Technical Papers
Aug 11, 2023

Characterization of Autocovariance Parameters of Detrended Cone Tip Resistance from a Global CPT Database

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 149, Issue 10

Abstract

This paper compiles a cone penetration test (CPT) database, named Global-CPT/3/1196. It contains three CPT parameters (cone tip resistance, sleeve friction, and porewater pressure) from 1,196 CPT soundings taken at 59 sites worldwide. The spatially variable cone tip resistance corrected for porewater pressure (qt) soundings in the database are analyzed by a uniform procedure to characterize their autocovariance parameters consisting of a coefficient of variation, scale of fluctuation, smoothness, and hole effect. This is the first study that characterizes spatial variability based on a more complete set of three parameters: scale of fluctuation, smoothness, and hole effect. Previous studies were based on a single parameter (scale of fluctuation). The statistics of the autocovariance parameters and their inter-relationships are presented as a function of soil behavior type. These new statistics may be valuable for a future design founded on insufficient site investigation data: they can be used to obtain first-order estimates for the autocovariance parameters based on soil behavior type. Applications include data-driven site characterization and random finite-element analysis.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The data sets generated in this study are available from the corresponding author on reasonable request. The database Global-CPT/3/1196 can also be downloaded at the ISSMGE (304dB) webpage: http://140.112.12.21/issmge/tc304.htm?=6.

Acknowledgments

The first author would like to thank the Ministry of Science and Technology of Taiwan for its the gracious support (110-2221-E-002-036-MY3). The authors would like to thank Profs. Guojun Cai, Jamshidi Chenari, Louis Ge, Takayuki Shuku, and Giovanna Vessia for the generous sharing of their CPT data sets as well as the members of the TC304 Committee on Engineering Practice of Risk Assessment & Management of the International Society of Soil Mechanics and Geotechnical Engineering for developing Database 304dB (http://140.112.12.21/issmge/Database_2010.htm), which was used in this study and for making it available for scientific inquiry. The authors also would like to thank Dr. Szu-Wei Lee, Mr. Yu-Chi Chang, and Mr. Zhi-Yu Chen for their efforts in collecting the CPT data.

References

304dB. 2022. “304dB databases, International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE) Technical Committee TC304. In Engineering practice of risk assessment and management. London: International Society of Soil Mechanics and Geotechnical Engineering.
Abramowitz, M., and I. Stegun. 1970. Handbook of mathematical functions. New York: Dover.
Ahmed, A., and A. H. Soubra. 2012. “Probabilistic analysis of strip footings resting on a spatially random soil using subset simulation approach.” Georisk: Assess. Manage. Risk Eng. Syst. Geohazards 6 (3): 188–201. https://doi.org/10.1080/17499518.2012.678775.
Ahmed, A., and A. H. Soubra. 2014. “Probabilistic analysis at the serviceability limit state of two neighboring strip footings resting on a spatially random soil.” Struct. Saf. 49 (Jul): 2–9. https://doi.org/10.1016/j.strusafe.2013.08.001.
Akkaya, A. D., and E. H. Vanmarcke. 2003. “Estimation of spatial correlation of soil parameters based on data from the Texas A&M University NGES.” In Probabilistic site characterization at the national geotechnical experimentation sites, edited by G. A. Fenton and E. H. Vanmarcke, 29–40. Reston, VA: ASCE.
Ali, A., J. Huang, A. V. Lyamin, S. W. Sloan, D. V. Griffiths, M. J. Cassidy, and J. H. Li. 2014. “Simplified quantitative risk assessment of rainfall-induced landslides modelled by infinite slopes.” Eng. Geol. 179 (Sep): 102–116. https://doi.org/10.1016/j.enggeo.2014.06.024.
Bartlett, M. S. 1946. “On the theoretical specification of sampling properties of autocorrelated time series.” Supplement, J. R. Stat. Soc. 8 (1): 27–41. https://doi.org/10.2307/2983611.
Benjamin, J. R., and C. A. Cornell. 1970. Probability, statistics, and decision for civil engineers. New York: McGraw-Hill.
Bong, T., and A. W. Stuedlein. 2017. “Spatial variability of CPT parameters and silty fines in liquefiable beach sands.” J. Geotech. Geoenviron. Eng. 143 (12): 04017093. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001789.
Box, G. E. P., and G. M. Jenkins. 1970. Time series analysis: Forecasting and control. San Francisco: Holden-Day.
Breysse, D., H. Niandou, S. Elachachi, and L. Houy. 2005. “A generic approach to soil-structure interaction considering the effects of soil heterogeneity.” Géotechnique 55 (2): 143–150. https://doi.org/10.1680/geot.2005.55.2.143.
Cafaro, F., and C. Cherubini. 2002. “Large sample spacing in evaluation of vertical strength variability of clayey soil.” J. Geotech. Geoenviron. Eng. 128 (7): 558–568. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:7(558).
Cai, G., J. Lin, S. Liu, and A. J. Puppala. 2016. “Characterization of spatial variability of CPTU data in a liquefaction site improved by vibro-compaction method.” KSCE J. Civ. Eng. 21 (1): 209–219. https://doi.org/10.1007/s12205-016-0631-1.
Cami, B., S. Javankhoshdel, K. K. Phoon, and J. Ching. 2020. “Scale of fluctuation for spatially varying soils: Estimation methods and values.” ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng. 6 (4): 03120002. https://doi.org/10.1061/AJRUA6.0001083.
Campanella, R. G., D. S. Wickremesinghe, and P. K. Robertson. 1987. “Statistical treatment of cone penetrometer test data.” In Vol. 2 of Proc., 5th Int. Conf. on Applications of Statistics and Probability in Soil and Structural Engineering, 1011–1019. Waterloo, ON, Canada: Univ. of Waterloo.
Cao, Z., and Y. Wang. 2012. “Bayesian approach for probabilistic site characterization using cone penetration tests.” J. Geotech. Geoenviron. Eng. 139 (2): 267–276. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000765.
Cao, Z., S. Zheng, D. Li, and K. K. Phoon. 2019. “Bayesian identification of soil stratigraphy based on soil behaviour type index.” Can. Geotech. J. 56 (4): 570–586. https://doi.org/10.1139/cgj-2017-0714.
CEN (European Committee for Standardization). 2004. Eurocode 7: Geotechnical design. Part 1: General rules. EN 1997-1. Brussels: CEN.
Chang, Y. C., J. Ching, K. K. Phoon, and Q. X. Yue. 2021. “On the hole effect in soil spatial variability.” ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng. 7 (4): 04021039. https://doi.org/10.1061/AJRUA6.0001168.
Ching, J., W. H. Huang, and K. K. Phoon. 2020. “3D probabilistic site characterization by sparse Bayesian learning.” ASCE J. Eng. Mech. 146 (12): 04020134. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001859.
Ching, J., and K. K. Phoon. 2013. “Probability distribution for mobilized shear strengths of spatially variable soils under uniform stress states.” Georisk: Assess. Manage. Risk Eng. Syst. Geohazards 7 (3): 209–224. https://doi.org/10.1080/17499518.2013.801273.
Ching, J., and K. K. Phoon. 2017. “Characterizing uncertain site-specific trend function by sparse Bayesian learning.” J. Eng. Mech. 143 (7): 04017028. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001240.
Ching, J., and K. K. Phoon. 2019. “Impact of auto-correlation function model on the probability of failure.” J. Eng. Mech. 145 (1): 04018123. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001549.
Ching, J., and K. K. Phoon. 2020. “Constructing a site-specific multivariate probability distribution using sparse, incomplete, and spatially variable (MUSIC-X) data.” J. Eng. Mech. 146 (7): 04020061. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001779.
Ching, J., K. K. Phoon, J. L. Beck, and Y. Huang. 2017a. “Identifiability of geotechnical site-specific trend functions.” ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng. 3 (4): 04017021. https://doi.org/10.1061/AJRUA6.0000926.
Ching, J., K. K. Phoon, and C. H. Chen. 2014. “Modeling CPTU parameters of clays as a multivariate normal distribution.” Can. Geotech. J. 51 (1): 77–91. https://doi.org/10.1139/cgj-2012-0259.
Ching, J., K. K. Phoon, A. W. Stuedlein, and M. Jaksa. 2019. “Identification of sample path smoothness in soil spatial variability.” Struct. Saf. 81 (Nov): 101870. https://doi.org/10.1016/j.strusafe.2019.101870.
Ching, J., K. K. Phoon, and S. P. Sung. 2017b. “Worst case scale of fluctuation in basal heave analysis involving spatially variable clays.” Struct. Saf. 68 (Sep): 28–42. https://doi.org/10.1016/j.strusafe.2017.05.008.
Ching, J., S. H. Wu, and K. K. Phoon. 2016. “Statistical characterization of random field parameters using frequentist and Bayesian approaches.” Can. Geotech. J. 53 (2): 285–298. https://doi.org/10.1139/cgj-2015-0094.
Ching, J., Z. Y. Yang, and K. K. Phoon. 2021. “Dealing with non-lattice data in three-dimensional probabilistic site characterization.” J. Eng. Mech. 147 (5): 06021003. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001907.
Ching, J., I. Yoshida, and K. K. Phoon. 2023. “Comparison of trend models for geotechnical spatial variability: Sparse Bayesian learning vs. Gaussian process regression.” Gondwana Res. https://doi.org/10.1016/j.gr.2022.07.011.
Cho, S. E. 2007. “Effects of spatial variability of soil properties on slope stability.” Eng. Geol. 92 (3–4): 97–109. https://doi.org/10.1016/j.enggeo.2007.03.006.
Dasaka, S. M., and L. M. Zhang. 2012. “Spatial variability of in situ weathered soil.” Géotechnique 62 (5): 375–384. https://doi.org/10.1680/geot.8.P.151.3786.
De Gast, T. 2020. “Dykes and embankments: A geostatistical analysis of soft terrain.” Ph.D. thesis, Dept. of Civil Engineering, Delft Univ. of Technology.
DeGroot, D. J., and G. B. Baecher. 1993. “Estimating autocovariances of in-situ soil properties.” J. Geotech. Eng. 119 (1): 147–166. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(147).
Fan, H., and R. Liang. 2013. Reliability-based design of laterally loaded piles considering soil spatial variability, 475–486. New York: ASCE.
Fenton, G. A. 1999a. “Estimation for stochastic soil models.” J. Geotech. Geoenviron. Eng. 125 (6): 470–485. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:6(470).
Fenton, G. A. 1999b. “Random field modeling of CPT data.” J. Geotech. Geoenviron. Eng. 125 (6): 486–498. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:6(486).
Fenton, G. A., and D. V. Griffiths. 2002. “Probabilistic foundation settlement on spatially random soil.” J. Geotech. Geoenviron. Eng. 128 (5): 381–390. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:5(381).
Fenton, G. A., and D. V. Griffiths. 2003. “Bearing capacity prediction of spatially random c-φ soils.” Can. Geotech. J. 40 (1): 54–65. https://doi.org/10.1139/t02-086.
Fenton, G. A., and D. V. Griffiths. 2005. “Three-dimensional probabilistic foundation settlement.” J. Geotech. Geoenviron. Eng. 131 (2): 232–239. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(232).
Fenton, G. A., D. V. Griffiths, and M. B. Williams. 2005. “Reliability of traditional retaining wall design.” Géotechnique 55 (1): 55–62. https://doi.org/10.1680/geot.2005.55.1.55.
Firouzianbandpey, S., D. V. Griffiths, L. B. Ibsen, and L. V. Anderson. 2014. “Spatial correlation length of normalized cone data in sand: Case study in the north of Denmark.” Can. Geotech. J. 51 (8): 844–857. https://doi.org/10.1139/cgj-2013-0294.
Griffiths, D. V., and G. A. Fenton. 2004. “Probabilistic slope stability analysis by finite elements.” J. Geotech. Geoenviron. Eng. 130 (5): 507–518. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:5(507).
Griffiths, D. V., G. A. Fenton, and N. Manoharan. 2006. “Undrained bearing capacity of two-strip footings on spatially random soil.” Int. J. Geomech. 6 (6): 421–427. https://doi.org/10.1061/(ASCE)1532-3641(2006)6:6(421).
Griffiths, D. V., G. A. Fenton, and H. R. Ziemann. 2008. “Reliability of passive earth pressure.” Georisk: Assess. Manage. Risk Eng. Syst. Geohazards 2 (2): 113–121. https://doi.org/10.1080/17499510802178640.
Griffiths, D. V., J. Huang, and G. A. Fenton. 2011. “Probabilistic infinite slope analysis.” Comput. Geotech. 38 (4): 577–584. https://doi.org/10.1016/j.compgeo.2011.03.006.
Guttorp, P., and T. Gneiting. 2006. “Studies in the history of probability and statistics XLIX on the Matérn correlation family.” Biometrika 93 (4): 989–995. https://doi.org/10.1093/biomet/93.4.989.
Haldar, S., and G. L. Sivakumar Babu. 2008. “Effect of soil spatial variability on the response of laterally loaded pile in undrained clay.” Comput. Geotech. 35 (4): 537–547. https://doi.org/10.1016/j.compgeo.2007.10.004.
Handcock, M. S., and M. L. Stein. 1993. “A Bayesian analysis of kriging.” Technometrics 35 (4): 403–410. https://doi.org/10.1080/00401706.1993.10485354.
Hicks, M. A., and K. Samy. 2002. “Reliability-based characteristic values: A stochastic approach to Eurocode 7.” Ground Eng. 35 (12): 30–34.
Hicks, M. A., and W. A. Spencer. 2010. “Influence of heterogeneity on the reliability and failure of a long 3D slope.” Comput. Geotech. 37 (7–8): 948–955. https://doi.org/10.1016/j.compgeo.2010.08.001.
Hicks, M. A., D. Varkey, A. P. van den Eijnden, T. de Gast, and P. J. Vardon. 2019. “On characteristic values and the reliability-based assessment of dykes.” Georisk: Assess. Manage. Risk Eng. Syst. Geohazards 13 (4): 313–319. https://doi.org/10.1080/17499518.2019.1652918.
Hristopulos, D. T., and M. Žukovič. 2011. “Relationships between correlation lengths and integral scales for covariance models with more than two parameters.” Stochastic Environ. Res. Risk Assess. 25 (1): 11–19. https://doi.org/10.1007/s00477-010-0407-y.
Hu, Y. G., and J. Ching. 2015. “Impact of spatial variability in undrained shear strength on active lateral force in clay.” Struct. Saf. 52 (Jan): 121–131. https://doi.org/10.1016/j.strusafe.2014.09.004.
Imaide, K., S. Nishimura, T. Shibata, T. Shuku, A. Murakami, and K. Fujisawa. 2019. “Evaluation of liquefaction probability of earth-fill dam over next 50 years using geostatistical method based on CPT.” Soils Found. 59 (6): 1758–1771. https://doi.org/10.1016/j.sandf.2019.08.002.
ISSMGE (International Society of Soil Mechanics and Geotechnical Engineering). 2021. State of the art review of inherent variability and uncertainty in geotechnical properties and models. Edited by Jianye, Ching and Timo Schweckendiek. London: ISSMGE.
Jaksa, M. 1995. “The influence of spatial variability on the geotechnical design properties of a stiff, overconsolidated clay.” Ph.D. dissertation, Dept. of Civil and Environmental Engineering, Univ. of Adelaide.
Jaksa, M., W. S. Kaggwa, and P. I. Brooker. 1999. “Experimental evaluation of the scale of fluctuation of a stiff clay.” In Proc., 8th Int. Conf. on Application of Statistics and Probability, 415–422. Rotterdam: A.A. Balkema.
Jaksa, M. B., P. I. Brooker, and W. S. Kaggwa. 1997. “Inaccuracies associated with estimating random measurement errors.” J. Geotech. Geoenviron. Eng. 123 (5): 393–401. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:5(393).
Jaksa, M. B., J. S. Goldsworthy, G. A. Fenton, W. S. Kaggwa, D. V. Griffiths, Y. L. Kuo, and H. G. Poulos. 2005. “Towards reliable and effective site investigations.” Géotechnique 55 (2): 109–121. https://doi.org/10.1680/geot.2005.55.2.109.
Jamshidi Chenari, R., and H. Kamyab Farahbakhsh. 2015. “Generating non-stationary random fields of auto-correlated, normally distributed CPT profile by matrix decomposition method.” Georisk: Assess. Manage. Risk Eng. Syst. Geohazards 9 (2): 96–108. https://doi.org/10.1080/17499518.2015.1033429.
Journel, A. G., and R. Froidevaux. 1982. “Anisotropic hole-effect modeling.” Math. Geol. 14 (3): 217–239. https://doi.org/10.1007/BF01032885.
Keaveny, J. M., F. Nadim, and S. Lacasse. 1989. “Autocorrelation functions for offshore geotechnical data.” In Proc., Int. Conf. of Structural Safety and Reliability, 263–270. Reston, VA: ASCE.
Kulatilake, P. H. S. 1991. “Discussion of ‘Probabilistic potentiometric surface mapping’ by P. H. S. Kulatilake.” J. Geotech. Eng. 117 (9): 1458–1459. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1458.2).
Lacasse, S., and F. Nadim. 1996. “Uncertainties in characterizing soil properties.” In Proc., Uncertainty in the Geologic Environment: From Theory to Practice, 49–75. Reston, VA: ASCE.
Länsivaara, T., K. K. Phoon, and J. Ching. 2022. “What is a characteristic value for soils?” Georisk: Assess. Manage. Risk Eng. Syst. Geohazards 16 (2): 199–224. https://doi.org/10.1080/17499518.2021.1975301.
Larsson, S., H. Stille, and L. Olsson. 2005. “On horizontal variability in lime-cement columns in deep mixing.” Géotechnique 55 (1): 33–44. https://doi.org/10.1680/geot.2005.55.1.33.
Li, D. Q., X. H. Qi, K. K. Phoon, L. M. Zhang, and C. B. Zhou. 2014. “Effect of spatially variable shear strength parameters with linearly increasing mean trend on reliability of infinite slopes.” Struct. Saf. 49 (Jul): 45–55. https://doi.org/10.1016/j.strusafe.2013.08.005.
Li, K. S. 1991. “Discussion of ‘Probabilistic potentiometric surface mapping’ by P.H.S. Kulatilake.” J. Geotech. Eng. 117 (9): 1457–1458. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1457).
Liu, C. N., and C. H. Chen. 2006. “Mapping liquefaction potential considering spatial correlations of CPT measurements.” J. Geotech. Geoenviron. Eng. 132 (9): 1178–1187. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:9(1178).
Liu, W. F., Y. F. Leung, and M. K. Lo. 2017. “Integrated framework for characterization of spatial variability of geological profiles.” Can. Geotech. J. 54 (1): 47–58. https://doi.org/10.1139/cgj-2016-0189.
Lloret-Cabot, M., G. A. Fenton, and M. A. Hicks. 2014. “On the estimation of scale of fluctuation in geostatistics.” Georisk: Assess. Manage. Risk Eng. Syst. Geohazards 8 (2): 129–140. https://doi.org/10.1080/17499518.2013.871189.
Low, B. K., S. Lacasse, and F. Nadim. 2007. “Slope reliability analysis accounting for spatial variation.” Georisk: Assess. Manage. Risk Eng. Syst. Geohazards 1 (4): 177–189. https://doi.org/10.1080/17499510701772089.
Luo, Z., S. Atamturktur, C. H. Juang, H. W. Huang, and P. S. Lin. 2011. “Probability of serviceability failure in a braced excavation in a spatially random field: Fuzzy finite element approach.” Comput. Geotech. 38 (8): 1031–1040. https://doi.org/10.1016/j.compgeo.2011.07.009.
Ma, Y. Z., and T. A. Jones. 2001. “Teacher’s aid: Modeling hole-effect variograms of lithology-indicator variables.” Math. Geol. 33 (5): 631–648. https://doi.org/10.1023/A:1011001029880.
Marchant, B., and R. Lark. 2007. “The Matérn variogram model: Implications for uncertainty propagation and sampling in geostatistical surveys.” Geoderma 140 (4): 337–345. https://doi.org/10.1016/j.geoderma.2007.04.016.
Minasny, B., and A. B. McBratney. 2005. “The Matérn function as a general model for soil variograms.” Geoderma 128 (3–4): 192–207. https://doi.org/10.1016/j.geoderma.2005.04.003.
Moss, R. E. S. 2003. “CPT-based probabilistic assessment of seismic soil liquefaction initiation.” Ph.D. dissertation, Dept. of Civil and Environmental Engineering, Univ. of California.
New Zealand Geotechnical Database. 2022. “New Zealand Geotechnical Database.” Accessed November 16, 2021. https://www.nzgd.org.nz/Registration/Login.aspx#t3.
Nishimura, S., T. Shibata, T. Shuku, and K. Imaide. 2017. “Geostatistical analysis for identifying weak soil layers in dikes. Geotechnical risk assessment and management, GSP285.” In Proc., Geo-Risk 2017, 529–538. Reston, VA: ASCE.
Onyejekwe, S., and L. Ge. 2013. “Scale of fluctuation of geotechnical parameters estimated from CPTu and laboratory test data.” In Foundation engineering in the face of uncertainty: Honoring Fred H. Kulhawy, 434–443. Reston, VA: ASCE.
Orr, T. L. L. 2017. “Defining and selecting characteristic values of geotechnical parameters for designs to Eurocode 7.” Georisk: Assess. Manage. Risk Eng. Syst. Geohazards 11 (1): 103–115. https://doi.org/10.1080/17499518.2016.1235711.
Pan, Y., Y. Liu, H. Xiao, F. H. Lee, and K. K. Phoon. 2018. “Effect of spatial variability on short-and long-term behaviour of axially-loaded cement-admixed marine clay column.” Comput. Geotech. 94 (Feb): 150–168. https://doi.org/10.1016/j.compgeo.2017.09.006.
Phoon, K. K., Z. Cao, J. Ji, Y. F. Leung, S. Najjar, T. Shuku, C. Tang, Z.-Y. Yin, I. Yoshida, and J. Ching. 2022a. “Geotechnical uncertainty, modeling, and decision making.” Soils Found. 62 (5): 101189. https://doi.org/10.1016/j.sandf.2022.101189.
Phoon, K. K., and J. Ching. 2021. “Project DeepGeo—Data-driven 3D subsurface mapping.” J. GeoEng. 16 (2): 61–74. https://doi.org/10.6310/jog.202106_16(2).2.
Phoon, K. K., J. Ching, and T. Shuku. 2022b. “Challenges in data-driven site characterization.” Georisk: Assess. Manage. Risk Eng. Syst. Geohazards 16 (1): 114–126. https://doi.org/10.1080/17499518.2021.1896005.
Phoon, K. K., and G. A. Fenton. 2004. “Estimating sample autocorrelation functions using bootstrap.” In Proc., 9th ASCE Specialty Conf. on Probabilistic Mechanics and Structural Reliability. Reston, VA: ASCE.
Phoon, K. K., and F. H. Kulhawy. 1999. “Characterization of geotechnical variability.” Can. Geotech. J. 36 (4): 612–624. https://doi.org/10.1139/t99-038.
Phoon, K. K., S. T. Quek, and P. An. 2003. “Identification of statistically homogeneous soil layers using modified Bartlett statistics.” J. Geotech. Geoenviron. Eng. 129 (7): 649–659. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:7(649).
Phoon, K.-K., F. H. Kulhawy, and M. D. Grigoriu. 1995. Reliability-based design of foundations for transmission line structures. Palo Alto: Electric Power Research Institute.
Priestley, M. B. 1981. Spectral analysis and time series. New York: Academic Press.
Rasmussen, C. E., and C. K. I. Williams. 2006. Gaussian processes for machine learning. London: MIT Press.
Robertson, P. K. 2016. “Cone penetration test (CPT)-based soil behaviour type (SBT) classification system—An update.” Can. Geotech. J. 53 (12): 1910–1927. https://doi.org/10.1139/cgj-2016-0044.
Robertson, P. K., and C. E. Wride. 1998. “Evaluating cyclic liquefaction potential using the cone penetration test.” Can. Geotech. J. 35 (3): 442–459. https://doi.org/10.1139/t98-017.
Schneider, H. R., and M. A. Schneider. 2013. “Dealing with uncertainties in EC7 with emphasis on determination of characteristic soil properties.” In Modern geotechnical design codes of practice, edited by P. Arnold, G. A. Fenton, M. A. Hicks, and T. Schweckendiek, 87–101. Rotterdam: IOS Press.
Schwarz, G. E. 1978. “Estimating the dimension of a model.” Ann. Stat. 6 (2): 461–464. https://doi.org/10.1214/aos/1176344136.
Shuku, T., and K. K. Phoon. 2021. “Three-dimensional subsurface modeling using geotechnical lasso.” Comput. Geotech. 133 (May): 104068. https://doi.org/10.1016/j.compgeo.2021.104068.
Shuku, T., and K. K. Phoon. 2023. “Data-driven subsurface modeling using a Markov random field model.” Georisk: Assess. Manage. Risk Eng. Syst. Geohazards 17 (1): 41–63. https://doi.org/10.1080/17499518.2023.2181973.
Shuku, T., K. K. Phoon, and I. Yoshida. 2020. “Trend estimation and layer boundary detection in depth-dependent soil data using sparse Bayesian lasso.” Comput. Geotech. 128 (Dec): 103845. https://doi.org/10.1016/j.compgeo.2020.103845.
Srivastava, A., and G. L. Sivakumar Babu. 2009. “Effect of soil variability on the bearing capacity of clay and in slope stability problems.” Eng. Geol. 108 (1–2): 142–152. https://doi.org/10.1016/j.enggeo.2009.06.023.
Stein, M. L. 1999. Interpolation of spatial data: Some theory for kriging. New York: Springer.
Stuedlein, A. W., and T. Bong. 2017. “Effect of spatial variability on static and liquefaction-induced differential settlements.” In Georisk 2017: Keynote lectures. Reston, VA: ASCE.
Stuedlein, A. W., S. L. Kramer, P. Arduino, and R. D. Holtz. 2012. “Geotechnical characterization and random field modeling of desiccated clay.” J. Geotech. Geoenviron. Eng. 138 (11): 1301–1313. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000723.
Tabarroki, M., J. Ching, K. K. Phoon, and Y. Z. Chen. 2022. “Mobilisation-based characteristic value of shear strength for ultimate limit states.” Georisk: Assess. Manage. Risk Eng. Syst. Geohazards 16 (3): 413–434. https://doi.org/10.1080/17499518.2020.1859121.
Tipping, M. E. 2001. “Sparse Bayesian learning and the relevance vector machine.” J. Mach. Learn. Res. 1 (Jun): 211–244. https://doi.org/10.1162/15324430152748236.
Uzielli, M., G. Vannucchi, and K. K. Phoon. 2005. “Random field characterisation of stress-normalised cone penetration testing parameters.” Géotechnique 55 (1): 3–20. https://doi.org/10.1680/geot.2005.55.1.3.
Vanmarcke, E. H. 1977. “Probabilistic modeling of soil profiles.” J. Geotech. Eng. Div. 103 (11): 1227–1246. https://doi.org/10.1061/AJGEB6.0000517.
Vanmarcke, E. H. 1983. Random fields: Analysis and synthesis. Cambridge, MA: The MIT Press.
Vessia, G., C. Cherubini, J. Pieczyńska, and W. Puła. 2009. “Application of random finite element method to bearing capacity design of strip footing.” J. GeoEng. 4 (3): 103–111. https://doi.org/10.6310/jog.2009.4(3).4.
Vessia, G., D. Di Curzio, and A. Castrignanò. 2020. “Modeling 3D soil lithotypes variability through geostatistical data fusion of CPT parameters.” Sci. Total Environ. 698 (Jan): 134340. https://doi.org/10.1016/j.scitotenv.2019.134340.
Wang, H., X. Wang, J. F. Wellmann, and R. Y. Liang. 2018. “Bayesian stochastic soil modeling framework using Gaussian Markov random fields.” ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng. 4 (2): 04018014. https://doi.org/10.1061/AJRUA6.0000965.
Wang, H., X. Wang, J. F. Wellmann, and R. Y. Liang. 2019. “A Bayesian unsupervised learning approach for identifying soil stratification using cone penetration data.” Can. Geotech. J. 56 (8): 1184–1205. https://doi.org/10.1139/cgj-2017-0709.
Wang, Y., and Z. Cao. 2013. “Expanded reliability-based design of piles in spatially variable soil using efficient Monte Carlo simulations.” Soils Found. 53 (6): 820–834. https://doi.org/10.1016/j.sandf.2013.10.002.
Wu, S. H., C. Y. Ou, J. Ching, and C. H. Juang. 2012. “Reliability-based design for basal heave stability of deep excavations in spatially varying soils.” J. Geotech. Geoenviron. Eng. 138 (5): 594–603. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000626.
Xiao, T., D. Q. Li, Z. J. Cao, and L. M. Zhang. 2018. “CPT-based probabilistic characterization of three-dimensional spatial variability using MLE.” J. Geotech. Geoenviron. Eng. 144 (5): 04018023. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001875.
Yoshida, I., Y. Tomizawa, and Y. Otake. 2021. “Estimation of trend and random components of conditional random field using Gaussian process regression.” Comput. Geotech. 136 (Aug): 104179. https://doi.org/10.1016/j.compgeo.2021.104179.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 149Issue 10October 2023

History

Received: Jul 25, 2022
Accepted: Apr 26, 2023
Published online: Aug 11, 2023
Published in print: Oct 1, 2023
Discussion open until: Jan 11, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Dept. of Civil Engineering, National Taiwan Univ., Taipei 10617, Taiwan (corresponding author). ORCID: https://orcid.org/0000-0001-6028-1674. Email: [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, Univ. of Florence, Firenze 50139, Italy. ORCID: https://orcid.org/0000-0001-7755-6144. Email: [email protected]
Professor, Information Systems Technology and Design/Architecture and Sustainable Design, Singapore 487372. ORCID: https://orcid.org/0000-0003-2577-8639. Email: [email protected]
Graduate Student, Dept. of Civil Engineering, National Taiwan Univ., Taipei 10617, Taiwan. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Dictionary Learning of Spatial Variability at a Specific Site Using Data from Other Sites, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-12408, 150, 9, (2024).
  • A Bayesian Vine Algorithm for Geotechnical Site Characterization Using High Dimensional, Multivariate, Limited, and Missing Data, Journal of Engineering Mechanics, 10.1061/JENMDT.EMENG-7460, 150, 7, (2024).
  • What Geotechnical Engineers Want to Know about Reliability, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 10.1061/AJRUA6.RUENG-1002, 9, 2, (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share