Technical Papers
May 24, 2024

Biosynthesis and Biosorption Potential of AgNPs from A. Indica Extract for Removal of Cr (VI)

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 28, Issue 4

Abstract

The objective of the present study was the biosynthesis of nonhazardous and cost-effective silver nanoparticles (AgNPs) using plant extracts of Azadirachta indica (neem), for the removal of hexavalent chromium [Cr (VI)] ions from an aqueous solution. Fourier transform infrared (FT-IR) and energy dispersive X-ray (EDX) spectroscopy characterization results confirmed successful biosynthesis and the presence of elemental silver in the AgNPs. Further, scanning electron microscopy (SEM) and particle size analysis indicated that AgNPs have an amorphous structure and are highly monodispersed. Batch adsorption studies were conducted to investigate the impact of parameters, like pH, time, and initial concentration on Cr (VI) removal efficiency at a fixed AgNP dose of 50 mg and 150 rpm. From the batch study, maximum chromium removal of 87.68% was achieved at an initial concentration of 5 mg/L, pH of 1, and time of 50 min. Results from equilibrium and kinetic study indicated pseudo-second-order reactions kinetics with monolayer coverage. The maximum adsorption capacity of 7.2 mg/g was obtained at an equilibrium time of 50 min and temperature of 30°C. These synthesized AgNPs also displayed significant antibacterial activity against both Gram-positive Bacillus subtilis and Gram-negative Escherichia coli. Based on the results obtained, biosynthesized AgNPs from extracts of A. indica could be utilized for the removal of water pollutants.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors are thankful to Guru Gobind Singh Indraprastha University (GGSIPU), Dwarka, New Delhi, India, for financial support from FRGS/GGSIPU (1223/33/2022-23) to carry out the research work in the concerned area.

References

Ahmad, N., et al. 2022. “Green fabrication of silver nanoparticles using euphorbia serpens kunth aqueous extract, their characterization, and investigation of its in vitro antioxidative, antimicrobial, insecticidal, and cytotoxic activities.” Biomed Res. Int. 2022: 5562849.
Alarjani, K. M., D. Huessien, R. A. Rasheed, and M. Kalaiyarasi. 2022. “Green synthesis of silver nanoparticles by Pisum sativum L. (pea) pod against multidrug resistant foodborne pathogens.” J. King Saud Univ. Sci. 34 (3): 101897. https://doi.org/10.1016/j.jksus.2022.101897.
Aldayel, F. M., M. S. Alsobeg, and A. Khalifa. 2022. “In vitro antibacterial activities of silver nanoparticles synthesised using the seed extracts of three varieties of Phoenix dactylifera.” Braz. J. Biol. 82: e242301. https://doi.org/10.1590/1519-6984.242301.
Barbhuiya, R. I., P. Singha, N. Asaithambi, and S. K. Singh. 2022. “Ultrasound-assisted rapid biological synthesis and characterization of silver nanoparticles using pomelo peel waste.” Food Chem. 385: 132602. https://doi.org/10.1016/j.foodchem.2022.132602.
Barrera-Díaz, C. E., V. Lugo-Lugo, and B. Bilyeu. 2012. “A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction.” J. Hazard. Mater. 223–224: 1–12. https://doi.org/10.1016/j.jhazmat.2012.04.054.
Beller, H. R., R. Han, U. Karaoz, H. Lim, and E. L. Brodie. 2013. “Genomic and physiological characterization of the chromate-reducing, aquifer-derived firmicute pelosinus sp. strain HCF1.” Appl. Environ. Microbiol. 79 (1): 63–73. https://doi.org/10.1128/AEM.02496-12.
Botcha, S., and S. D. Prattipati. 2020. “Callus extract mediated green synthesis of silver nanoparticles, their characterization and cytotoxicity evaluation against MDA-MB-231 and PC-3 cells.” BioNanoScience 10 (1): 11–22. https://doi.org/10.1007/s12668-019-00683-3.
Buendia-Otero, M. J., D. J. Jiménez-Corzo, Z. I. Caamaño De Ávila, and J. B. Restrepo. 2021. “Chromatographic analysis of phytochemicals in the peel of Musa Paradisiaca to synthesize silver nanoparticles.” Revista Facultad de Ingeniería Universidad de Antioquia 103: 130–137.
Costa, M., and C. B. Klein. 2006. “Toxicity and carcinogenicity of chromium compounds in humans.” Crit. Rev. Toxicol. 36 (2): 155–163. https://doi.org/10.1080/10408440500534032.
Deivanathan, S. K., and J. T. J. Prakash. 2022. “Green synthesis of silver nanoparticles using aqueous leaf extract of Guettarda Speciosa and its antimicrobial and anti-oxidative properties.” Chem. Data Collect. 38: 100831. https://doi.org/10.1016/j.cdc.2022.100831.
Dutta, T., S. K. Chowdhury, N. N. Ghosh, A. P. Chattopadhyay, M. Das, and V. Mandal. 2022. “Green synthesis of antimicrobial silver nanoparticles using fruit extract of Glycosmis pentaphylla and its theoretical explanations.” J. Mol. Struct. 1247: 131361. https://doi.org/10.1016/j.molstruc.2021.131361.
Egbosiuba, T. C., A. S. Abdulkareem, A. S. Kovo, E. A. Afolabi, J. O. Tijani, M. T. Bankole, S. Bo, and W. D. Roos. 2021. “Adsorption of Cr(VI), Ni(II), Fe(II) and Cd(II) ions by KIAgNPs decorated MWCNTs in a batch and fixed bed process.” Sci. Rep. 11 (1): 75. https://doi.org/10.1038/s41598-020-79857-z.
Essghaier, B., G. Ben Khedher, H. Hannachi, R. Dridi, M. F. Zid, and C. Chaffei. 2022. “Green synthesis of silver nanoparticles using mixed leaves aqueous extract of wild olive and pistachio: Characterization, antioxidant, antimicrobial and effect on virulence factors of Candida.” Arch. Microbiol. 204 (4): 203. https://doi.org/10.1007/s00203-022-02810-3.
Farooqi, Z. H., M. W. Akram, R. Begum, W. Wu, and A. Irfan. 2021. “Inorganic nanoparticles for reduction of hexavalent chromium: Physicochemical aspects.” J. Hazard. Mater. 402: 123535. https://doi.org/10.1016/j.jhazmat.2020.123535.
Farshori, N. N., M. M. Al-Oqail, E. S. Al-Sheddi, S. M. Al-Massarani, Q. Saquib, M. A. Siddiqui, R. Wahab, and A. A. Al-Khedhairy. 2022. “Green synthesis of silver nanoparticles using Phoenix dactylifera seed extract and its anticancer effect against human lung adenocarcinoma cells.” J. Drug Delivery Sci. Technol. 70: 103260. https://doi.org/10.1016/j.jddst.2022.103260.
Freundlich, H. M. F. 1906. “Over the adsorption in solution.” J. Phys. Chem. 57: 385–470.
Gajbhiye, M., J. Kesharwani, A. Ingle, A. Gade, and M. Rai. 2009. “Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole.” Nanomed. Nanotechnol. Biol. Med. 5 (4): 382–386. https://doi.org/10.1016/j.nano.2009.06.005.
Golbaz, S., A. J. Jafari, M. Rafiee, and R. R. Kalantary. 2014. “Separate and simultaneous removal of phenol, chromium, and cyanide from aqueous solution by coagulation/precipitation: Mechanisms and theory.” Chem. Eng. J. 253: 251–257. https://doi.org/10.1016/j.cej.2014.05.074.
Hadi, A. A., J. Y. Ng, M. Shamsuddin, J. Matmin, and N. A. N. N. Malek. 2022. “Green synthesis of silver nanoparticles using Diplazium esculentum extract: Catalytic reduction of methylene blue and antibacterial activities.” Chem. Pap. 76 (1): 65–77. https://doi.org/10.1007/s11696-021-01835-0.
Hawar, S. N., H. S. Al-Shmgani, Z. A. Al-Kubaisi, G. M. Sulaiman, Y. H. Dewir, and J. J. Rikisahedew. 2022. “Green synthesis of silver nanoparticles from alhagi graecorum leaf extract and evaluation of their cytotoxicity and antifungal activity.” J. Nanomater. 2022: 1058119. https://doi.org/10.1155/2022/1058119.
Herbin, H. B., M. Aravind, M. Amalanathan, M. S. M. Mary, M. M. Lenin, C. Parvathiraja, M. R. Siddiqui, S. M. Wabaidur, and M. A. Islam. 2022. “Synthesis of silver nanoparticles using syzygium malaccense fruit extract and evaluation of their catalytic activity and antibacterial properties.” J. Inorg. Organomet. Polym Mater. 32 (3): 1103–1115. https://doi.org/10.1007/s10904-021-02210-y.
Jose Varghese, R., N. Zikalala, E. H. M. Sakho, and O. S. Oluwafemi. 2020. “Green synthesis protocol on metal oxide nanoparticles using plant extracts.” Colloidal Met. Oxide Nanopart. 67–82. https://doi.org/10.1016/B978-0-12-813357-6.00006-1.
Kanimozhi, S., R. Durga, M. Sabithasree, A. V. Kumar, A. Sofiavizhimalar, A. A. Kadam, R. Rajagopal, R. Sathya, and N. I. W. Azelee. 2022. “Biogenic synthesis of silver nanoparticle using Cissus quadrangularis extract and its invitro study.” J. King Saud Univ. Sci. 34 (4): 101930. https://doi.org/10.1016/j.jksus.2022.101930.
Kannan, R. R. R., W. A. Stirk, and J. Van Staden. 2013. “Synthesis of silver nanoparticles using the seaweed Codium capitatum P.C. Silva (Chlorophyceae).” S. Afr. J. Bot. 86: 1–4. https://doi.org/10.1016/j.sajb.2013.01.003.
Khan, M., P. Karuppiah, H. Z. Alkhathlan, M. Kuniyil, M. Khan, S. F. Adil, and M. R. Shaik. 2022a. “Green synthesis of silver nanoparticles using juniperus procera extract: Their characterization, and biological activity.” Crystals 12 (3): 1–13. https://doi.org/10.3390/cryst12030420.
Khan, M. R., S. M. Hoque, K. F. B. Hossain, M. A. B. Siddique, M. K. Uddin, and M. M. Rahman. 2022b. “Green synthesis of silver nanoparticles using Hibiscus sabdariffa leaf extract and its cytotoxicity assay.” Inorg. Nano-Metal Chem. 1–11.
Khanal, L. N., K. R. Sharma, H. Paudyal, K. Parajuli, B. Dahal, G. C. Ganga, Y. R. Pokharel, and S. K. Kalauni. 2022. “Green synthesis of silver nanoparticles from root extracts of rubus ellipticus Sm. and comparison of antioxidant and antibacterial activity.” J. Nanomater. 2022: 1–11. https://doi.org/10.1155/2022/1832587.
Krishna Kumar, A. S., S.-J. Jiang, and W.-L. Tseng. 2015. “Effective adsorption of chromium(vi)/Cr(iii) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent.” J. Mater. Chem. 3 (13): 7044–7057. https://doi.org/10.1039/C4TA06948J.
Langmuir, I. 1918. “The adsorption of gases on plane surfaces of glass, mica and platinum.” J. Am. Chem. Soc. 40 (9): 1361–1403. https://doi.org/10.1021/ja02242a004.
Larichev, Y. V. 2021. “Application of DLS for metal nanoparticle size determination in supported catalysts.” Chem. Pap. 75 (5): 2059–2066. https://doi.org/10.1007/s11696-020-01454-1.
Liang, H., B. Song, P. Peng, G. Jiao, X. Yan, and D. She. 2019. “Preparation of three-dimensional honeycomb carbon materials and their adsorption of Cr(VI).” Chem. Eng. J. 367: 9–16. https://doi.org/10.1016/j.cej.2019.02.121.
Lin, C., W. Luo, T. Luo, Q. Zhou, H. Li, and L. Jing. 2018. “A study on adsorption of Cr (VI) by modified rice straw: Characteristics, performances and mechanism.” J. Cleaner Prod. 196: 626–634. https://doi.org/10.1016/j.jclepro.2018.05.279.
Lotfollahzadeh, R., M. Yari, S. Sedaghat, and A. S. Delbari. 2021. “Biosynthesis and characterization of silver nanoparticles for the removal of amoxicillin from aqueous solutions using Oenothera biennis water extract.” J. Nanostruct. Chem. 11 (4): 693–706. https://doi.org/10.1007/s40097-021-00393-x.
Maponya, T., K. Ramohlola, N. Kera, K. Modibane, A. Maity, L. Katata-Seru, and M. Hato. 2020. “Influence of magnetic nanoparticles on modified polypyrrole/m-phenylediamine for adsorption of Cr(VI) from aqueous solution.” Polymers 12 (3): 679. https://doi.org/10.3390/polym12030679.
Miretzky, P., and A. F. Cirelli. 2010. “Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review.” J. Hazard. Mater. 180 (1–3): 1–19. https://doi.org/10.1016/j.jhazmat.2010.04.060.
Mustapha, T., N. Misni, N. R. Ithnin, A. M. Daskum, and N. Z. Unyah. 2022. “A review on plants and microorganisms mediated synthesis of silver nanoparticles, role of plants metabolites and applications.” Int. J. Environ. Res. Public Health 19 (2): 674. https://doi.org/10.3390/ijerph19020674.
Nawabjohn, M. S., P. Sivaprakasam, S. K. Anandasadagopan, A. A. Begum, and A. K. Pandurangan. 2022. “Green synthesis and characterisation of silver nanoparticles using cassia tora seed extract and investigation of antibacterial potential.” Appl. Biochem. Biotechnol. 194 (1): 464–478. https://doi.org/10.1007/s12010-021-03651-4.
Oves, M., M. Ahmar Rauf, M. Aslam, H. A. Qari, H. Sonbol, I. Ahmad, G. Sarwar Zaman, and M. Saeed. 2022. “Green synthesis of silver nanoparticles by Conocarpus Lancifolius plant extract and their antimicrobial and anticancer activities.” Saudi J. Biol. Sci. 29 (1): 460–471. https://doi.org/10.1016/j.sjbs.2021.09.007.
Palithya, S., S. A. Gaddam, V. S. Kotakadi, J. Penchalaneni, N. Golla, S. B. N. Krishna, and C. V. Naidu. 2022. “Green synthesis of silver nanoparticles using flower extracts of Aerva lanata and their biomedical applications.” Part. Sci. Technol. 40 (1): 84–96. https://doi.org/10.1080/02726351.2021.1919259.
Regmi, B., T. R. Binadi, S. N. Jha, R. K. Chaudhary, B. R. Poudel, and S. K. Gautam. 2021. “Antibacterial and antioxidant studies of green synthesized silver nanoparticles using azadirachta indica (neem) leaf extract.” Int. J. Appl. Sci. Biotechnol. 9 (3): 220–226. https://doi.org/10.3126/ijasbt.v9i3.39069.
Saikia, H., B. J. Borah, Y. Yamada, and P. Bharali. 2017. “Enhanced catalytic activity of CuPd alloy nanoparticles towards reduction of nitroaromatics and hexavalent chromium.” J. Colloid Interface Sci. 486: 46–57. https://doi.org/10.1016/j.jcis.2016.09.056.
Sajesh Kumar, N. K., J. Vazhacharickal, J. J. Mathew, and J. Joy. 2017. “Synthesis of silver nano particles from neem leaf (azadirachta indica) extract and its antibacterial activity.” Int. J. Appl. Pharm. Biol. Res. 2 (1): 38–49.
Saxena, M., and A. Shaikh. 2021. “Green synthesis and zeta potential measurement of silver nanoparticles.” Int. J. Adv. Res. Innovative Ideas Educ. 7 (3): 3448–3452.
Sengupta, A., and A. Sarkar. 2022. “Synthesis and characterization of nanoparticles from neem leaves and banana peels: A green prospect for dye degradation in wastewater.” Ecotoxicology 31 (4): 537–548. https://doi.org/10.1007/s10646-021-02414-5.
Sevim, F., O. Lacin, E. F. Ediz, and F. Demir. 2021. “Adsorption capacity, isotherm, kinetic, and thermodynamic studies on adsorption behavior of malachite green onto natural red clay.” Environ. Prog. Sustainable Energy 40 (1): 1–49. https://doi.org/10.1002/ep.13471.
Singh, J., A. Mehta, M. Rawat, and S. Basu. 2018. “Green synthesis of silver nanoparticles using sun dried tulsi leaves and its catalytic application for 4-Nitrophenol reduction.” J. Environ. Chem. Eng. 6 (1): 1468–1474. https://doi.org/10.1016/j.jece.2018.01.054.
Srividya, K., and K. Mohanty. 2009. “Biosorption of hexavalent chromium from aqueous solutions by Catla catla scales: Equilibrium and kinetics studies.” Chem. Eng. J. 155 (3): 666–673. https://doi.org/10.1016/j.cej.2009.08.024.
Subapriya, R., and S. Nagini. 2005. “Medicinal properties of neem leaves: A review.” Curr. Med. Chem.-Anti-Cancer Agents 5 (2): 149–156. https://doi.org/10.2174/1568011053174828.
Sun, T. R., S. Pamukcu, L. M. Ottosen, and F. Wang. 2015. “Electrochemically enhanced reduction of hexavalent chromium in contaminated clay: Kinetics, energy consumption, and application of pulse current.” Chem. Eng. J. 262: 1099–1107. https://doi.org/10.1016/j.cej.2014.10.081.
Suri, A., V. Khandegar, and P. J. Kaur. 2020. “Groundwater for sustainable development ofloxacin exclusion using novel HRP immobilized chitosan cross-link with graphene-oxide nanocomposite.” Groundwater Sustainable Dev. 12 (November): 100515.
Tagesse, W. 2021. “Adsorptive removal of chromium (VI) using silver nanoparticles synthesized via green approach with the extract of moringastenopetala.” Orient. J. Chem. 37 (2): 380–387. https://doi.org/10.13005/ojc/370217.
Temkin, M. J., and V. Pyzhev. 1940. “Recent modifications to Langmuir isotherms.” Acta Physiochim. USSR 12: 217–222.
Turkay, O., S. Barışçı, H. Öztürk, B. Öztürk, and M. G. Şeker. 2018. “Toxicological profile of 1,4-benzoquinone and Its degradation by-products during electro-fenton, electrocoagulation, and electrosynthesized Fe(VI) oxidation.” J. Environ. Eng. 144 (12): 04018124. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001467.
Tyagi, U., and V. Khandegar. 2018. “Biosorption potential of Vetiveria zizanioides for the removal of chromium(VI) from synthetic wastewater.” J. Hazard. Toxic Radioact. Waste 22 (4): 1–11. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000403.
Venkateswaran, P., and K. Palanivelu. 2004. “Solvent extraction of hexavalent chromium with tetrabutyl ammonium bromide from aqueous solution.” Sep. Purif. Technol. 40 (3): 279–284. https://doi.org/10.1016/j.seppur.2004.03.005.
Verma, A., and M. S. Mehata. 2016. “Controllable synthesis of silver nanoparticles using neem leaves and their antimicrobial activity.” J. Radiat. Res. Appl. Sci. 9 (1): 109–115. https://doi.org/10.1016/j.jrras.2015.11.001.
Wan Ngah, W. S., and M. A. K. M. Hanafiah. 2008. “Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review.” Bioresour. Technol. 99 (10): 3935–3948. https://doi.org/10.1016/j.biortech.2007.06.011.
Widatalla, H. A., L. F. Yassin, A. A. Alrasheid, S. A. Rahman Ahmed, M. O. Widdatallah, S. H. Eltilib, and A. A. Mohamed. 2022. “Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity.” Nanoscale Adv. 4 (3): 911–915. https://doi.org/10.1039/D1NA00509J.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 28Issue 4October 2024

History

Received: Jun 22, 2023
Accepted: Nov 14, 2023
Published online: May 24, 2024
Published in print: Oct 1, 2024
Discussion open until: Oct 24, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Sanigdha Acharya [email protected]
Associate Professor, University School of Chemical Technology, Guru Gobind Singh Indraprastha Univ., Dwarka 16C, New Delhi 110078, India. Email: [email protected]
Sonal Ranjan [email protected]
Research Scholar, University School of Chemical Technology, Guru Gobind Singh Indraprastha Univ., Dwarka 16C, New Delhi 110078, India. Email: [email protected]
Research Scholar, University School of Chemical Technology, Guru Gobind Singh Indraprastha Univ., Dwarka 16C, New Delhi 110078, India. Email: [email protected]
Pratibha Chanana [email protected]
Assistant Professor, University School of Chemical Technology, Guru Gobind Singh Indraprastha Univ., Dwarka 16C, New Delhi 110078, India. Email: [email protected]
Vinita Khandegar [email protected]
Assistant Professor, University School of Chemical Technology, Guru Gobind Singh Indraprastha Univ., Dwarka 16C, New Delhi 110078, India (corresponding author). Email: [email protected]
Arinjay Kumar [email protected]
Professor, University School of Chemical Technology, Guru Gobind Singh Indraprastha Univ., Dwarka 16C, New Delhi 110078, India. Email: [email protected]
Perminder Jit Kaur [email protected]
Senior Policy Fellow, Centre for Policy Research, Jointly at DST and Indian Institute of Science (IISC), Bangalore 560 012, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share