Abstract

This study examines the instability of sand waves (dunes and antidunes) from both linear and weakly nonlinear perspectives. The linear and weakly nonlinear analyses use the standard linearization and the center manifold-projection technique, respectively. The mathematical framework includes the depth-averaged continuity and momentum equations, the advection–diffusion equation for suspended sediment concentration, and Exner’s equation for bed evolution. The streamline curvature is treated using the Boussinesq approximation. The model considers the departure of the pressure distribution from the hydrostatic law. Both modes of sediment transport, as bedload and as suspended load, are taken into consideration. The perturbations characterize the maximum growth rate for a selected wave number, called the resonant wave number, which is the most favorable wave number for the formation of sand waves. As the flow Froude number and the relative roughness number increase, the dimensionless resonant wave number decreases. The dimensionless amplitude of sand waves increases as the flow Froude number and the relative roughness number increase to achieve a maximum, and subsequently it decreases. The predicted wave number and amplitude of sand waves satisfactorily match the available experimental data.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request, including an Excel file of the tabular data presented in Figs. 27.

Acknowledgments

The first author acknowledges the JC Bose Fellowship Award [Funded by DST | Science and Engineering Research Board (SERB), Grant reference number JCB/2018/000004] in pursuing this work.

References

Ali, S. Z., and S. Dey. 2016. “Theory of turbulent flow over a wavy boundary.” J. Hydraul. Eng. 142 (6): 04016006. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001125.
Ali, S. Z., and S. Dey. 2017. “Hydrodynamic instability of meandering channels.” Phys. Fluids 29 (12): 125107. https://doi.org/10.1063/1.5012596.
Ali, S. Z., and S. Dey. 2019. “Bed particle saltation in turbulent wall-shear flow: A review.” Proc. R. Soc. A 475 (2223): 20180824. https://doi.org/10.1098/rspa.2018.0824.
Ali, S. Z., and S. Dey. 2021a. “Instability of large-scale riverbed patterns.” Phys. Fluids 33 (1): 015109. https://doi.org/10.1063/5.0035893.
Ali, S. Z., and S. Dey. 2021b. “Interfacial instability of sand patterns induced by turbulent shear flow.” Int. J. Sediment. Res. 36 (4): 449–456. https://doi.org/10.1016/j.ijsrc.2020.12.005.
Ali, S. Z., and S. Dey. 2021c. “Linear stability of dunes and antidunes.” Phys. Fluids 33 (9): 094109. https://doi.org/10.1063/5.0067079.
Ali, S. Z., S. Dey, and R. K. Mahato. 2021. “Mega riverbed-patterns: Linear and weakly nonlinear perspectives.” Proc. R. Soc. A 477 (2252): 20210331. https://doi.org/10.1098/rspa.2021.0331.
Allen, J. R. L. 1978. “Computational models for dune time-lag: Calculations using Stein’s rule for dune height.” Sediment. Geol. 20 (3): 165–216. https://doi.org/10.1016/0037-0738(78)90054-4.
Bagnold, R. A. 1966. An approach to the sediment transport problem from general physics. Washington, DC: United States Department of the Interior, Geological Survey.
Blondeaux, P., and G. Seminara. 1985. “A unified bar–bend theory of river meanders.” J. Fluid Mech. 157 (Aug): 449–470. https://doi.org/10.1017/S0022112085002440.
Bose, S. K., and S. Dey. 2009. “Reynolds averaged theory of turbulent shear flows over undulating beds and formation of sand waves.” Phys. Rev. E 80 (3): 036304. https://doi.org/10.1103/PhysRevE.80.036304.
Bose, S. K., and S. Dey. 2012. “Instability theory of sand ripples formed by turbulent shear flows.” J. Hydraul. Eng. 138 (8): 752–756. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000524.
Bridge, J. S., and J. L. Best. 1988. “Flow, sediment transport and bedform dynamics over the transition from dunes to upper-stage plane beds: Implications for the formation of planar laminae.” Sedimentology 35 (5): 753–763. https://doi.org/10.1111/j.1365-3091.1988.tb01249.x.
Cao, H. H. 1985. “Resistance hydraulique d’un lit à gravier mobile à pente raide; étude expérimentale.” Ph.D. thesis, Laboratoire de Recherches Hydrauliques, Ecole Polytech. Fed. de Lausanne.
Celik, I., and W. Rodi. 1991. “Suspended sediment-transport capacity for open channel flow.” J. Hydraul. Eng. 117 (2): 191–204. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:2(191).
Cheng, M., and H. Chang. 1992. “Subharmonic instabilities of finite-amplitude monochromatic waves.” Phys. Fluids A 4 (3): 505–523. https://doi.org/10.1063/1.858324.
Cheng, N.-S. 2007. “Power-law index for velocity profiles in open channel flows.” Adv. Water Resour. 30 (8): 1775–1784. https://doi.org/10.1016/j.advwatres.2007.02.001.
Coleman, S. E., and B. W. Melville. 1996. “Initiation of bed forms on a flat sand bed.” J. Hydraul. Eng. 122 (6): 301–310. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:6(301).
Coleman, S. E., M. H. Zhang, and T. M. Clunie. 2005. “Sediment-wave development in subcritical water flow.” J. Hydraul. Eng. 131 (2): 106–111. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:2(106).
Colombini, M. 2004. “Revisiting the linear theory of sand dune formation.” J. Fluid Mech. 502 (Mar): 1–16. https://doi.org/10.1017/S0022112003007201.
Colombini, M., G. Seminara, and M. Tubino. 1987. “Finite-amplitude alternate bars.” J. Fluid Mech. 181 (1): 213–232. https://doi.org/10.1017/S0022112087002064.
Colombini, M., and A. Stocchino. 2008. “Finite-amplitude river dunes.” J. Fluid Mech. 611 (Sep): 283–306. https://doi.org/10.1017/S0022112008002814.
Colombini, M., and A. Stocchino. 2011. “Ripple and dune formation in rivers.” J. Fluid Mech. 673 (Apr): 121–131. https://doi.org/10.1017/S0022112011000048.
Dey, S. 2014. Fluvial hydrodynamics: Hydrodynamic and sediment transport phenomena. Berlin: Springer.
Dey, S., and S. Z. Ali. 2017a. “Mechanics of sediment transport: Particle scale of entrainment to continuum scale of bedload flux.” J. Eng. Mech. 143 (11): 04017127. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001343.
Dey, S., and S. Z. Ali. 2017b. “Origin of the onset of meandering of a straight river.” Proc. R. Soc. A 473 (2204): 20170376. https://doi.org/10.1098/rspa.2017.0376.
Dey, S., and S. Z. Ali. 2018. “Review article: Advances in modeling of bed particle entrainment sheared by turbulent flow.” Phys. Fluids 30 (6): 061301. https://doi.org/10.1063/1.5030458.
Dey, S., and S. Z. Ali. 2019. “Bed sediment entrainment by streamflow: State of the science.” Sedimentology 66 (5): 1449–1485. https://doi.org/10.1111/sed.12566.
Dey, S., and S. Z. Ali. 2020. “Fluvial instabilities.” Phys. Fluids 32 (6): 061301. https://doi.org/10.1063/5.0010038.
Dey, S., S. Z. Ali, and E. Padhi. 2018. “Advances in analytical modeling of suspended sediment transport.” J. Hydro-environ. Res. 20 (Jun): 110–126. https://doi.org/10.1016/j.jher.2018.02.004.
Dey, S., S. Z. Ali, and E. Padhi. 2019. “Bedload transport from analytical and turbulence phenomenological perspectives.” Int. J. Sediment. Res. 34 (6): 509–530. https://doi.org/10.1016/j.ijsrc.2019.08.002.
Dey, S., R. K. Mahato, and S. Z. Ali. 2022. “Linear stability of sand waves sheared by a turbulent flow.” Environ. Fluid Mech. 22 (2–3): 429–446. https://doi.org/10.1007/s10652-021-09813-6.
Dey, S., R. K. Mahato, and S. Z. Ali. 2023. “Turbulent shear flow over a downstream-skewed wavy bed: Analytical model based on the RANS equations with Boussinesq approximation.” J. Hydraul. Eng. 149 (9): 04023028. https://doi.org/10.1061/JHEND8.HYENG-13577.
Einstein, H. A. 1950. The bed-load function for sediment transportation in open channel flows. Washington, DC: US Dept. of Agriculture, Soil Conservation Service.
Engelund, F. 1970. “Instability of erodible beds.” J. Fluid Mech. 42 (2): 225–244. https://doi.org/10.1017/S0022112070001210.
Engelund, F., and E. Hansen. 1967. A monograph on sediment transport in alluvial streams. Copenhagen, Denmark: Danish Technical Press.
Fredsøe, J. 1974. “On the development of dunes in erodible channels.” J. Fluid Mech. 64 (1): 1–16. https://doi.org/10.1017/S0022112074001960.
Guy, H. P., D. B. Simons, and E. V. Richardson. 1966. Summary of alluvial channel data from flume experiments 1956–61. Geol. Survey Prof. Paper 462-I: 1–96. Washington, DC: US Govt. Printing Office.
Hayashi, T. 1970. “Formation of dunes and antidunes in open channels.” J. Hydraul. Div. 96 (2): 357–366. https://doi.org/10.1061/JYCEAJ.0002324.
Ikeda, S., G. Parker, and K. Sawai. 1981. “Bend theory of river meanders. Part 1. Linear development.” J. Fluid Mech. 112 (1): 363–377. https://doi.org/10.1017/S0022112081000451.
Kennedy, J. F. 1960. “Stationary waves and antidunes in alluvial channels.” Ph.D. thesis, Dept. of Civil Engineering, California Institute of Technology.
Kennedy, J. F. 1963. “The mechanics of dunes and antidunes in erodible-bed channels.” J. Fluid Mech. 16 (4): 521–544. https://doi.org/10.1017/S0022112063000975.
Kennedy, J. F. 1969. “The formation of sediment ripples, dunes, and antidunes.” Annu. Rev. Fluid Mech. 1 (1): 147–168. https://doi.org/10.1146/annurev.fl.01.010169.001051.
Lane, E. W., and A. A. Kalinske. 1941. “Engineering calculations of suspended sediment.” Trans. Am. Geophys. Union 20 (3): 603–607.
Leclair, S. F. 2002. “Preservation of cross-strata due to the migration of subaqueous dunes: An experimental investigation.” Sedimentology 49 (6): 1157–1180. https://doi.org/10.1046/j.1365-3091.2002.00482.x.
Mahato, R. K., S. Z. Ali, and S. Dey. 2021a. “Hydrodynamic instability of free river bars.” Phys. Fluids 33 (4): 045105. https://doi.org/10.1063/5.0045530.
Mahato, R. K., S. Z. Ali, and S. Dey. 2023. “Stability of longitudinal sediment waves formed by turbidity currents: Linear and weakly nonlinear perspectives.” Proc. R. Soc. A 479 (2277): 20230367. https://doi.org/10.1098/rspa.2023.0367.
Mahato, R. K., S. Dey, and S. Z. Ali. 2021b. “Instability of a meandering channel with variable width and curvature: Role of sediment suspension.” Phys. Fluids 33 (11): 111401. https://doi.org/10.1063/5.0074974.
Mahato, R. K., S. Dey, and S. Z. Ali. 2022a. “Planform evolution of a sinuous channel triggered by curvature and autogenic width oscillations due to generic grain transport.” Phys. Fluids 34 (4): 044110. https://doi.org/10.1063/5.0087971.
Mahato, R. K., S. Dey, and S. Z. Ali. 2022b. “Submarine channels formation driven by turbidity currents interacting with an erodible bed.” Proc. R. Soc. A. 478 (2263): 20220137. https://doi.org/10.1098/rspa.2022.0137.
McLean, S. R., and J. D. Smith. 1986. “A model for flow over two-dimensional bedforms.” J. Hydraul. Eng. 112 (4): 300–317. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:4(300).
Meyer-Peter, E., and R. Müller. 1948. “Formulas for bed-load transport.” In Vol. 3 of Proc. 2nd Meeting of Int. Association for Hydraulic Research, 39–64. Delft, Netherlands: Delft Univ. of Technology.
Poggi, D., G. G. Katul, J. D. Albertson, and L. Ridolfi. 2007. “An experimental investigation of turbulent flows over a hilly surface.” Phys. Fluids 19 (3): 036601. https://doi.org/10.1063/1.2565528.
Recking, A., V. Bacchi, M. Naaim, and P. Frey. 2009. “Antidunes on steep slopes.” J. Geophys. Res. Earth Surf. 114 (F4): F04025. https://doi.org/10.1029/2008JF001216.
Reynolds, A. J. 1965. “Waves on the erodible bed of an open channel.” J. Fluid Mech. 22 (1): 113–133. https://doi.org/10.1017/S0022112065000630.
Richards, K. J. 1980. “The formation of ripples and dunes on an erodible bed.” J. Fluid Mech. 99 (3): 597–618. https://doi.org/10.1017/S002211208000078X.
Simons, D. B., E. V. Richardson, and M. L. Albertson. 1961. Flume studies using medium sand (0.45 mm). Geological Survey Water-Supply Paper No. 1498-A. Washington, DC: US Government Publishing Office.
Stein, R. A. 1965. “Laboratory studies of total load and apparent bed load.” J. Geophys. Res. 70 (8): 1831–1842. https://doi.org/10.1029/JZ070i008p01831.
Sumer, M., and M. Bakioglu. 1984. “On the formation of ripples on an erodible bed.” J. Fluid Mech. 144 (Jul): 177–190. https://doi.org/10.1017/S0022112084001567.
Thackston, E. L., and P. A. Krenkel. 1967. “Longitudinal mixing in natural streams.” J. Sanit. Eng. Div. 93 (5): 67–90. https://doi.org/10.1061/JSEDAI.0000765.
Williams, G. P. 1967. Flume experiments on the transport of a coarse sand. Washington, DC: US Govt. Printing Office.
Yuen, A. F. H., and J. F. Kennedy. 1971. A laboratory investigation of free surface flows over wavy beds. Iowa City, IA: Iowa Institute of Hydraulic Research, The Univ. of Iowa.
Zhang, R. J., J. H. Xie, M. F. Wang, and J. T. Huang. 1989. Dynamics of river sedimentation. Beijing: Water Power Press.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 150Issue 3May 2024

History

Received: Apr 23, 2023
Accepted: Oct 29, 2023
Published online: Feb 10, 2024
Published in print: May 1, 2024
Discussion open until: Jul 10, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Distinguished Professor and Head, Dept. of Civil and Infrastructure Engineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India; Visiting Professor, Dept. of Hydraulic Engineering, State Key Laboratory of Hydro-Science and Engineering, Tsinghua Univ., Beijing 100084, China (corresponding author). ORCID: https://orcid.org/0000-0001-9764-1346. Email: [email protected]
Assistant Professor, Dept. of Civil Engineering, Maulana Azad National Institute of Technology Bhopal, Bhopal, Madhya Pradesh 462003, India. ORCID: https://orcid.org/0000-0002-0334-2693. Email: [email protected]
Assistant Professor, Dept. of Civil Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Kandi, Telangana 502285, India. ORCID: https://orcid.org/0000-0003-0763-7437. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share