Technical Papers
Sep 28, 2024

A General Model for Temperature-Dependent Soil Suction

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 150, Issue 12

Abstract

Soil suction is a crucial parameter that affects the behavior of unsaturated soils. The impact of temperature on suction can lead to significant changes in the hydromechanical response of unsaturated soils. However, current models that describe the temperature dependency of soil suction rely mainly on empirical and semiempirical relationships, which do not fully consider the contribution of soil structure and degree of saturation on enthalpy potential. To address this limitation, we propose a novel general model for temperature-dependent soil suction based on thermodynamic laws. The model accounts for the thermodynamic processes that determine the enthalpy of the soil and uses these processes to develop the mathematical relationships required for the model. Specifically, we expand the Gibbs free energy for both internal chemical exchanges and when dealing with the thermodynamic system as a whole. We then combine the resulting equations to obtain a general model for the soil total suction. The model is validated by comparing its predictions against laboratory-measured suction at different temperatures for different soils reported in the literature. Furthermore, we demonstrate the model’s potential by showing an application in simulating the soil-water retention curve at different temperatures. The proposed model can contribute to a better understanding of the behavior of unsaturated soils under varying temperature conditions by providing a comprehensive and physics-based approach to modeling temperature-dependent soil suction.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Abdollahi, M., and F. Vahedifard. 2022. “Predicting resilient modulus of unsaturated subgrade soils considering effects of water content, temperature, and hydraulic hysteresis.” Int. J. Geomech. 22 (1): 04021259. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002244.
Ajdari, M., G. Habibagahi, and A. Ghahramani. 2012. “Predicting effective stress parameter of unsaturated soils using neural networks.” Comput. Geotech. 40 (Mar): 89–96. https://doi.org/10.1016/j.compgeo.2011.09.004.
Ajdari, M., G. Habibagahi, and F. Masrouri. 2013. “The role of suction and degree of saturation on the hydromechanical response of a dual porosity silt–bentonite mixture.” Appl. Clay Sci. 83 (Oct): 83–90. https://doi.org/10.1016/j.clay.2013.08.020.
Ajdari, M., M. Monghassem, and H. R. Lari. 2016. “A modified osmotic diaphragmatic oedometer for investigating the hydromechanical response of unsaturated soils.” Geotech. Test. J. 39 (6): 906–921. https://doi.org/10.1520/GTJ20150142.
Alonso, E. E., E. Romero, C. Hoffmann, and E. García-Escudero. 2005. “Expansive bentonite–sand mixtures in cyclic controlled-suction drying and wetting.” Eng. Geol. 81 (3): 213–226. https://doi.org/10.1016/j.enggeo.2005.06.009.
Alsherif, N. A., and J. S. McCartney. 2012. “Nonisothermal shear strength of compacted silt under high suction magnitudes.” Vol. 1 of Unsaturated soils: Research and applications, 339–346. Berlin: Springer.
Atkins, P. W., and J. de Paula. 2014. Atkins’ physical chemistry. Oxford, UK: Oxford University Press.
Bachmann, J., and R. R. van der Ploeg. 2002. “A review on recent developments in soil water retention theory: Interfacial tension and temperature effects.” J. Plant Nutr. Soil Sci. 165 (4): 468–478. https://doi.org/10.1002/1522-2624(200208)165:4%3C468::AID-JPLN468%3E3.0.CO;2-G.
Bishop, A. W. 1959. “The principle of effective stress.” Tek. Ukebl. 39: 859–863.
Brandon, T. L., J. K. Mitchell, and J. T. Cameron. 1989. “Thermal instability in buried cable backfills.” J. Geotech. Eng. 115 (1): 38–55. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:1(38).
Brooks, R. H., and A. T. Corey. 1966. “Properties of porous media affecting fluid flow.” J. Irrig. Drain. Div. 92 (2): 61–88. https://doi.org/10.1061/JRCEA4.0000425.
Cao, T. D., S. K. Thota, F. Vahedifard, and A. Amirlatifi. 2021. “General thermal conductivity function for unsaturated soils considering effects of water content, temperature, and confining pressure.” J. Geotech. Geoenviron. Eng. 147 (11): 04021123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002685.
Derjaguin, B. V., V. V. Karasev, and E. N. Khromova. 1986. “Thermal expansion of water in fine pores.” J. Colloid Interface Sci. 109 (2): 586–587.
Esfandiari, Z., M. Ajdari, and F. Vahedifard. 2021. “Time-dependent deformation characteristics of unsaturated sand–bentonite mixture under drying–wetting cycles.” J. Geotech. Geoenviron. Eng. 147 (3): 04020172. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002455.
Fredlund, D. G., and N. R. Morgenstern. 1977. “Stress state variables for unsaturated soils.” J. Geotech. Eng. Div. 103 (5): 447–466. https://doi.org/10.1061/AJGEB6.0000423.
Fredlund, D. G., and H. Rahardjo. 1993. Soil mechanics for unsaturated soils. New York: Wiley.
Fredlund, D. G., H. Rahardjo, and M. D. Fredlund. 2012. Unsaturated soil mechanics in engineering practice. New York: Wiley.
Fredlund, D. G., and A. Xing. 1994. “Equations for the soil-water characteristic curve.” Can. Geotech. J. 31 (4): 521–532. https://doi.org/10.1139/t94-061.
Goodman, C. C., and F. Vahedifard. 2019. “Micro-scale characterisation of clay at elevated temperatures.” Géotech. Lett. 9 (3): 225–230. https://doi.org/10.1680/jgele.19.00026.
Grant, S. A., and A. Salehzadeh. 1996. “Calculation of temperature effects on wetting coefficients of porous solids and their capillary pressure functions.” Water Resour. Res. 32 (2): 261–270. https://doi.org/10.1029/95WR02915.
Haar, L., J. S. Gallagher, and G. S. Kell. 1984. NBS/NRC steam table. New York: Hemisphere.
Hicks, T. W., M. J. White, and P. J. Hooker. 2009. Role of bentonite in determination of thermal limits on geological disposal facility design. Oakham, UK: Galson Sciences Limited.
Imbert, C., E. Olchitzky, T. Lassabatere, P. Dangla, and A. Courtois. 2005. “Evaluation of a thermal criterion for an engineered barrier system.” Eng. Geol. 81 (3): 269–283. https://doi.org/10.1016/j.enggeo.2005.06.019.
Jahangir, E., O. Deck, and F. Masrouri. 2013. “An analytical model of soil–structure interaction with swelling soils during droughts.” Comput. Geotech. 54 (Oct): 16–32. https://doi.org/10.1016/j.compgeo.2013.05.009.
Kelishadi, H., M. R. Mosaddeghi, S. Ayoubi, and A. I. Mamedov. 2018. “Effect of temperature on soil structural stability as characterized by high energy moisture characteristic method.” Catena 170 (Nov): 290–304. https://doi.org/10.1016/j.catena.2018.06.015.
Khalili, N., and M. H. Khabbaz. 1998. “A unique relationship for χ for the determination of the shear strength of unsaturated soils.” Géotechnique 48 (5): 681–687. https://doi.org/10.1680/geot.1998.48.5.681.
Khalili, N. G. F. A., F. Geiser, and G. E. Blight. 2004. “Effective stress in unsaturated soils: Review with new evidence.” Int. J. Geomech. 4 (2): 115–126. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:2(115).
Lal, R., and M. K. Shukla. 2004. Principles of soil physics. London: CRC Press.
Laloui, L., S. Salager, and M. Rizzi. 2013. “Retention behaviour of natural clayey materials at different temperatures.” Acta Geotech. 8 (5): 537–546. https://doi.org/10.1007/s11440-013-0255-2.
Laloui, L., and M. Sutman. 2021. “Experimental investigation of energy piles: From laboratory to field testing.” Geomech. Energy Environ. 27 (Sep): 100214. https://doi.org/10.1016/j.gete.2020.100214.
Lee, I. M., S. G. Sung, and G. C. Cho. 2005. “Effect of stress state on the unsaturated shear strength of a weathered granite.” Can. Geotechn. J. 42 (2): 624–631. https://doi.org/10.1139/t04-091.
Liu, Y., G. Cai, A. Zhou, B. Han, J. Li, and C. Zhao. 2021. “A fully coupled constitutive model for thermo-hydro-mechanical behaviour of unsaturated soils.” Comput. Geotech. 133 (May): 104032. https://doi.org/10.1016/j.compgeo.2021.104032.
Loret, B., and N. Khalili. 2002. “An effective stress elastic–plastic model for unsaturated porous media.” Mech. Mater. 34 (2): 97–116. https://doi.org/10.1016/S0167-6636(01)00092-8.
Loveridge, F., J. S. McCartney, G. A. Narsilio, and M. Sanchez. 2020. “Energy geostructures: A review of analysis approaches, in situ testing and model scale experiments.” Geomech. Energy Environ. 22 (May): 100173. https://doi.org/10.1016/j.gete.2019.100173.
Lu, N. 2016. “Generalized soil water retention equation for adsorption and capillarity.” J. Geotech. Geoenviron. Eng. 142 (10): 04016051. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001524.
Lu, N. 2020. “Unsaturated soil mechanics: Fundamental challenges, breakthroughs, and opportunities.” J. Geotech. Geoenviron. Eng. 146 (5): 02520001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002233.
Lu, N., and W. J. Likos. 2004. Unsaturated soil mechanics. New York: Wiley.
Lu, N., and W. J. Likos. 2006. “Suction stress characteristic curve for unsaturated soil.” J. Geotech. Geoenviron. Eng. 132 (2): 131–142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131).
Ma, C., and T. Hueckel. 1992. “Stress and pore pressure in saturated clay subjected to heat from radioactive waste: A numerical simulation.” Can. Geotech. J. 29 (6): 1087–1094. https://doi.org/10.1139/t92-125.
McCartney, J. S., C. J. R. Coccia, N. Alsherif, and M. A. Stewart. 2013. “Energy geostructures in unsaturated soils.” In Energy Geostruct. Innov. Underground Eng., edited by L. Laloui and A. DiDonna, 99–114. Hoboken, NJ: Wiley.
McCartney, J. S., N. H. Jafari, T. Hueckel, M. Sánchez, and F. Vahedifard. 2019. Emerging thermal issues in geotechnical engineering, 275–317. Berlin: Springer. https://doi.org/10.1007/978-3-030-06249-1.
Monghassem, M., M. Ajdari, S. M. Binesh, and F. Vahedifard. 2021. “Effects of suction and drying–wetting cycles on shearing response of adobe.” J. Mater. Civ. Eng. 33 (7): 04021173. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003816.
Murray, E. J., and V. Sivakumar. 2010. Unsaturated soils: A fundamental interpretation of soil behaviour. Chichester, UK: Wiley.
Navea, I. J., J. Balagosa, S. Yoon, and Y. W. Choo. 2023. “Strain-dependent-deformation property of Gyeongju compacted bentonite buffer material for engineered barrier system.” Nucl. Eng. Technol. 56 (5): 1854–1862. https://doi.org/10.1016/j.net.2023.12.044.
Powers, M. C. 1967. “Fluid-release mechanisms in compacting marine mudrocks and their importance in oil exploration.” AAPG Bull. 51 (7): 1240–1254. https://doi.org/10.1306/5D25C137-16C1-11D7-8645000102C1865D.
Rassam, D. W., and D. J. Williams. 1999. “A Relationship describing the shear strength of unsaturated soils.” Can. Geotech. J. 36 (2): 363–368. https://doi.org/10.1139/t98-102.
Revil, A., and N. Lu. 2013. “Unified water isotherms for clayey porous materials.” Water Resour. Res. 49 (9): 5685–5699. https://doi.org/10.1002/wrcr.20426.
Ridley, A. M., and W. K. Wray. 1995. “Suction measurement: A review of current theory and practices.” In Proc., Conf. on Unsaturated Soils, edited by Alonso and Delage, 1293–1322. Rotterdam, Netherlands: A.A. Balkema.
Robinson, J. D., and F. Vahedifard. 2016. “Weakening mechanisms imposed on California’s levees under multiyear extreme drought.” Clim. Change 137 (1–2): 1–14. https://doi.org/10.1007/s10584-016-1649-6.
Romero, E., A. Gens, and A. Lloret. 2001. “Temperature effects on the hydraulic behaviour of an unsaturated clay.” In Unsaturated soil concepts and their application in geotechnical practice, edited by D. G. Toll, 311–332. Berlin: Springer. https://doi.org/10.1007/978-94-015-9775-3.
Roshani, P., and J. Á. I. Sedano. 2016. “Incorporating temperature effects in soil-water characteristic curves.” Indian Geotech. J. 46 (3): 309–318. https://doi.org/10.1007/s40098-016-0201-y.
Salager, S., M. S. El Youssoufi, and C. Saix. 2010. “Effect of temperature on water retention phenomena in deformable soils: Theoretical and experimental aspects.” Eur. J. Soil Sci. 61 (1): 97–107. https://doi.org/10.1111/j.1365-2389.2009.01204.x.
Shahrokhabadi, S., T. D. Cao, and F. Vahedifard. 2020. “Thermo-hydro-mechanical modeling of unsaturated soils using isogeometric analysis: Model development and application to strain localization simulation.” Int. J. Numer. Anal. Methods Geomech. 44 (2): 261–292. https://doi.org/10.1002/nag.3015.
She, H. Y., and B. E. Sleep. 1998. “The effect of temperature on capillary pressure-saturation relationships for air-water and perchloroethylene-water systems.” Water Resour. Res. 34 (10): 2587–2597. https://doi.org/10.1029/98WR01199.
Smith, J. M., H. C. Van Ness, M. M. Abbott, and M. T. Swihart. 1949. Introduction to chemical engineering thermodynamics. Singapore: McGraw-Hill.
Thomson, G. W. 1946. “The Antoine equation for vapor-pressure data.” Chem. Rev. 38 (1): 1–39. https://doi.org/10.1021/cr60119a001.
Thota, S. K., and F. Vahedifard. 2022. “Closed-form modeling of matric suction in unsaturated soils under undrained heating.” Geomech. Energy Environ. 32 (Dec): 100370. https://doi.org/10.1016/j.gete.2022.100370.
Thota, S. K., F. Vahedifard, and J. S. McCartney. 2021. “A temperature-dependent model for ultimate bearing capacity of energy piles in unsaturated fine-grained soils.” J. Geotech. Geoenviron. Eng. 147 (11): 04021132. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002676.
Uchaipichat, A., and N. Khalili. 2009. “Experimental investigation of thermo-hydro-mechanical behaviour of an unsaturated silt.” Géotechnique 59 (4): 339–353. https://doi.org/10.1680/geot.2009.59.4.339.
Vahedifard, F., A. AghaKouchak, E. Ragno, S. Shahrokhabadi, and I. Mallakpour. 2017. “Lessons from the Oroville dam.” Science 355 (6330): 1139–1140. https://doi.org/10.1126/science.aan0171.
Vahedifard, F., A. AghaKouchak, and J. D. Robinson. 2015. “Drought threatens California’s levees.” Science 349 (6250): 799. https://doi.org/10.1126/science.349.6250.799-a.
Vahedifard, F., T. D. Cao, E. Ghazanfari, and S. K. Thota. 2019. “Closed-form models for nonisothermal effective stress of unsaturated soils.” J. Geotech. Geoenviron. Eng. 145 (9): 04019053. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002094.
Vahedifard, F., T. D. Cao, S. K. Thota, and E. Ghazanfari. 2018a. “Nonisothermal models for soil–water retention curve.” J. Geotech. Geoenviron. Eng. 144 (9): 04018061. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001939.
Vahedifard, F., J. D. Robinson, and A. AghaKouchak. 2016. “Can protracted drought undermine the structural integrity of California’s earthen levees?” J. Geotech. Geoenviron. Eng. 142 (6): 02516001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001465.
Vahedifard, F., S. K. Thota, T. D. Cao, R. A. Samarakoon, and J. S. McCartney. 2020. “Temperature-dependent model for small-strain shear modulus of unsaturated soils.” J. Geotech. Geoenviron. Eng. 146 (12): 04020136. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002406.
Vahedifard, F., J. M. Williams, and A. AghaKouchak. 2018b. “Geotechnical engineering in the face of climate change: Role of multi-physics processes in partially saturated soils.” In Proc., 2018 Int. Foundations Congress and Equipment Exposition, IFCEE 2018: Advances in Geomaterial Modeling and Site Characterization, Geotechnical Special Publication No. 295. Orlando, Florida, 353–364. Reston, VA: ASCE. https://doi.org/10.1061/9780784481585.035.
Vanapalli, S. K., D. G. Fredlund, and D. E. Pufahl. 1999. “The influence of soil structure and stress history on the soil-water characteristic curve of a compacted till.” Géotechnique 49 (2): 143–159. https://doi.org/10.1680/geot.1999.49.2.143.
Wan, M., W. M. Ye, Y. G. Chen, Y. J. Cui, and J. Wang. 2015. “Influence of temperature on the water retention properties of compacted GMZ01 bentonite.” Environ. Earth Sci. 73 (Sep): 4053–4061. https://doi.org/10.1007/s12665-014-3690-y.
Wang, L., P. J. Cleall, B. Zhu, and Y. Chen. 2022. “Modelling the thermal–hydromechanical behaviour of unsaturated soils with a high degree of saturation using an extended precise integration method.” Can. Geotech. J. 60 (1): 86–101. https://doi.org/10.1139/cgj-2021-0201.
Wersin, P., L. H. Johnson, and I. G. McKinley. 2007. “Performance of the bentonite barrier at temperatures beyond 100 C: A critical review.” Phys. Chem. Earth Parts A/B/C 32 (8–14): 780–788. https://doi.org/10.1016/j.pce.2006.02.051.
Yang, G., and B. Bai. 2019. “Thermo-hydro-mechanical model for unsaturated clay soils based on granular solid hydrodynamics theory.” Int. J. Geomech. 19 (10): 04019115. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001498.
Yang, S. R., W. H. Huang, and S. H. Chung. 2015. “Combined effects of temperature and moisture content on soil suction of compacted bentonite.” J. Mar. Sci. Technol. 23 (3): 2. https://doi.org/10.6119/JMST-014-0326-2.
Yoon, S., D. H. Lee, W. J. Cho, C. Lee, and D. K. Cho. 2022. “Evaluation of water suction for compacted bentonite buffer under elevated temperature conditions.” J. Nuclear Fuel Cycle Waste Technol. 20 (2): 185–192. https://doi.org/10.7733/jnfcwt.2022.015.
Zapata, C. E., W. N. Houston, S. L. Houston, and K. D. Walsh. 2000. “Soil–water characteristic curve variability.” In Advances in unsaturated geotechnics, 84–124. Reston, VA: ASCE.
Zhang, C., and N. Lu. 2019. “Unitary definition of matric suction.” J. Geotech. Geoenviron. Eng. 145 (2): 02818004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002004.
Zhang, F., C. Zhao, S. D. Lourenço, S. Dong, and Y. Jiang. 2021. “Factors affecting the soil–water retention curve of Chinese loess.” Bull. Eng. Geol. Environ. 80 (1): 717–729. https://doi.org/10.1007/s10064-020-01959-9.
Zhang, Z., and X. Song. 2023. “Nanoscale soil-water retention mechanism of unsaturated clay via MD and machine learning.” Comput. Geotech. 163 (Nov): 105678. https://doi.org/10.1016/j.compgeo.2023.105678.
Zheng, L., J. Rutqvist, J. T. Birkholzer, and H. H. Liu. 2015. “On the impact of temperatures up to 200 C in clay repositories with bentonite engineer barrier systems: A study with coupled thermal, hydrological, chemical, and mechanical modeling.” Eng. Geol. 197 (Oct): 278–295. https://doi.org/10.1016/j.enggeo.2015.08.026.
Zhou, A. N., D. Sheng, and J. Li. 2014. “Modelling water retention and volume change behaviours of unsaturated soils in non-isothermal conditions.” Comput. Geotech. 55 (Jan): 1–13. https://doi.org/10.1016/j.compgeo.2013.07.011.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 150Issue 12December 2024

History

Received: May 19, 2023
Accepted: Jul 15, 2024
Published online: Sep 28, 2024
Published in print: Dec 1, 2024
Discussion open until: Feb 28, 2025

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Mohsen Ajdari, Ph.D., M.ASCE [email protected]
Research Assistant, Richard A. Rula School of Civil and Environmental Engineering, Mississippi State Univ., Mississippi State, MS 39762. Email: [email protected]
Farshid Vahedifard, Ph.D., P.E., F.ASCE https://orcid.org/0000-0001-8883-4533 [email protected]
Professor and Louis Berger Chair, Dept. of Civil and Environmental Engineering, Tufts Univ., Anderson Hall, 200 College Ave., Medford, MA 02155 (corresponding author). ORCID: https://orcid.org/0000-0001-8883-4533. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share