Technical Papers
Dec 26, 2023

Effect of Particle Shape on Contact Network and Shear-Induced Anisotropy of Granular Assemblies: A DEM Perspective

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 150, Issue 3

Abstract

The particle shape plays an important role in the macroscopic response of granular materials. Based on discrete element method (DEM) simulation results of triaxial tests on samples with different particle shapes, this study focuses on the microcharacteristics of contact network and anisotropy in granular media during shearing by a quad-partition method. Numerical results show that the interlocking is enhanced, and stronger contact force will be generated along the loading direction as the deviation of particle shape from a sphere, causing the increase of shear strength. Sliding mainly occurs in weak contacts, and the microscopic dissipative behavior in weak contact sliding plays a key role in the transformation from contraction to dilation. The samples with different particle shapes all reach the maximum proportion of sliding contacts at the phase transformation state that is the transition points of volumetric change. The anisotropy of samples increases as the deviation of particle shape from a sphere, and the contribution of the normal contact force anisotropy to the shear strength is the largest one. With the increase of the particle axial ratio, the mean coordination number and geometrical anisotropy increase due to the oriented alignment occurring at the critical state. Compared with superball particles, the ellipsoid particles have lower compressibility with a smaller axial strain and volumetric strain at the peak state.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors would like to acknowledge the financial support provided by the National Natural Science Foundation of China (No. 52278327) and the Beijing Natural Science Foundation (No. 8222020).

References

Alonso-Marroquín, F., S. Luding, H. J. Herrmann, and I. Vardoulakis. 2005. “Role of anisotropy in the elastoplastic response of a polygonal packing.” Phys. Rev. E 71 (5): 051304. https://doi.org/10.1103/PhysRevE.71.051304.
Antony, S. J., and N. P. Kruyt. 2009. “Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media.” Phys. Rev. E 79 (3): 031308. https://doi.org/10.1103/PhysRevE.79.031308.
Antony, S. J., and M. R. Kuhn. 2004. “Influence of particle shape on granular contact signatures and shear strength: New insights from simulations.” Int. J. Solids Struct. 41 (21): 5863–5870. https://doi.org/10.1016/j.ijsolstr.2004.05.067.
Azéma, E., and F. Radjaï. 2010. “Stress-strain behavior and geometrical properties of packings of elongated particles.” Phys. Rev. E 81 (5): 051304. https://doi.org/10.1103/PhysRevE.81.051304.
Barr, A. H. 1981. “Superquadrics and angle-preserving transformations.” IEEE Comput. Graph. Appl. 1 (1): 11–23. https://doi.org/10.1109/MCG.1981.1673799.
Chang, C. S., and Y. Liu. 2013. “Stress and fabric in granular material.” Theory Appl. Mech. Lett. 3 (2): 021002. https://doi.org/10.1063/2.1302102.
Chen, C., J. Gu, Z. Peng, X. Dai, Q. Liu, and G. Q. Zhu. 2022. “Discrete element modeling of particles sphericity effect on sand direct shear performance.” Sci. Rep. 12 (1): 1–14. https://doi.org/10.1038/s41598-022-09543-9.
Christoffersen, J., M. M. Mehrabadi, and S. Nemat-Nasser. 1981. “A micromechanical description of granular material behavior.” J. Appl. Mech. Trans. 48 (2): 339–344. https://doi.org/10.1115/1.3157619.
Cundall, P. A., and O. D. L. Strack. 1979. “A discrete numerical model for granular assemblies.” Géotechnique 29 (1): 47–65. https://doi.org/10.1680/geot.1979.29.1.47.
Gong, G., X. Zha, and J. Wei. 2012. “Comparison of granular material behaviour under drained triaxial and plane strain conditions using 3D DEM simulations.” Acta Mech. Solida Sin. 25 (2): 186–196. https://doi.org/10.1016/S0894-9166(12)60019-6.
Gu, X., M. Huang, and J. Qian. 2014. “DEM investigation on the evolution of microstructure in granular soils under shearing.” Granular Matter 16 (1): 91–106. https://doi.org/10.1007/s10035-013-0467-z.
Guo, N., and J. Zhao. 2013. “The signature of shear-induced anisotropy in granular media.” Comput. Geotech. 47 (Jan): 1–15. https://doi.org/10.1016/j.compgeo.2012.07.002.
Guo, P., and X. Su. 2007. “Shear strength, interparticle locking, and dilatancy of granular materials.” Can. Geotech. J. 44 (5): 579–591. https://doi.org/10.1139/t07-010.
Hosseininia, E. S. 2012. “Investigating the micromechanical evolutions within inherently anisotropic granular materials using discrete element method.” Granular Matter 14 (4): 483–503. https://doi.org/10.1007/s10035-012-0340-5.
Jiang, M., A. Zhang, and T. Li. 2019. “Distinct element analysis of the microstructure evolution in granular soils under cyclic loading.” Granular Matter 21 (2): 1–16. https://doi.org/10.1007/s10035-019-0892-8.
Kokusho, T., T. Hara, and R. Hiraoka. 2004. “Undrained shear strength of granular soils with different particle gradations.” J. Geotech. Geoenviron. Eng. 130 (6): 621–629. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:6(621).
Kruyt, N. P., and L. Rothenburg. 2016. “A micromechanical study of dilatancy of granular materials.” J. Mech. Phys. Solids 95 (Oct): 411–427. https://doi.org/10.1016/j.jmps.2016.01.019.
Li, B., F. Zhang, and M. Gutierrez. 2015. “A numerical examination of the hollow cylindrical torsional shear test using DEM.” Acta Geotech. 10 (4): 449–467. https://doi.org/10.1007/s11440-014-0329-9.
Li, X. S., and Y. Wang. 1998. “Linear representation of steady-state line for sand.” J. Geotech. Geoenviron. Eng. 124 (12): 1215–1217. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1215).
Li, Y., J. Li, T. Zhu, and K. Han. 2021. “Size effect on contact behavior in DEM simple shear tests.” Sci. Rep. 11 (1): 1–10. https://doi.org/10.1038/s41598-021-99473-9.
Liu, J., F. Nicot, and W. Zhou. 2018. “Sustainability of internal structures during shear band forming in 2D granular materials.” Powder Technol. 338 (Oct): 458–470. https://doi.org/10.1016/j.powtec.2018.07.001.
Liu, J., W. Zhou, G. Ma, Y. Li, and Q. Liu. 2019. “Contact fabric characteristics of granular materials under three dimensional stress paths.” Chin. J. Theory Appl. Mech. 51 (1): 26–35. https://doi.org/10.6052/0459-1879-18-338.
Liu, Y., X. Wang, and P. Yu. 2020. “Critical state of granular materials at mesoscale: Transition from local to global.” Int. J. Numer. Anal. Methods Geomech. 44 (12): 1676–1694. https://doi.org/10.1002/nag.3084.
Ma, Q., A. Wautier, and F. Nicot. 2022. “Mesoscale investigation of fine grain contribution to contact stress in granular materials.” J. Eng. Mech. 148 (3): 04022005. https://doi.org/10.1061/(ASCE)EM.1943-7889.0002078.
Mahmud Sazzad, M., K. Suzuki, and A. Modaressi-Farahmand-Razavi. 2012. “Macro-micro responses of granular materials under different b values using DEM.” Int. J. Geomech. 12 (3): 220–228. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000133.
Matsushima, T., and C. S. Chang. 2011. “Quantitative evaluation of the effect of irregularly shaped particles in sheared granular assemblies.” Granular Matter 13 (3): 269–276. https://doi.org/10.1007/s10035-011-0263-6.
Minh, N. H., and Y. P. Cheng. 2013. “A DEM investigation of the effect of particle-size distribution on one-dimensional compression.” Géotechnique 63 (1): 44–53. https://doi.org/10.1680/geot.10.P.058.
Minh, N. H., Y. P. Cheng, and C. Thornton. 2014. “Strong force networks in granular mixtures.” Granular Matter 16 (1): 69–78. https://doi.org/10.1007/s10035-013-0455-3.
Mueth, D. M., H. M. Jaeger, and S. R. Nagel. 1998. “Force distribution in a granular medium.” Phys. Rev. E 57 (3): 3164. https://doi.org/10.1103/PhysRevE.57.3164.
Muir Wood, D., K. Maeda, and E. Nukudani. 2010. “Modelling mechanical consequences of erosion.” Géotechnique 60 (6): 447–457. https://doi.org/10.1680/geot.2010.60.6.447.
Ng, T.-T. 2004. “Behavior of ellipsoids of two sizes.” J. Geotech. Geoenviron. Eng. 130 (10): 1077–1083. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1077).
Nguyen, H. B. K., M. M. Rahman, and A. B. Fourie. 2017. “Undrained behaviour of granular material and the role of fabric in isotropic and K0 consolidations: DEM approach.” Géotechnique 67 (2): 153–167. https://doi.org/10.1680/jgeot.15.P.234.
Nguyen, H. B. K., M. M. Rahman, and A. B. Fourie. 2020. “Effect of particle shape on constitutive relation: DEM study.” J. Geotech. Geoenviron. Eng. 146 (7): 1–16. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002278.
Nguyen, H. B. K., M. M. Rahman, and A. B. Fourie. 2021. “How particle shape affects the critical state, triggering of instability and dilatancy of granular materials - Results from a DEM study.” Géotechnique 71 (9): 749–764. https://doi.org/10.1680/jgeot.18.P.211.
Nicot, F., and F. Darve. 2005. “A multi-scale approach to granular materials.” Mech. Mater. 37 (9): 980–1006. https://doi.org/10.1016/j.mechmat.2004.11.002.
Oda, M. 1982. “Fabric tensor for discontinuous geological materials.” Soils Found. 22 (4): 96–108. https://doi.org/10.3208/sandf1972.22.4_96.
Ouadfel, H., and L. Rothenburg. 2001. “‘Stress-force-fabric’ relationship for assemblies of ellipsoids.” Mech. Mater. 33 (4): 201–221. https://doi.org/10.1016/S0167-6636(00)00057-0.
Phusing, D., K. Suzuki, and M. Zaman. 2016. “Mechanical behavior of granular materials under continuously varying b values using DEM.” Int. J. Geomech. 16 (1): 04015027. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000506.
Qi, Q., Y. Chen, Z. Nie, and Y. Liu. 2023. “Investigation of the compaction behaviour of sand-gravel mixtures via DEM: Effect of the sand particle shape under vibration loading.” Comput. Geotech. 154 (Feb): 105153. https://doi.org/10.1016/j.compgeo.2022.105153.
Radjai, F., M. Jean, J. J. Moreau, and S. Roux. 1996. “Force distributions in dense Two-Dimensional granular systems.” Phys. Rev. Lett. 77 (2): 274. https://doi.org/10.1103/PhysRevLett.77.274.
Radjai, F., D. E. Wolf, M. Jean, and J. J. Moreau. 1998. “Bimodal character of stress transmission in granular packings.” Phys. Rev. Lett. 80 (1): 61. https://doi.org/10.1103/PhysRevLett.80.61.
Riemer, M. F., and R. B. Seed. 1997. “Factors affecting apparent position of steady-state line.” J. Geotech. Geoenviron. Eng. 123 (3): 281–288. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:3(281).
Satake, M. 1982. “Fabric tensor in granular materials.” In Proc., IUTAM Symp. on Deformation and Failure of Granular Mater, edited by P. Vermeer and H. Luger, 63–68. Delft, Netherlands: A.A. Balkema.
Sufian, A., A. R. Russell, and A. J. Whittle. 2017. “Anisotropy of contact networks in granular media and its influence on mobilised internal friction.” Géotechnique 67 (12): 1067–1080. https://doi.org/10.1680/jgeot.16.P.170.
Thornton, C. 2000. “Numerical simulations of deviatoric shear deformation of granular media.” Géotechnique 50 (1): 43–53. https://doi.org/10.1680/geot.2000.50.1.43.
Thornton, C., and S. J. Antony. 1998. “Quasi-static deformation of participate media.” Philos. Trans. R. Soc. London, Ser. A 356 (1747): 2763–2782. https://doi.org/10.1098/rsta.1998.0296.
Tsutsumi, S., M. Toyosada, K. Hashiguchi, K. Kaneko, and Y. Kishino. 2006. “Stress path dependency of non-coaxial response.” In Proc., Int. Symp. echanics and Geotechnics of Particulate Media: Geomechanics and Geotechnics of Particulate Media. London: CRP Press.
Verdugo, R., and K. Ishihara. 1996. “The steady state of sandy soils.” Soils Found. 36 (2): 81–91. https://doi.org/10.3208/sandf.36.2_81.
Wang, J., and B. Zhou. 2008. “Demonstration on dependency of constitutive relations of soils with stress paths.” Supplement, Chin. J. Rock Mech. Eng. 27 (S1): 2669–2674.
Wang, X., Y. Liu, and P. Yu. 2021. “Upscaling critical state considering the distribution of meso-structures in granular materials.” Int. J. Numer. Anal. Methods Geomech. 45 (11): 1624–1646. https://doi.org/10.1002/nag.3217.
Wang, Y. J., and E. X. Song. 2019. “Discrete element analysis of the particle shape effect on packing density and strength of rockfills.” Rock Soil Mech. 40 (6): 2416–2426. https://doi.org/10.16285/j.rsm.2018.0346.
Wu, M., F. Zhou, and J. Wang. 2023. “DEM modeling of mini-triaxial test on soil-rock mixture considering particle shape effect.” Comput. Geotech. 153 (Jan): 105110. https://doi.org/10.1016/j.compgeo.2022.105110.
Xiao, Y., L. Long, T. Matthew Evans, H. Zhou, H. Liu, and A. W. Stuedlein. 2019. “Effect of particle shape on stress-dilatancy responses of medium-dense sands.” J. Geotech. Geoenviron. Eng. 145 (2): 1–15. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994.
Yang, J., and X. D. Luo. 2015. “Exploring the relationship between critical state and particle shape for granular materials.” J. Mech. Phys. Solids 84 (Nov): 196–213. https://doi.org/10.1016/j.jmps.2015.08.001.
Yang, Z. X., J. Yang, and L. Z. Wang. 2012. “On the influence of inter-particle friction and dilatancy in granular materials: A numerical analysis.” Granular Matter 14 (3): 433–447. https://doi.org/10.1007/s10035-012-0348-x.
Zhao, J., S. Zhao, and S. Luding. 2023. “The role of particle shape in computational modelling of granular matter.” Nat. Rev. Phys. 5 (9): 505–525. https://doi.org/10.1038/s42254-023-00617-9.
Zhao, S., T. M. Evans, and X. Zhou. 2018. “Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects.” Int. J. Solids Struct. 150 (Oct): 268–281. https://doi.org/10.1016/j.ijsolstr.2018.06.024.
Zhao, S., T. M. Evans, X. Zhou, and S. Zhou. 2017. “Discrete element method investigation on thermally-induced shakedown of granular materials.” Granular Matter 19 (1): 1–11. https://doi.org/10.1007/s10035-016-0690-5.
Zhao, S., and J. Zhao. 2019. “A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular media.” Int. J. Numer. Anal. Methods Geomech. 43 (13): 2147–2169. https://doi.org/10.1002/nag.2951.
Zhao, S., and J. Zhao. 2021. “SudoDEM: Unleashing the predictive power of the discrete element method on simulation for non-spherical granular particles.” Comput. Phys. Commun. 259 (Feb): 107670. https://doi.org/10.1016/j.cpc.2020.107670.
Zhou, W., D. Liu, G. Ma, and X. L. Chang. 2012. “Numerical simulation of true triaxial tests on mechanical behaviors of rockfill based on stochastic granule model.” Chin. J. Geotech. Eng. 34 (4): 748–755.
Zhou, W., J. Liu, G. Ma, and X. Chang. 2017a. “Three-dimensional DEM investigation of critical state and dilatancy behaviors of granular materials.” Acta Geotech. 12 (3): 527–540. https://doi.org/10.1007/s11440-017-0530-8.
Zhou, W., K. Xu, L. Yang, and G. Ma. 2017b. “Influence of particle shape on mechanical behavior of granular materials.” In Proc., 7th Int. Conf. on Discrete Element Methods, 245–252. Singapore: Springer.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 150Issue 3March 2024

History

Received: Mar 15, 2023
Accepted: Oct 24, 2023
Published online: Dec 26, 2023
Published in print: Mar 1, 2024
Discussion open until: May 26, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Professor, Dept. of Civil Engineering, Univ. of Science and Technology Beijing, Beijing 100083, China (corresponding author). ORCID: https://orcid.org/0000-0002-0333-6621. Email: [email protected]
Xu Liu
Postgraduate, Dept. of Civil Engineering, Univ. of Science and Technology Beijing, Beijing 100083, China.
Jinlan Ren
Ph.D. Candidate, Dept. of Civil Engineering, Univ. of Science and Technology Beijing, Beijing 100083, China.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share