Technical Papers
Aug 13, 2024

Geotechnical Properties and Performance of Large-Scale Coastal Dunes Reinforced by Biocementation under Hurricane Wave Conditions

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 150, Issue 10

Abstract

In this study, the application of microbially induced carbonate precipitation for coastline protection was investigated. Untreated, moderately, and heavily cemented near-prototype dunes were fabricated in the largest wave flume in North America at the O.H. Hinsdale Wave Research Laboratory at Oregon State University. Dunes were stabilized with two treatment application systems known as surface spraying and prefabricated vertical drains. Untreated and stabilized dunes were subjected to waves similar to Hurricane Sandy conditions recorded in New Jersey in 2012. Laboratory tests and in situ assessments were performed to quantify the improvement of mechanical properties of soil and investigate the performance of dunes subjected to extreme wave actions. Post-treatment cone penetration test sounding results indicated a significant cone tip resistance that was controlled by carbonate content and cementation distribution pattern. Similarly, monitoring the changes in the morphology of dunes demonstrated that the shear strength, cementation level, and cementation distribution pattern control the equilibrium beach profile, erosion rate, and mass loss.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

Funding from National Science Foundation under Grant Nos. CMMI-1519679, 1933350, and 1933355 is appreciated. Any opinions, findings, and conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of the National Science Foundation. The physical modeling described herein was performed in the Large Wave Flume at the O.H. Hinsdale Wave Research Laboratory at Oregon State University and would not have been possible without the significant support, assistance, and expertise of the HWRL staff. The physical modeling discussed herein was conducted with help from several colleagues, namely Hailey Bond, Qianwen Liu, Jinung Do, Ehsan Yazdani, and Ali Dadashiserej; their support is greatly appreciated.

References

Al Qabany, A., K. Soga, and C. Santamarina. 2012. “Factors affecting efficiency of microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 138 (8): 992–1001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666.
Amin, M., S. M. A. Zomorodian, and B. C. O’Kelly. 2017. “Reducing the hydraulic erosion of sand using microbial-induced carbonate precipitation.” Proc. Inst. Civ. Eng. Ground Improv. 170 (2): 112–122. https://doi.org/10.1680/jgrim.16.00028.
ASTM. 2016. Standard test method for unconfined compressive strength of cohesive soil. ASTM D2434−19. West Conshohocken, PA: ASTM.
Bond, H., M. Wengrove, J. Puleo, M. Pontiki, T. M. Evans, and R. A. Feagin. 2023. “Beach and dune subsurface hydrodynamics and their influence on the formation of dune scarps.” J. Geophys. Res.: Earth Surf. 128 (12): e2023JF007298. https://doi.org/10.1029/2023JF007298.
Bosboom, J., and M. J. F. Stive. 2012. Coastal dynamics. Delft, Netherlands: TU Delft Open. https://doi.org/10.5074/T.2021.001.
Bowders, J. J., M. A. Gabr, O. M. Collazos, and J. D. Quaranta. 2005. “Prefabricated vertical drains for enhanced in situ remediation.” In Proc., Geosynthetics Research and Development in Progress, 1–13. Reston, VA: ASCE. https://doi.org/10.1061/40782(161)34.
Burbank, M., T. Weaver, R. Lewis, T. Williams, B. Williams, and R. Crawford. 2012. “Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria.” J. Geotech. Geoenviron. Eng. 139 (6): 928–936. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000781.
Chek, A., R. Crowley, T. N. Ellis, M. Durnin, and B. Wingender. 2021. “Evaluation of factors affecting erodibility improvement for MICP-treated beach sand.” J. Geotech. Geoenviron. Eng. 147 (3): 04021001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002481.
Cheng, L., and R. Cord-Ruwisch. 2014. “Upscaling effects of soil improvement by microbially induced calcite precipitation by surface percolation.” Geomicrobiol. J. 31 (5): 396–406. https://doi.org/10.1080/01490451.2013.836579.
Cheng, L., R. Cord-Ruwisch, and M. A. Shahin. 2013. “Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation.” Can. Geotech. J. 50 (1): 81–90. https://doi.org/10.1139/cgj-2012-0023.
Chou, C. W., E. A. Seagren, A. H. Aydilek, and M. Lai. 2011. “Biocalcification of sand through ureolysis.” J. Geotech. Geoenviron. Eng. 137 (12): 1179–1189. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000532.
Ciarmiello, M., M. Di Natale, A. Hapsari, and S. Ritohardoyo. 2016. “Coastal erosion control.” In Encyclopedia of estuaries, edited by J. Kennish, 131–139. Dordrecht, Netherlands: Springer.
Clarà Saracho, A., S. K. Haigh, and M. Ehsan Jorat. 2020. “Flume study on the effects of microbial induced calcium carbonate precipitation (MICP) on the erosional behaviour of fine sand.” Géotechnique 71 (12): 1135–1149. https://doi.org/10.1680/jgeot.19.P.350.
Collins, B. D., and N. Sitar. 2009. “Geotechnical properties of cemented sands in steep slopes.” J. Geotech. Geoenviron. Eng. 135 (10): 1359–1366. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000094.
DeJong, J. T., M. B. Fritzges, and K. Nüsslein. 2006. “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng. 132 (11): 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36 (2): 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
Do, J., B. M. Montoya, and M. A. Gabr. 2020. “Scour mitigation and erodibility improvement using microbially induced carbonate precipitation.” Geotech. Test. J. 44 (5): 1467–1483. https://doi.org/10.1520/GTJ20190478.
Dunbar, J. B., W. R. Dally, R. Crowley, and N. Hudyma. 2021. “Northeast Florida—A new hotspot for hurricane damage?” In Geo-Extreme 2021: Case Histories and Best Practices, Geotechnical Special Publication 328, edited by C. L. Meehan, M. A. Pando, B. A. Leshchinsky, and N. H. Jafari, 23–35. Reston, VA: ASCE.
Fattahi, S. M., A. Soroush, and N. Huang. 2020. “Biocementation control of sand against wind erosion.” J. Geotech. Geoenviron. Eng. 146 (6): 04020045. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002268.
Feagin, R. A., et al. 2023. “Does vegetation accelerate coastal dune erosion during extreme events?” Sci. Adv. 9 (24): 1–9. https://doi.org/10.1126/sciadv.adg7135.
Feng, K., and B. M. Montoya. 2016. “Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading.” J. Geotech. Geoenviron. Eng. 142 (1): 04015057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379.
Fernandez, A. L., and J. C. Santamarina. 2001. “Effect of cementation on the small-strain parameters of sands.” Can. Geotech. J. 38 (1): 191–199. https://doi.org/10.1139/t00-081.
Ghasemi, P., and B. M. Montoya. 2020. “Field application of the microbially induced calcium carbonate precipitation on a coastal sandy slope.” In Geo-congress 2020: Biogeotechnics, Geotechnical Special Publication 320, edited by E. Kavazanjian, J. P. Hambleton, R. Makhnenko, and A. S. Budge, 141–149. Reston, VA: ASCE.
Ghasemi, P., and B. M. Montoya. 2022a. “Effect of treatment solution chemistry and soil engineering properties due to microbially induced carbonate precipitation treatments on vegetation health and growth.” ACS ES&T Eng. 2 (12): 2196–2205. https://doi.org/10.1021/acsestengg.2c00196.
Ghasemi, P., and B. M. Montoya. 2022b. “Field implementation of microbially induced calcium carbonate precipitation for surface erosion reduction of a coastal plain sandy slope.” J. Geotech. Geoenviron. Eng. 148 (9): 04022071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002836.
Ghasemi, P., A. Zamani, and B. Montoya. 2019. “The effect of chemical concentration on the strength and erodibility of MICP treated sands.” In Geo-Congress 2019: Soil Improvement, Geotechnical Special Publication 309, edited by C. L. Meehan, S. Kumar, M. A. Pando, and J. T. Coe, 241–249. Reston, VA: ASCE.
Gomez, M. G., C. M. Anderson, C. M. R. Graddy, J. T. DeJong, D. C. Nelson, and T. R. Ginn. 2017. “Large-scale comparison of bioaugmentation and biostimulation approaches for biocementation of sands.” J. Geotech. Geoenviron. Eng. 143 (5): 04016124. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001640.
Gomez, M. G., J. T. Dejong, and C. M. Anderson. 2018a. “Effect of bio-cementation on geophysical and cone penetration measurements in sands.” Can. Geotech. J. 1646 (Mar): 1632–1646. https://doi.org/10.1139/cgj-2017-0253.
Gomez, M. G., C. M. R. Graddy, J. T. DeJong, D. C. Nelson, and M. Tsesarsky. 2018b. “Stimulation of native microorganisms for biocementation in samples recovered from field-scale treatment depths.” J. Geotech. Geoenviron. Eng. 144 (1): 04017098. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001804.
Gomez, M. G., B. C. Martinez, J. T. DeJong, C. E. Hunt, L. A. DeVlaming, D. W. Major, and S. M. Dworatzek. 2015. “Field-scale bio-cementation tests to improve sands.” Proc. Inst. Civ. Eng. Ground Improv. 168 (3): 206–216. https://doi.org/10.1680/grim.13.00052.
Hudspeth, C. M. 2019. “Human impacts.” In Human impact on the environment: Ancient roots, current challenges, 197–200. London: Routledge.
Jiang, N. J., K. Soga, and M. Kuo. 2017. “Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand–clay mixtures.” J. Geotech. Geoenviron. Eng. 143 (3): 1–14. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559.
Karlsrud, K., T. Lunne, D. A. Kort, and S. Strandvik. 2005. “CPTU correlations for clays.” In Vol. 2 of Proc., 16th Int. Conf. on Soil Mechanics and Geotechnical Engineering: Geotechnology in Harmony with the Global Environment, 693–702. Rotterdam, Netherlands: Balkema. https://doi.org/10.3233/978-1-61499-656-9-693.
Kou, H. L., C. Z. Wu, P. P. Ni, and B. A. Jang. 2020. “Assessment of erosion resistance of biocemented sandy slope subjected to wave actions.” Appl. Ocean Res. 105 (Dec): 102401. https://doi.org/10.1016/j.apor.2020.102401.
Krishnan, V., H. Khodadadi Tirkolaei, and E. Kavazanjian. 2021. “Application of EICP for coastal erosion mitigation.” In Proc., IFCEE 2021, 160–169. Reston, VA: ASCE. https://doi.org/10.1061/9780784483428.017.
Lee, M. L., W. S. Ng, and Y. Tanaka. 2013. “Stress-deformation and compressibility responses of bio-mediated residual soils.” Ecol. Eng. 60 (Dec): 142–149. https://doi.org/10.1016/j.ecoleng.2013.07.034.
Liew, M., M. Xiao, B. M. Jones, L. M. Farquharson, and V. E. Romanovsky. 2020. “Prevention and control measures for coastal erosion in northern high-latitude communities: A systematic review based on Alaskan case studies.” Environ. Res. Lett. 15 (9): 093002. https://doi.org/10.1088/1748-9326/ab9387.
Lin, H., M. T. Suleiman, D. G. Brown, and E. Kavazanjian. 2015. “Mechanical behavior of sands treated by microbially induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 142 (2): 04015066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383.
Liu, K. W., N. J. Jiang, J. D. Qin, Y. J. Wang, C. S. Tang, and X. L. Han. 2021. “An experimental study of mitigating coastal sand dune erosion by microbial- and enzymatic-induced carbonate precipitation.” Acta Geotech. 16 (2): 467–480. https://doi.org/10.1007/s11440-020-01046-z.
Liu, Q. 2021. Experimental investigation of microbially induced carbonate precipitation on fine mineral tailings. Raleigh, NC: North Carolina State Univ.
Lunne, T., P. K. Robertson, and J. J. M. Powell. 1997. Cone penetration testing in geotechnical practice. London: Hall Publishers.
Maleki, M., S. Ebrahimi, F. Asadzadeh, and M. Emami Tabrizi. 2016. “Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil.” Int. J. Environ. Sci. Technol. 13 (3): 937–944. https://doi.org/10.1007/s13762-015-0921-z.
Martinez, A., et al. 2021. “Bio-inspired geotechnical engineering: Principles, current work, opportunities and challenges.” Géotechnique 72 (8): 687–705. https://doi.org/10.1680/jgeot.20.P.170.
Martinez, B. C., J. T. Dejong, and T. R. Ginn. 2014. “Bio-geochemical reactive transport modeling of microbial induced calcite precipitation to predict the treatment of sand in one-dimensional flow.” Comput. Geotech. 58 (Mar): 1–13. https://doi.org/10.1016/j.compgeo.2014.01.013.
Mayne, P. W., and J. Peuchen. 2022. “Undrained shear strength of clays from piezocone tests: A database approach.” In Cone penetration testing 2022, 546–551. London: CRC Press.
Mayne, P. W. P. W. 2007. Cone penetration testing. Washington, DC: Transportation Research Board.
Mitchell, J. K., and J. C. Santamarina. 2005. “Biological considerations in geotechnical engineering.” J. Geotech. Geoenviron. Eng. 131 (10): 1222–1233. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222).
Montoya, B. M., J. T. Dejong, and R. W. Boulanger. 2013. “Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation.” Géotechnique 63 (4): 302. https://doi.org/10.1680/geot.SIP13.P.019.
Montoya, B. M., J. Do, and M. A. Gabr. 2021a. “Distribution and properties of microbially induced carbonate precipitation in underwater sand bed.” J. Geotech. Geoenviron. Eng. 147 (10): 04021098. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002607.
Montoya, B. M., T. M. Evans, M. E. Wengrove, H. Bond, P. Ghasemi, E. Yazdani, A. Dadashiserej, and Q. Liu. 2021b. “Resisting dune erosion with bio-cementation.” In Proc., 10th Int. Conf. on Scour and Erosion (ICSE-10), edited by M. Rice, X. Liu, I. Sasanakul, M. McIlroy, and M. Xiao. Arlington, VA: National Science Foundation.
Montoya, B. M., R. Gerhard, J. T. DeJong, D. W. Wilson, M. H. Weil, B. C. Martinez, and L. Pederson. 2012. “Fabrication, operation, and health monitoring of bender elements for aggressive environments.” Geotech. Test. J. 35 (5): 728–742. https://doi.org/10.1520/GTJ103300.
Mortensen, B. M., M. J. Haber, J. T. Dejong, L. F. Caslake, and D. C. Nelson. 2011. “Effects of environmental factors on microbial induced calcium carbonate precipitation.” J. Appl. Microbiol. 111 (2): 338–349. https://doi.org/10.1111/j.1365-2672.2011.05065.x.
Mujah, D., L. Cheng, and M. A. Shahin. 2019. “Microstructural and geomechanical study on biocemented sand for optimization of MICP process.” J. Mater. Civ. Eng. 31 (4): 04019025. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002660.
Mujah, D., M. A. Shahin, and L. Cheng. 2017. “State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization.” Geomicrobiol. J. 34 (6): 524–537. https://doi.org/10.1080/01490451.2016.1225866.
Pontiki, M., J. A. Puleo, H. Bond, M. Wengrove, R. A. Feagin, T. J. Hsu, and T. Huff. 2023. “Geomorphic response of a coastal berm to storm surge and the importance of sheet flow dynamics.” J. Geophys. Res.: Earth Surf. 128 (10): e2022JF006948. https://doi.org/10.1029/2022JF006948.
Puppala, A. J., Y. B. Acar, and T. M. Tumay. 1995. “Cone penetration in very weakly cemented sand.” J. Geotech. Eng. 121 (8): 589–600. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:8(589).
Qabany, A. A., and K. Soga. 2014. “Effect of chemical treatment used in MICP on engineering properties of cemented soils.” In Proc., Bio-and Chemo-Mechanical Processes in Geotechnical Engineering: Géotechnique Symp. in Print 2013, 107–115. London: ICE Publishing. https://doi.org/10.1680/bcmpge.60531.010.
Rangel-Buitrago, N., A. T. Williams, and G. Anfuso. 2018. “Hard protection structures as a principal coastal erosion management strategy along the Caribbean coast of Colombia. A chronicle of pitfalls.” Ocean Coastal Manage. 156 (Mar): 58–75. https://doi.org/10.1016/j.ocecoaman.2017.04.006.
Safavizadeh, S., B. M. Montoya, and M. A. Gabr. 2019. “Microbial induced calcium carbonate precipitation in coal ash.” Géotechnique 69 (8): 727–740. https://doi.org/10.1680/jgeot.18.P.062.
Salgado, R., J. K. Mitchell, and M. Jamiolkowski. 1997. “Cavity expansion and penetration resistance in sand.” J. Geotech. Geoenviron. Eng. 123 (4): 344–354. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(344).
Salifu, E., E. MacLachlan, K. R. Iyer, C. W. Knapp, and A. Tarantino. 2016. “Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: A preliminary investigation.” Eng. Geol. 201 (Mar): 96–105. https://doi.org/10.1016/j.enggeo.2015.12.027.
San Pablo, A. C. M., et al. 2020. “Meter-scale biocementation experiments to advance process control and reduce impacts: Examining spatial control, ammonium by-product removal, and chemical reductions.” J. Geotech. Geoenviron. Eng. 146 (11): 04020125. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002377.
Santamarina, J. C., K. A. Klein, and M. A. Fam. 2001. Soils and waves. New York: Wiley.
Schneider, J. A., and R. E. S. Moss. 2011. “Linking cyclic stress and cyclic strain based methods for assessment of cyclic liquefaction triggering in sands.” Géotech. Lett. 1 (2): 31–36. https://doi.org/10.1680/geolett.11.00021.
Shahin, M. A., K. Jamieson, and L. Cheng. 2020. “Microbial-induced carbonate precipitation for coastal erosion mitigation of sandy slopes.” Géotech. Lett. 10 (2): 211–215. https://doi.org/10.1680/jgele.19.00093.
Shanahan, C., and B. M. Montoya. 2014. “Strengthening coastal sand dunes using microbial-induced calcite precipitation.” In Geo-Congress 2014 Technical Papers: Geo-Characterization and Modeling for Sustainability, Geotechnical Special Publication 234, edited by M. Abu-Farsakh, X. Yu, and L. R. Hoyos, 1683–1692. Reston, VA: ASCE.
Shanahan, C., and B. M. Montoya. 2016. “Erosion reduction of coastal sands using microbial induced calcite precipitation.” In Geo-Chicago 2016: Sustainability and Resiliency in Geotechnical Engineering, Geotechnical Special Publication 269, edited by D. Zekkos, A. Farid, A. De, K. R. Reddy, and N. Yesiller, 458–466. Reston, VA: ASCE.
Stachew, E., T. Houette, and P. Gruber. 2021. “Root systems research for bioinspired resilient design: A concept framework for foundation and coastal engineering.” Front. Rob. AI 8 (Apr): 1–24. https://doi.org/10.3389/frobt.2021.548444.
Su, F., and Y. Y. Yang. 2021. “Microbially induced carbonate precipitation via methanogenesis pathway by a microbial consortium enriched from activated anaerobic sludge.” J. Appl. Microbiol. 131 (1): 236–256. https://doi.org/10.1111/jam.14930.
Terzis, D., R. Bernier-Latmani, and L. Laloui. 2016. “Fabric characteristics and mechanical response of bio-improved sand to various treatment conditions.” Géotech. Lett. 6 (1): 50–57. https://doi.org/10.1680/jgele.15.00134.
Terzis, D., and L. Laloui. 2019. “Geomechanics for energy and the environment a decade of progress and turning points in the understanding of bio-improved soils: A review.” Geomech. Energy Environ. 19 (May): 100116. https://doi.org/10.1016/j.gete.2019.03.001.
Terzis, D., L. Laloui, S. Dornberger, and R. Harran. 2020. “Full-scale application of slope stabilization via calcite bio-mineralization followed by long-term GIS surveillance.” In Geo-Congress 2020: Biogeotechnics, Geotechnical Special Publication 320. edited by E. Kavazanjian, J. P. Hambleton, R. Makhnenko, and A. S. Budge, 65–73. Reston, VA: ASCE.
van Paassen, L. A., R. Ghose, T. J. M. van der Linden, W. R. L. van der Star, and M. C. M. van Loosdrecht. 2010. “Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng. 136 (12): 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
Van Paassen, L. A., M. P. Harkes, G. A. Van Zwieten, W. H. Van Der Zon, W. R. L. Van Der Star, and M. C. M. Van Loosdrecht. 2009. “Scale up of BioGrout: A biological ground reinforcement method.” In Proc., 17th Int. Conf. on Soil Mechanics and Geotechnical Engineering (ICSMGE), edited by M. Hamza, M. Shahien, and Y. E. Mossallamy, 2328–2333. Amsterdam, Netherlands: IOS Press. https://doi.org/10.3233/978-1-60750-031-5-2328.
Van Rijn, L. C., P. K. Tonnon, A. Sánchez-Arcilla, I. Cáceres, and J. Grüne. 2011. “Scaling laws for beach and dune erosion processes.” Coastal Eng. 58 (7): 623–636. https://doi.org/10.1016/j.coastaleng.2011.01.008.
Wang, Z., Q. Li, N. Zhang, Y. Jin, H. Qin, and J. Ding. 2020. “Slope failure of biotreated sand embankments under rainfall conditions: Experimental investigation and numerical simulation.” Bull. Eng. Geol. Environ. 79 (9): 4683–4699. https://doi.org/10.1007/s10064-020-01850-7.
Warren, K. A., M. A. Gabr, and J. D. Quaranta. 2006. “Field study to investigate WIDE technology for TCE extraction.” J. Geotech. Geoenviron. Eng. 132 (9): 1111–1120. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:9(1111).
Whiffin, V. S., L. A. van Paassen, and M. P. Harkes. 2007. “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. J. 24 (5): 417–423. https://doi.org/10.1080/01490450701436505.
Xiao, Y., A. W. Stuedlein, J. Ran, T. M. Evans, L. Cheng, H. Liu, L. A. van Paassen, and J. Chu. 2019. “Effect of particle shape on strength and stiffness of biocemented glass beads.” J. Geotech. Geoenviron. Eng. 145 (11): 06019016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002165.
Zamani, A., and B. M. Montoya. 2019. “Undrained cyclic response of silty sands improved by microbial induced calcium carbonate precipitation.” Soil Dyn. Earthquake Eng. 120 (Dec): 436–448. https://doi.org/10.1016/j.soildyn.2019.01.010.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 150Issue 10October 2024

History

Received: Nov 14, 2023
Accepted: May 21, 2024
Published online: Aug 13, 2024
Published in print: Oct 1, 2024
Discussion open until: Jan 13, 2025

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Postdoctoral Researcher, Dept. of Civil, Construction, and Environmental Engineering, North Carolina State Univ., Raleigh, NC 27606 (corresponding author). ORCID: https://orcid.org/0000-0002-2098-3572. Email: [email protected]
Professor, Dept. of Civil, Construction, and Environmental Engineering, North Carolina State Univ., Raleigh, NC 27606. ORCID: https://orcid.org/0000-0001-7669-8861. Email: [email protected]
Professor, School of Civil and Construction Engineering, Oregon State Univ., Corvallis, OR 97331. ORCID: https://orcid.org/0000-0002-8457-7602. Email: [email protected]
Meagan E. Wengrove, M.ASCE [email protected]
Assistant Professor, School of Civil and Construction Engineering, Oregon State Univ., Corvallis, OR 97331. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share