashwath, and A. K. Azad. 2016. “Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies.” Renewable Sustainable Energy Rev. 55: 1109–1128. https://doi.org/10.1016/j.rser.2015.04.163.
Biswas, S., and D. K. Sharma. 2014. “Effect of different catalysts on the cracking of Jatropha oil.” J. Anal. Appl. Pyrolysis 110 (1): 346–352. https://doi.org/10.1016/j.jaap.2014.10.001.
Borugadda, V. B., and V. V. Goud. 2012. “Biodiesel production from renewable feedstocks: Status and opportunities.” Renewable Sustainable Energy Rev. 16 (7): 4763–4784. https://doi.org/10.1016/j.rser.2012.04.010.
Bwapwa, J. K., A. Anandraj, and C. Trois. 2017. “Possibilities for conversion of microalgae oil into aviation fuel: A review.” Renewable Sustainable Energy Rev. 80: 1345–1354. https://doi.org/10.1016/j.rser.2017.05.224.
Chen, Y.-K., C.-H. Hsieh, and W.-C. Wang. 2020. “The production of renewable aviation fuel from waste cooking oil. Part II: Catalytic hydro-cracking/isomerization of hydro-processed alkanes into jet fuel range products.” Renewable Energy 157: 731–740. https://doi.org/10.1016/j.renene.2020.04.154.
Choudhary, T. V., and C. B. Phillips. 2011. “Renewable fuels via catalytic hydrodeoxygenation.” Appl. Catal., A 397 (1): 1–12. https://doi.org/10.1016/j.apcata.2011.02.025.
Chuck, C. J., M. McManus, M. J. Allen, and S. Singh. 2016. “Feedstocks for aviation biofuels.” In Biofuels for aviation, edited by C. J. Chuck, 17–34. London: Academic Press.
Cronin, D. J., S. Subramaniam, C. Brady, A. Cooper, Z. Yang, J. Heyne, C. Drennan, K. K. Ramasamy, and M. R. Thorson. 2022. “Sustainable aviation fuel from hydrothermal liquefaction of wet wastes.” Energies (Basel) 15 (4): 1306. https://doi.org/10.3390/en15041306.
Denayer, J., J. Martens, J. Pierre, J. Thybaut, B. Marin, and G. Baron. 2003. “Influence of the zeolite composition on the hydro-isomerisation and hydrocracking of alkanes on Pt/USY zeolites: Modelling of the reaction kinetics using an adsorption-reaction approach.” – Appl. Catal., A 246 (1): 17–28. https://doi.org/10.1016/S0926-860X(02)00665-8.
de Sousa, F. P., C. C. Cardoso, and V. M. D. Pasa. 2016. “Producing hydrocarbons for green diesel and jet fuel formulation from palm kernel fat over Pd/C.” Fuel Process. Technol. 143: 35–42. https://doi.org/10.1016/j.fuproc.2015.10.024.
Du, X., K. Zhou, L. Zhou, X. Lei, H. Yang, D. Li, and C. Hu. 2021. “Efficient catalytic conversion of jatropha oil to high grade biofuel on Ni-Mo2C/MCM-41 catalysts with tuned surface properties.” J. Energy Chem. 61: 425–435. https://doi.org/10.1016/j.jechem.2021.02.006.
Duan, D., Y. Zhang, Y. Wang, H. Lei, Q. Wang, and R. Ruan. 2020. “Production of renewable jet fuel and gasoline range hydrocarbons from catalytic pyrolysis of soapstock over corn cob-derived activated carbons.” Energy 209: 118454. https://doi.org/10.1016/j.energy.2020.118454.
El-Araby, R., E. Abdelkader, G. El Diwani, and S. I. Hawash. 2020. “Bio-aviation fuel via catalytic hydrocracking of waste cooking oils.” Bull. Natl. Res. Cent. 44 (1): 177. https://doi.org/10.1186/s42269-020-00425-6.
Eller, Z., Z. Varga, and J. Hancsók. 2016. “Advanced production process of jet fuel components from technical grade coconut oil with special hydrocracking.” Fuel 182: 713–720. https://doi.org/10.1016/j.fuel.2016.06.055.
Emmanouilidou, E., S. Mitkidou, A. Agapiou, and N. C. Kokkinos. 2023. “Solid waste biomass as a potential feedstock for producing sustainable aviation fuel: A systematic review.” Renewable Energy 206: 897–907. https://doi.org/10.1016/j.renene.2023.02.113.
Emori, E. Y., F. H. Hirashima, C. H. Zandonai, C. A. Ortiz-Bravo, N. R. C. Fernandes-Machado, and M. H. N. Olsen-Scaliante. 2017. “Catalytic cracking of soybean oil using ZSM5 zeolite.” Catal. Today 279: 168–176. https://doi.org/10.1016/j.cattod.2016.05.052.
Fortier, M.-O. P., G. W. Roberts, S. M. Stagg-Williams, and B. S. M. Sturm. 2014. “Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae.” Appl. Energy 122: 73–82. https://doi.org/10.1016/j.apenergy.2014.01.077.
Fu, J., C. Yang, J. Wu, J. Zhuang, Z. Hou, and X. Lu. 2015. “Direct production of aviation fuels from microalgae lipids in water.” Fuel 139: 678–683. https://doi.org/10.1016/j.fuel.2014.09.025.
Galadima, A., A. Ismaila, and A. Abdullahi. 2013. “Supported molybdenum carbide as n-hexane upgrading catalyst.” Chem. Mater. Res. 3: 73–78.
Galadima, A., and O. Muraza. 2015. “Catalytic upgrading of vegetable oils into jet fuels range hydrocarbons using heterogeneous catalysts: A review.” J. Ind. Eng. Chem. 29: 12–23. https://doi.org/10.1016/j.jiec.2015.03.030.
Główka, M., J. Wójcik, P. Boberski, T. Białecki, B. Gawron, M. Skolniak, and T. Suchocki. 2024. “Sustainable aviation fuel – Comprehensive study on highly selective isomerization route towards HEFA based bioadditives.” Renewable Energy 220: 119696. https://doi.org/10.1016/j.renene.2023.119696.
Goh, B. H. H., C. T. Chong, Y. Ge, H. C. Ong, J.-H. Ng, B. Tian, V. Ashokkumar, S. Lim, T. Seljak, and V. Józsa. 2020. “Progress in utilisation of waste cooking oil for sustainable biodiesel and biojet fuel production.” Energy Convers. Manage. 223: 113296. https://doi.org/10.1016/j.enconman.2020.113296.
Gosselink, R. W., S. A. W. Hollak, S.-W. Chang, J. van Haveren, K. P. de Jong, J. H. Bitter, and D. S. van Es. 2013. “Reaction pathways for the deoxygenation of vegetable oils and related model compounds.” ChemSusChem 6 (9): 1576–1594. https://doi.org/10.1002/cssc.201300370.
Gray, N., S. McDonagh, R. O’Shea, B. Smyth, and J. D. Murphy. 2021. “Decarbonising ships, planes and trucks: An analysis of suitable low-carbon fuels for the maritime, aviation and haulage sectors.” Adv. Appl. Energy 1: 100008. https://doi.org/10.1016/j.adapen.2021.100008.
Gutiérrez-Antonio, C., F. I. Gómez-Castro, J. A. de Lira-Flores, and S. Hernández. 2017. “A review on the production processes of renewable jet fuel.” Renewable Sustainable Energy Rev. 79: 709–729. https://doi.org/10.1016/j.rser.2017.05.108.
Han, J., A. Elgowainy, H. Cai, and M. Q. Wang. 2013. “Life-cycle analysis of bio-based aviation fuels.” Bioresour. Technol. 150: 447–456. https://doi.org/10.1016/j.biortech.2013.07.153.
Hazarika, S., and R. K. Singh. 2023. “Prediction of isotherm model for alum shale, Denmark by statistical modelling-case study.” Arabian J. Geosci. 16 (12): 652. https://doi.org/10.1007/s12517-023-11776-5.
Heyne, J., B. Rauch, P. Le Clercq, and M. Colket. 2021. “Sustainable aviation fuel prescreening tools and procedures.” Fuel 290: 120004. https://doi.org/10.1016/j.fuel.2020.120004.
Itthibenchapong, V., A. Srifa, R. Kaewmeesri, P. Kidkhunthod, and K. Faungnawakij. 2017. “Deoxygenation of palm kernel oil to jet fuel-like hydrocarbons using Ni-MoS2/γ-Al2O3 catalysts.” Energy Convers. Manage. 134: 188–196. https://doi.org/10.1016/j.enconman.2016.12.034.
Jeništová, K., I. Hachemi, P. Mäki-Arvela, N. Kumar, M. Peurla, L. Čapek, J. Wärnå, and D. Y. Murzin. 2017. “Hydrodeoxygenation of stearic acid and tall oil fatty acids over Ni-alumina catalysts: Influence of reaction parameters and kinetic modelling.” Chem. Eng. J. 316: 401–409. https://doi.org/10.1016/j.cej.2017.01.117.
Kandaramath Hari, T., Z. Yaakob, and N. N. Binitha. 2015. “Aviation biofuel from renewable resources: Routes, opportunities and challenges.” Renewable Sustainable Energy Rev. 42: 1234–1244. https://doi.org/10.1016/j.rser.2014.10.095.
Kay Lup, A. N., F. Abnisa, W. M. A. Wan Daud, and M. K. Aroua. 2018. “Delayed volatiles release phenomenon at higher temperature in TGA via sample encapsulation technique.” Fuel 234: 422–429. https://doi.org/10.1016/j.fuel.2018.06.120.
Keskin, A., A. Yaşar, M. Gürü, and D. Altıparmak. 2010. “Usage of methyl ester of tall oil fatty acids and resinic acids as alternative diesel fuel.” Energy Convers. Manage. 51 (12): 2863–2868. https://doi.org/10.1016/j.enconman.2010.06.025.
Khan, S., A. N. Kay Lup, K. M. Qureshi, F. Abnisa, W. M. A. Wan Daud, and M. F. A. Patah. 2019. “A review on deoxygenation of triglycerides for jet fuel range hydrocarbons.” J. Anal. Appl. Pyrolysis 140 (March): 1–24. https://doi.org/10.1016/j.jaap.2019.03.005.
Kimura, T., H. Imai, X. Li, K. Sakashita, S. Asaoka, and S. S. Al-Khattaf. 2013. “Hydroconversion of triglycerides to hydrocarbons over Mo-Ni/γ-Al2O3 catalyst under low hydrogen pressure.” Catal. Lett. 143 (11): 1175–1181. https://doi.org/10.1007/s10562-013-1047-x.
Klein, B. C., M. F. Chagas, T. L. Junqueira, M. C. A. F. Rezende, T. de F. Cardoso, O. Cavalett, and A. Bonomi. 2018. “Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries.” Appl. Energy 209: 290–305. https://doi.org/10.1016/j.apenergy.2017.10.079.
Kristiana, T., C. Baldino, and S. Searle. 2022. An estimate of current collection and potential collection of used cooking oil from major Asian exporting countries. Washington, DC: International Council on Clean Transportation (ICCT).
Kristiana, T., C. Baldino, and S. Searle. 2023. “An estimate of current collection and potential collection of used cooking oil from major Asian exporting countries.” In ICCT Working Paper 2022-13. Washington, DC: International Council on Clean Transportation (ICCT).
Kumar Singh, R., and N. Priyadarshini Nayak. 2023a, In press, In press. “DIVE method integration for techno-economic analysis of hydrogen production techniques in India.” Mater. Today Proc. https://doi.org/10.1016/j.matpr.2023.05.088.
Kumar Singh, R., and N. Priyadarshini Nayak. 2023b, In press. “Complications in drilling operations in basalt for CO2 sequestration: An overview.” Mater. Today Proc https://doi.org/10.1016/j.matpr.2023.04.441.
Lee, D. S., et al. 2021. “The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018.” Atmos. Environ. 244: 117834. https://doi.org/10.1016/j.atmosenv.2020.117834.
Li, F., J. Jiang, P. Liu, Q. Zhai, F. Wang, C. Y. Hse, and J. Xu. 2018a. “Catalytic cracking of triglycerides with a base catalyst and modification of pyrolytic oils for production of aviation fuels.” Sustainable Energy Fuels 2 (6): 1206–1215. https://doi.org/10.1039/c7se00505a.
Li, S., Y. Li, J. Wu, Z. Wang, F. Wang, L. Deng, and K. Nie. 2020. “Synthesis of low pour point bio-aviation fuel from renewable abietic acid.” Renewable Energy 155: 1042–1050. https://doi.org/10.1016/j.renene.2020.03.173.
Li, T., J. Cheng, R. Huang, W. Yang, J. Zhou, and K. Cen. 2016. “Hydrocracking of palm oil to jet biofuel over different zeolites.” Int. J. Hydrogen Energy 41 (47): 21883–21887. https://doi.org/10.1016/j.ijhydene.2016.09.013.
Li, T., J. Cheng, R. Huang, J. Zhou, and K. Cen. 2015. “Conversion of waste cooking oil to jet biofuel with nickel-based mesoporous zeolite Y catalyst.” Bioresour. Technol. 197: 289–294. https://doi.org/10.1016/j.biortech.2015.08.115.
Li, X., X. Luo, Y. Jin, J. Li, H. Zhang, A. Zhang, and J. Xie. 2018b. “Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels.” Renewable Sustainable Energy Rev. 82: 3762–3797. https://doi.org/10.1016/j.rser.2017.10.091.
Li, X., E. Mupondwa, and L. Tabil. 2018c. “Technoeconomic analysis of biojet fuel production from camelina at commercial scale: Case of Canadian prairies.” Bioresour. Technol. 249: 196–205. https://doi.org/10.1016/j.biortech.2017.09.183.
Lim, J. H. K., Y. Y. Gan, H. C. Ong, B. F. Lau, W.-H. Chen, C. T. Chong, T. C. Ling, and J. J. Klemeš. 2021. “Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective.” Renewable Sustainable Energy Rev. 149: 111396. https://doi.org/10.1016/j.rser.2021.111396.
Liu, G., B. Yan, and G. Chen. 2013. “Technical review on jet fuel production.” Renewable Sustainable Energy Rev. 25: 59–70. https://doi.org/10.1016/j.rser.2013.03.025.
Liu, J., K. Fan, W. Tian, C. Liu, and L. Rong. 2012. “Hydroprocessing of Jatropha oil over NiMoCe/Al2O3 catalyst.” Int. J. Hydrogen Energy 37 (23): 17731–17737. https://doi.org/10.1016/j.ijhydene.2012.09.020.
Liu, Q., H. Zuo, Q. Zhang, T. Wang, and L. Ma. 2014. “Hydrodeoxygenation of palm oil to hydrocarbon fuels over Ni/SAPO-11 catalysts.” Chin. J. Catal. 35 (5): 748–756. https://doi.org/10.1016/S1872-2067(12)60710-4.
Liu, S., Q. Zhu, Q. Guan, L. He, and W. Li. 2015. “Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts.” Bioresour. Technol. 183: 93–100. https://doi.org/10.1016/j.biortech.2015.02.056.
Long, F., Q. Zhai, P. Liu, X. Cao, X. Jiang, F. Wang, L. Wei, C. Liu, J. Jiang, and J. Xu. 2020. “Catalytic conversion of triglycerides by metal-based catalysts and subsequent modification of molecular structure by ZSM-5 and Raney Ni for the production of high-value biofuel.” Renewable Energy 157: 1072–1080. https://doi.org/10.1016/j.renene.2020.05.117.
Ma, F., and M. A. Hanna. 1999. “Biodiesel production: A review1Journal series #12109, agricultural research division, institute of agriculture and natural resources, University of Nebraska–Lincoln.1.” Bioresour. Technol. 70 (1): 1–15. https://doi.org/10.1016/S0960-8524(99)00025-5.
Miller, P., and A. Kumar. 2014. “Techno-economic assessment of hydrogenation-derived renewable diesel production from canola and camelina.” Sustainable Energy Technol. Assess. 6: 105–115. https://doi.org/10.1016/j.seta.2014.01.008.
Mofijur, M., S. F. Ahmed, Z. I. Rony, K. S. Khoo, A. A. Chowdhury, M. A. Kalam, V. G. Le, I. A. Badruddin, and T. M. Y. Khan. 2023. “Screening of non-edible (second-generation) feedstocks for the production of sustainable aviation fuel.” Fuel 331: 125879. https://doi.org/10.1016/j.fuel.2022.125879.
Mofijur, M., S. M. Ashrafur Rahman, L. N. Nguyen, T. M. I. Mahlia, and L. D. Nghiem. 2022. “Selection of microalgae strains for sustainable production of aviation biofuel.” Bioresour. Technol. 345: 126408. https://doi.org/10.1016/j.biortech.2021.126408.
Mohammad, M., T. Kandaramath Hari, Z. Yaakob, Y. Chandra Sharma, and K. Sopian. 2013. “Overview on the production of paraffin based-biofuels via catalytic hydrodeoxygenation.” Renewable Sustainable Energy Rev. 22: 121–132. https://doi.org/10.1016/j.rser.2013.01.026.
Monir, M. U., A. Yousuf, and A. A. Aziz. 2020. “Syngas fermentation to bioethanol.” In Lignocellulosic biomass to liquid biofuels, edited by A. Yousuf, D. Pirozzi, and F. Sannino, 195–216. New York: Academic Press.
Mupondwa, E., X. Li, L. Tabil, K. Falk, and R. Gugel. 2016. “Technoeconomic analysis of camelina oil extraction as feedstock for biojet fuel in the Canadian prairies.” Biomass Bioenergy 95: 221–234. https://doi.org/10.1016/j.biombioe.2016.10.014.
Pandey, S., and A. Kondalamahanty. 2023. “Global UCO supply to double by 2030 as US, EU policies drive Asian supply.” Accessed November 23, 2023. https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/agriculture/100423-global-uco-supply-to-double-by-2030-as-us-eu-policies-drive-asian-supply
Patel, A., N. Arora, J. Mehtani, V. Pruthi, and P. A. Pruthi. 2017. “Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production.” Renewable Sustainable Energy Rev. 77: 604–616. https://doi.org/10.1016/j.rser.2017.04.016.
Patidar, A. K., R. K. Singh, and T. Choudhury. 2023. “The prominence of carbon capture, utilization and storage technique, a special consideration on India.” Gas Sci. Eng. 115: 204999. https://doi.org/10.1016/j.jgsce.2023.204999.
Pattanaik, B. P., and R. Misra. 2017. “Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: A review.” Renewable Sustainable Energy Rev. 73: 545–557. https://doi.org/10.1016/j.rser.2017.01.018.
Pipitone, G., G. Zoppi, R. Pirone, and S. Bensaid. 2023. “Sustainable aviation fuel production using in-situ hydrogen supply via aqueous phase reforming: A techno-economic and life-cycle greenhouse gas emissions assessment.” J. Cleaner Prod. 418: 138141. https://doi.org/10.1016/j.jclepro.2023.138141.
Qureshi, K. M., A. N. Kay Lup, S. Khan, F. Abnisa, and W. M. A. Wan Daud. 2018. “A technical review on semi-continuous and continuous pyrolysis process of biomass to bio-oil.” J. Anal. Appl. Pyrolysis 131: 52–75. https://doi.org/10.1016/j.jaap.2018.02.010.
Rabaev, M., M. V. Landau, R. Vidruk-Nehemya, V. Koukouliev, R. Zarchin, and M. Herskowitz. 2015. “Conversion of vegetable oils on Pt/Al2O3/SAPO-11 to diesel and jet fuels containing aromatics.” Fuel 161: 287–294. https://doi.org/10.1016/j.fuel.2015.08.063.
Rafieenia, R., A. Pivato, and M. C. Lavagnolo. 2019. “Optimization of hydrogen production from food waste using anaerobic mixed cultures pretreated with waste frying oil.” Renewable Energy 139: 1077–1085. https://doi.org/10.1016/j.renene.2019.03.012.
Rambabu, K., G. Bharath, N. Sivarajasekar, S. Velu, P. N. Sudha, S. Wongsakulphasatch, and F. Banat. 2023. “Sustainable production of bio-jet fuel and green gasoline from date palm seed oil via hydroprocessing over tantalum phosphate.” Fuel 331: 125688. https://doi.org/10.1016/j.fuel.2022.125688.
Rincón, L. A., J. C. Ramírez, and A. Orjuela. 2021. “Assessment of degumming and bleaching processes for used cooking oils upgrading into oleochemical feedstocks.” J. Environ. Chem. Eng. 9 (1): 104610. https://doi.org/10.1016/j.jece.2020.104610.
Romero, M. J. A., A. Pizzi, G. Toscano, G. Busca, B. Bosio, and E. Arato. 2016. “Deoxygenation of waste cooking oil and non-edible oil for the production of liquid hydrocarbon biofuels.” Waste Manage. (Oxford) 47: 62–68. https://doi.org/10.1016/j.wasman.2015.03.033.
Romero, Y., F. Richard, and S. Brunet. 2010. “Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: Promoting effect and reaction mechanism.” Appl. Catal., B 98 (3-4): 213–223. https://doi.org/10.1016/j.apcatb.2010.05.031.
Said, Z., T. H. Nguyen, P. Sharma, C. Li, H. M. Ali, V. N. Nguyen, V. V. Pham, S. F. Ahmed, D. N. Van, and T. H. Truong. 2022. “Multi-attribute optimization of sustainable aviation fuel production-process from microalgae source.” Fuel 324: 124759. https://doi.org/10.1016/j.fuel.2022.124759.
Sarin, A., R. Arora, N. P. Singh, R. Sarin, R. K. Malhotra, and K. Kundu. 2009. “Effect of blends of palm-Jatropha-Pongamia biodiesels on cloud point and pour point.” Energy 34 (11): 2016–2021. https://doi.org/10.1016/j.energy.2009.08.017.
Scaldaferri, C. A., and V. M. D. Pasa. 2019. “Hydrogen-free process to convert lipids into bio-jet fuel and green diesel over niobium phosphate catalyst in one-step.” Chem. Eng. J. 370: 98–109. https://doi.org/10.1016/j.cej.2019.03.063.
Seifi, H., and S. M. Sadrameli. 2016. “Improvement of renewable transportation fuel properties by deoxygenation process using thermal and catalytic cracking of triglycerides and their methyl esters.” Appl. Therm. Eng. 100: 1102–1110. https://doi.org/10.1016/j.applthermaleng.2016.02.022.
Shahinuzzaman, M., Z. Yaakob, and Y. Ahmed. 2017. “Non-sulphide zeolite catalyst for bio-jet-fuel conversion.” Renewable Sustainable Energy Rev. 77 (March 2016): 1375–1384. https://doi.org/10.1016/j.rser.2017.01.162.
Shi, N., Q. Liu, T. Jiang, T. Wang, L. Ma, Q. Zhang, and X. Zhang. 2012. “Hydrodeoxygenation of vegetable oils to liquid alkane fuels over Ni/HZSM-5 catalysts: Methyl hexadecanoate as the model compound.” Catal. Commun. 20: 80–84. https://doi.org/10.1016/j.catcom.2012.01.007.
Silva, L. N., I. C. P. Fortes, F. P. de Sousa, and V. M. D. Pasa. 2016. “Biokerosene and green diesel from macauba oils via catalytic deoxygenation over Pd/C.” Fuel 164: 329–338. https://doi.org/10.1016/j.fuel.2015.09.081.
Singh, R. K., N. P. Nayak, and S. Kumar. 2024. “Effect of micro-fractures on gas flow behavior in coal for enhanced coal bed methane recovery and CO2 storage.” Heliyon 10 (4): e25914. https://doi.org/10.1016/j.heliyon.2024.e25914.
Sonthalia, A., and N. Kumar. 2019. “Hydroprocessed vegetable oil as a fuel for transportation sector: A review.” J. Energy Inst. 92 (1): 1–17. https://doi.org/10.1016/j.joei.2017.10.008.
Sousa, F. P., L. N. Silva, D. B. de Rezende, L. C. A. de Oliveira, and V. M. D. Pasa. 2018. “Simultaneous deoxygenation, cracking and isomerization of palm kernel oil and palm olein over beta zeolite to produce biogasoline, green diesel and biojet-fuel.” Fuel 223 (November 2017): 149–156. https://doi.org/10.1016/j.fuel.2018.03.020.
Suzihaque, M. U. H., H. Alwi, U. Kalthum Ibrahim, S. Abdullah, and N. Haron. 2022. “Biodiesel production from waste cooking oil: A brief review.” Mater. Today Proc. 63: S490–S495. https://doi.org/10.1016/j.matpr.2022.04.527.
Teter J., and H. Kim. 2022. “Aviation subsector not on track: Tracking report.” September 2022. International Energy Agency. https://www.iea.org/reports/aviation.
Tanzil, A. H., K. Brandt, M. Wolcott, X. Zhang, and M. Garcia-Perez. 2021. “Strategic assessment of sustainable aviation fuel production technologies: Yield improvement and cost reduction opportunities.” Biomass Bioenergy 145: 105942. https://doi.org/10.1016/j.biombioe.2020.105942.
Truong, N. T. T., and A. Boontawan. 2017. “Development of bio-jet fuel production using palm kernel Oil and ethanol.” Int. J. Chem. Eng. Appl. 8 (3): 153–161. https://doi.org/10.18178/ijcea.2017.8.3.648.
Walkling, C. J., D. D. Zhang, and B. G. Harvey. 2024. “Extended fuel properties of sustainable aviation fuel blends derived from linalool and isoprene.” Fuel 356: 129554. https://doi.org/10.1016/j.fuel.2023.129554.
Wang, M., R. Dewil, K. Maniatis, J. Wheeldon, T. Tan, J. Baeyens, and Y. Fang. 2019. “Biomass-derived aviation fuels: Challenges and perspective.” Prog. Energy Combust. Sci. 74: 31–49. https://doi.org/10.1016/j.pecs.2019.04.004.
Wang, W. C., and L. Tao. 2016. “Bio-jet fuel conversion technologies.” Renewable Sustainable Energy Rev. 53: 801–822. https://doi.org/10.1016/j.rser.2015.09.016.
Wei, H., W. Liu, X. Chen, Q. Yang, J. Li, and H. Chen. 2019. “Renewable bio-jet fuel production for aviation: A review.” Fuel 254: 115599. https://doi.org/10.1016/j.fuel.2019.06.007.
Wu, X., P. Jiang, F. Jin, J. Liu, Y. Zhang, L. Zhu, T. Xia, K. Shao, T. Wang, and Q. Li. 2017. “Production of jet fuel range biofuels by catalytic transformation of triglycerides based oils.” Fuel 188: 205–211. https://doi.org/10.1016/j.fuel.2016.10.030.
Xu, J., F. Long, J. Jiang, F. Li, Q. Zhai, F. Wang, P. Liu, and J. Li. 2019. “Integrated catalytic conversion of waste triglycerides to liquid hydrocarbons for aviation biofuels.” J. Cleaner Prod. 222: 784–792. https://doi.org/10.1016/j.jclepro.2019.03.094.
Yeletsky, P. M., R. G. Kukushkin, V. A. Yakovlev, and B. H. Chen. 2020. “Recent advances in one-stage conversion of lipid-based biomass-derived oils into fuel components – aromatics and isomerized alkanes.” Fuel 278: 118255. https://doi.org/10.1016/j.fuel.2020.118255.
Yenumala, S. R., S. K. Maity, and D. Shee. 2016. “Hydrodeoxygenation of karanja oil over supported nickel catalysts: Influence of support and nickel loading.” Catal. Sci. Technol. 6 (9): 3156–3165. https://doi.org/10.1039/C5CY01470%20K.
Yuan, M.-H., Y.-H. Chen, J.-H. Chen, and Y.-M. Luo. 2017. “Dependence of cold filter plugging point on saturated fatty acid profile of biodiesel blends derived from different feedstocks.” Fuel 195: 59–68. https://doi.org/10.1016/j.fuel.2017.01.054.
Zabed, H., J. N. Sahu, A. Suely, A. N. Boyce, and G. Faruq. 2017. “Bioethanol production from renewable sources: Current perspectives and technological progress.” Renewable Sustainable Energy Rev. 71: 475–501. https://doi.org/10.1016/j.rser.2016.12.076.
Zhang, C., X. Hui, Y. Lin, and C.-J. Sung. 2016. “Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities.” Renewable Sustainable Energy Rev. 54: 120–138. https://doi.org/10.1016/j.rser.2015.09.056.
Zhang, Z., Q. Wang, H. Chen, and X. Zhang. 2017. “Hydroconversion of waste cooking oil into green biofuel over hierarchical USY-supported NiMo catalyst: A comparative study of desilication and dealumination.” Catalysts 7 (10): 281.
Zhang, Z., Q. Wang, and X. Zhang. 2019. “Hydroconversion of waste cooking oil into bio-jet fuel over NiMO/ SBUY-MCM-41.” Catalysts 9 (5): 466. https://doi.org/10.3390/catal9050466.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 28Issue 4October 2024

History

Received: Nov 20, 2023
Accepted: Apr 22, 2024
Published online: Jul 10, 2024
Published in print: Oct 1, 2024
Discussion open until: Dec 10, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Rahul Kumar Singh [email protected]
Energy Cluster, Univ. of Petroleum and Energy Studies, Dehradun, Uttrakhand 248007, India (corresponding author). Email: [email protected]
Devdutt Panda
Larsen and Toubro-Energy Hydrocarbon, Vadodara, Gujarat 390015, India.
Dept. of Environmental Science and Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India. ORCID: https://orcid.org/0009-0005-4852-8837.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share