Abstract

Filamentous fungi grow by extending and branching hyphae through soil pores, which creates an interconnected fibrous network known as mycelium. Fungal mycelium can cross-link and entangle soil particles, which reduces pore size and alters pore structures. Fungal mycelium also can secrete hydrophobic compounds, increasing the water repellency of soils. This study investigated the effect of fungal mycelium on the hydraulic properties of sands, including the soil-water retention curve (SWRC), soil water repellency, and hydraulic conductivity. Ottawa 20/30, 50/70, and 100/200 sands were treated with a filamentous, nonpathogenic, and saprotrophic fungus, Trichoderma virens (ATCC 9645). The results showed that fungal mycelia increased air entry suction by as much as 11.8 times, and increased water repellency at the sand surface from hydrophilic to extreme water repellency after 10 days of fungal growth. Hydraulic conductivities of fungal-treated sands decreased (by as much as 21 times at 20 days of fungal growth) with increasing fungal contents. The reduced hydraulic conductivities of fungal-treated sands can be maintained even under starvation condition (i.e., absence of nutrients). Scanning electron microscopy (SEM) images showed that fungal mycelia modified pore structures by cross-linking and entangling sand particles.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The data used to support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors acknowledge the support of the Louisiana Board of Regents Research Competitiveness Subprogram under Grant No. 039A-19. The authors also thank the LSU Shared Instrumentation Facility for providing help with SEM imaging, and the Louisiana Transportation Research Center for allowing the use the Fredlund SWCC device.

References

Abramson, L. W., T. S. Lee, S. Sharma, and G. M. Boyce. 2001. Slope stability and stabilization methods. New York: Wiley.
Al-Hawash, A. B., J. T. Alkooranee, H. A. Abbood, J. Zhang, J. Sun, X. Zhang, and F. Ma. 2018. “Isolation and characterization of two crude oil-degrading fungi strains from Rumaila oil field, Iraq.” Biotechnol. Rep. 17 (3): 104–109. https://doi.org/10.1016/j.btre.2017.12.006.
Anderson, J. G., and J. E. Smith. 1971. “The production of conidiophores and conidia by newly germinated conidia of Aspergillus niger (microcycle conidiation).” J. Gen. Microbiol. 69 (2): 185–197. https://doi.org/10.1099/00221287-69-2-185.
Andrew, R. M. 2018. “Global CO2 emissions from cement production.” Earth Syst. Sci. Data 10 (1): 195–217. https://doi.org/10.5194/essd-10-195-2018.
Bachmann, J., A. Ellies, and K. H. Hartge. 2000. “Development and application of a new sessile drop contact angle method to assess soil water repellency.” J. Hydrol. 231–232 (May): 66–75. https://doi.org/10.1016/S0022-1694(00)00184-0.
Bano, A., J. Hussain, A. Akbar, K. Mehmood, M. Anwar, M. S. Hasni, S. Ullah, S. Sajid, and I. Ali. 2018. “Biosorption of heavy metals by obligate halophilic fungi.” Chemosphere 199 (May): 218–222. https://doi.org/10.1016/j.chemosphere.2018.02.043.
Barrios-González, J., C. Martínez, A. Aguilera, and M. Raimbault. 1989. “Germination of concentrated suspensions of spores from Aspergillus niger.” Biotechnol. Lett. 11 (Aug): 551–554. https://doi.org/10.1007/BF01040034.
Boddy, L., and J. Hiscox. 2016. “Fungal ecology: Principles and mechanisms of colonization and competition by saprotrophic fungi.” Microbiol. Spectrum 4 (6): 4–6. https://doi.org/10.1128/microbiolspec.FUNK-0019-2016.
Boldrin, D., A. K. Leung, and A. G. Bengough. 2021. “Hydro-mechanical reinforcement of contrasting woody species: A full-scale investigation of a field slope.” Géotechnique 71 (11): 970–984. https://doi.org/10.1680/jgeot.19.SiP.018.
Bond, R. D., and J. R. Harris. 1964. “The influence of the microflora on the physical properties of soils. I. Effects associated with filamentous algae and fungi.” Aust. J. Soil Res. 2 (1): 111–123. https://doi.org/10.1071/SR9640111.
Bosch, A., R. A. Maronna, and O. M. Yantorno. 1995. “A simple descriptive model of filamentous fungi spore germination.” Process Biochem. 30 (7): 599–606. https://doi.org/10.1016/0032-9592(94)00007-7.
Bossio, D. A., and K. M. Scow. 1998. “Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns.” Microb. Ecol. 35 (3): 265–278. https://doi.org/10.1007/s002489900082.
Boswell, G. P., H. Jacobs, F. A. Davidson, G. M. Gadd, and K. Ritz. 2002. “Functional consequences of nutrient translocation in mycelial fungi.” J. Theor. Biol. 217 (4): 459–477. https://doi.org/10.1006/jtbi.2002.3048.
Busby, P. E., M. Ridout, and G. Newcombe. 2016. “Fungal endophytes: Modifiers of plant disease.” Plant Mol. Biol. 90 (6): 645–655. https://doi.org/10.1007/s11103-015-0412-0.
Caesar-Tonthat, T. C. 2002. “Soil binding properties of mucilage produced by a basidiomycete fungus in a model system.” Mycol. Res. 106 (8): 930–937. https://doi.org/10.1017/S0953756202006330.
Cao, J., J. Jung, X. Song, and B. Bate. 2018. “On the soil water characteristic curves of poorly graded granular materials in aqueous polymer solutions.” Acta Geotech. 13 (Feb): 103–116. https://doi.org/10.1007/s11440-017-0568-7.
Chau, H. W., Y. K. Goh, V. Vujanovic, and B. C. Si. 2012. “Wetting properties of fungi mycelium alter soil infiltration and soil water repellency in a γ-sterilized wettable and repellent soil.” Fungal Biol. 116 (12): 1212–1218. https://doi.org/10.1016/j.funbio.2012.10.004.
Chenu, C. 1989. “Influence of a fungal polysaccharide, scleroglucan, on clay microstructures.” Soil Biol. Biochem. 21 (2): 299–305. https://doi.org/10.1016/0038-0717(89)90108-9.
Chenu, C., Y. Le Bissonnais, and D. Arrouays. 2000. “Organic matter influence on clay wettability and soil aggregate stability.” Soil Sci. Soc. Am. J. 64 (4): 1479–1486. https://doi.org/10.2136/sssaj2000.6441479x.
Clough, K. S., and J. C. Sutton. 1978. “Direct observation of fungal aggregates in sand dune soil.” Can. J. Microbiol. 24 (3): 333–335. https://doi.org/10.1139/m78-056.
Daynes, C. N., N. Zhang, J. A. Saleeba, and P. A. McGee. 2012. “Soil aggregates formed in vitro by saprotrophic Trichocomaceae have transient water-stability.” Soil Biol. Biochem. 48 (May): 151–161. https://doi.org/10.1016/j.soilbio.2012.01.010.
Degens, B. P., G. P. Sparling, and L. K. Abbott. 1996. “Increasing the length of hyphae in a sandy soil increases the amount of water-stable aggregates.” Appl. Soil Ecol. 3 (2): 149–159. https://doi.org/10.1016/0929-1393(95)00074-7.
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36 (2): 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
Doerr, S. H., R. A. Shakesby, L. W. Dekker, and C. J. Ritsema. 2006. “Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate.” Eur. J. Soil Sci. 57 (5): 741–754. https://doi.org/10.1111/j.1365-2389.2006.00818.x.
Dorioz, J. M., M. Robert, and C. Chenu. 1993. “The role of roots, fungi and bacteria on clay particle organization. An experimental approach.” Geoderma 56 (1–4): 179–194. https://doi.org/10.1016/0016-7061(93)90109-X.
Duncan, J. M., S. G. Wright, and T. L. Brandon. 2014. Soil strength and slope stability. New York: Wiley.
Fierer, N., J. P. Schimel, and P. A. Holden. 2003. “Variations in microbial community composition through two soil depth profiles.” Soil Biol. Biochem. 35 (1): 167–176. https://doi.org/10.1016/S0038-0717(02)00251-1.
Fomina, M., and G. M. Gadd. 2003. “Metal sorption by biomass of melanin-producing fungi grown in clay-containing medium.” J. Chem. Technol. Biotechnol. 78 (1): 23–34. https://doi.org/10.1002/jctb.736.
Fredlund, D. G., H. Rahardjo, and M. D. Fredlund. 2012. Unsaturated soil mechanics in engineering practice. New York: Wiley.
Gadd, G. M. 2000. “Bioremedial potential of microbial mechanisms of metal mobilization and immobilization.” Curr. Opin. Biotechnol. 11 (3): 271–279. https://doi.org/10.1016/S0958-1669(00)00095-1.
Gaur, A., and A. Adholeya. 2000. “Effects of the particle size of soil-less substrates upon AM fungus inoculum production.” Mycorrhiza 10 (1): 43–48. https://doi.org/10.1007/s005720050286.
GCTS (Geotechnical Consulting and Testing Systems). 2005. SWC-150 Fredlund soil water characteristic device operating instructions. Tempe, AZ: GCTS.
Guhr, A., W. Borken, M. Spohn, and E. Matzner. 2015. “Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization.” Proc. Natl. Acad. Sci. 112 (47): 14647–14651. https://doi.org/10.1073/pnas.1514435112.
Guhr, A., C. Marzini, W. Borken, C. Poll, and E. Matzner. 2016. “Effect of water redistribution by two distinct saprotrophic fungi on carbon mineralization and nitrogen translocation in dry soil.” Soil Biol. Biochem. 103 (Dec): 380–387. https://doi.org/10.1016/j.soilbio.2016.09.009.
Harman, G. E., C. R. Howell, A. Viterbo, I. Chet, and M. Lorito. 2004. “Trichoderma species—Opportunistic, avirulent plant symbionts.” Nat. Rev. Microbiol. 2 (1): 43–56. https://doi.org/10.1038/nrmicro797.
Harris, S. D. 2008. “Branching of fungal hyphae: Regulation, mechanisms and comparison with other branching systems.” Mycologia 100 (6): 823–832. https://doi.org/10.3852/08-177.
Islam, M. R., G. Tudryn, R. Bucinell, L. Schadler, and R. C. Picu. 2017. “Morphology and mechanics of fungal mycelium.” Sci. Rep. 7 (1): 13070. https://doi.org/10.1038/s41598-017-13295-2.
Itelima, J. U., W. J. Bang, I. A. Onyimba, M. D. Sila, and O. J. Egbere. 2018. “A review: Biofertilizer—A key player in enhancing soil fertility and crop productivity.” Direct Res. J. Agric. Food Sci. 6 (3): 73–83.
Kaewchai, S., K. Soytong, and K. D. Hyde. 2009. “Mycofungicides and fungal biofertilizers.” Fungal Divers. 38 (Oct): 25–50.
Karol, R. H. 2003. Chemical grouting and soil stabilization. Boca Raton, FL: CRC Press.
Keatts, M. I., J. L. Daniels, W. G. Langley, M. A. Pando, and V. O. Ogunro. 2018. “Apparent contact angle and water entry head measurements for organo-silane modified sand and coal fly ash.” J. Geotech. Geoenviron. Eng. 144 (6): 04018030. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001887.
Lehmann, A., and M. C. Rillig. 2015. “Understanding mechanisms of soil biota involvement in soil aggregation: A way forward with saprobic fungi?” Soil Biol. Biochem. 88 (Sep): 298–302. https://doi.org/10.1016/j.soilbio.2015.06.006.
Leung, A. K., A. Garg, J. L. Coo, C. W. W. Ng, and B. C. H. Hau. 2015. “Effects of the roots of Cynodon dactylon and Schefflera heptaphylla on water infiltration rate and soil hydraulic conductivity.” Hydrol. Processes 29 (15): 3342–3354. https://doi.org/10.1002/hyp.10452.
Likos, W. J., and R. Jaafar. 2013. “Pore-scale model for water retention and fluid partitioning of partially saturated granular soil.” J. Geotech. Geoenviron. Eng. 139 (5): 724–737. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000811.
Likos, W. J., and N. Lu. 2004. “Hysteresis of capillary stress in unsaturated granular soil.” J. Eng. Mech. 130 (6): 646–655. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(646).
Lu, J., Q. Zhang, A. D. Werner, Y. Li, S. Jiang, and Z. Tan. 2020. “Root-induced changes of soil hydraulic properties—A review.” J. Hydrol. 589 (Oct): 125203. https://doi.org/10.1016/j.jhydrol.2020.125203.
Lu, N. 2016. “Generalized soil water retention equation for adsorption and capillarity.” J. Geotech. Geoenviron. Eng. 142 (10): 04016051. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001524.
Lu, N., and W. J. Likos. 2004. Unsaturated soil mechanics. New York: Wiley and Sons.
Lu, N., and W. J. Likos. 2006. “Suction stress characteristic curve for unsaturated soil.” J. Geotech. Geoenvironmental Eng. 132 (2): 131–142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131).
Lundquist, E. J., K. M. Scow, L. E. Jackson, S. L. Uesugi, and C. R. Johnson. 1999. “Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle.” Soil Biol. Biochem. 31 (12): 1661–1675. https://doi.org/10.1016/S0038-0717(99)00080-2.
Maitra, P., J. Al-Rashid, N. C. Barman, M. N. M. Khan, D. Mandal, N. M. Rasul, A. Chowdhury, A. H. El-Sappah, and J. Li. 2021. “Sand particle size and phosphorus amount affect Rhizophagus irregularis spore production using in vitro propagated spore as a starter inoculum in rhizosphere of maize (Zea mays) plantlets.” J. Fungi 7 (10): 846. https://doi.org/10.3390/jof7100846.
Meadows, A., P. S. Meadows, D. M. Wood, and J. M. H. Murray. 1994. “Microbiological effects on slope stability: An experimental analysis.” Sedimentology 41 (3): 423–435. https://doi.org/10.1111/j.1365-3091.1994.tb02004.x.
Medwid, R. D., and D. W. Grant. 1984. “Germination of Rhizopus oligosporus sporangiospores.” Appl. Environ. Microbiol. 48 (6): 1067–1071. https://doi.org/10.1128/aem.48.6.1067-1071.1984.
Mejía, L. C., E. I. Rojas, Z. Maynard, S. van Bael, A. E. Arnold, P. Hebbar, G. J. Samuels, N. Robbins, and E. A. Herre. 2008. “Endophytic fungi as biocontrol agents of Theobroma cacao pathogens.” Biol. Control 46 (1): 4–14. https://doi.org/10.1016/j.biocontrol.2008.01.012.
Moore, D., G. D. Robson, and A. P. J. Trinci. 2011. 21st century guidebook to fungi. Cambridge, UK: Cambridge University Press.
Ng, C. W. W., K. X. Woon, A. K. Leung, and L. M. Chu. 2013. “Experimental investigation of induced suction distribution in a grass-covered soil.” Ecol. Eng. 52 (Mar): 219–223. https://doi.org/10.1016/j.ecoleng.2012.11.013.
Ni, J. J., A. K. Leung, C. W. W. Ng, and W. Shao. 2018. “Modelling hydro-mechanical reinforcements of plants to slope stability.” Comput. Geotech. 95 (Mar): 99–109. https://doi.org/10.1016/j.compgeo.2017.09.001.
Oades, J. M., and A. G. Waters. 1991. “Aggregate hierarchy in soils.” Aust. J. Soil Res. 29 (6): 815–825. https://doi.org/10.1071/SR9910815.
Olusola, S. A., and E. E. Anslem. 2010. “Bioremediation of a crude oil polluted soil with Pleurotus pulmonarius and Glomus mosseae using Amaranthus hybridus as a test plant.” J. Biorem. Biodegrad. 1 (3): 1–6. https://doi.org/10.4172/2155-6199.1000113.
Otten, W., C. A. Gilligan, C. W. Watts, A. R. Dexter, and D. Hall. 1999. “Continuity of air-filled pores and invasion thresholds for a soil-borne fungal plant pathogen, Rhizoctonia solani.” Soil Biol. Biochem. 31 (13): 1803–1810. https://doi.org/10.1016/S0038-0717(99)00099-1.
Otten, W., D. Hall, K. Harris, K. Ritz, I. M. Young, and C. A. Gilligan. 2001. “Soil physics, fungal epidemiology and the spread of Rhizoctonia solani.” New Phytol. 151 (2): 459–468. https://doi.org/10.1046/j.0028-646x.2001.00190.x.
Paul, G. C., C. A. Kent, and C. R. Thomas. 1993. “Viability testing and characterization of germination of fungal spores by automatic image analysis.” Biotechnol. Bioeng. 42 (1): 11–23. https://doi.org/10.1002/bit.260420103.
Plascencia-Jatomea, M., G. Viniegra, R. Olayo, M. M. Castillo-Ortega, and K. Shirai. 2003. “Effect of chitosan and temperature on spore germination of Aspergillus niger.” Macromol. Biosci. 3 (10): 582–586. https://doi.org/10.1002/mabi.200350024.
Pollen-Bankhead, N., and A. Simon. 2010. “Hydrologic and hydraulic effects of riparian root networks on streambank stability: Is mechanical root-reinforcement the whole story?” Geomorphology 116 (3–4): 353–362. https://doi.org/10.1016/j.geomorph.2009.11.013.
Punja, Z. K., and R. S. Utkhede. 2003. “Using fungi and yeasts to manage vegetable crop diseases.” Trends Biotechnol. 21 (9): 400–407. https://doi.org/10.1016/S0167-7799(03)00193-8.
Rillig, M. C., and D. L. Mummey. 2006. “Mycorrhizas and soil structure.” New Phytol. 171 (1): 41–53. https://doi.org/10.1111/j.1469-8137.2006.01750.x.
Ritz, K., and I. M. Young. 2004. “Interactions between soil structure and fungi.” Mycologist 18 (2): 52–59. https://doi.org/10.1017/S0269915X04002010.
Salifu, E. 2019. “Engineering fungal-mycelia for soil improvement.” Ph.D. dissertation, Dipartimento di Ingegneria Civile, Edile e Ambientale, Università degli Studi di Napoli Federico II.
Salifu, E., and G. El Mountassir. 2021. “Fungal-induced water repellency in sand.” Géotechnique 71 (7): 608–615. https://doi.org/10.1680/jgeot.19.P.341.
Salifu, E., G. El Mountassir, J. M. Minto, and A. Tarantino. 2022. “Hydraulic behaviour of fungal treated sand.” Geomech. Energy Environ. 30 (Jun): 100258. https://doi.org/10.1016/j.gete.2021.100258.
Stalder, A. F., T. Melchior, M. Müller, D. Sage, T. Blu, and M. Unser. 2010. “Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops.” Colloids Surf. A364 (1–3): 72–81. https://doi.org/10.1016/j.colsurfa.2010.04.040.
Stamets, P. 2005. Mycelium running: How mushrooms can help save the world. New York: Ten Speed Press.
Talbot, N. J., M. J. Kershaw, G. E. Wakley, O. M. H. de Vries, J. G. H. Wessels, and J. E. Hamer. 1996. “MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea.” Plant Cell 8 (6): 985–999. https://doi.org/10.2307/3870210.
Tisdall, J. M., S. E. Nelson, K. G. Wilkinson, S. E. Smith, and B. M. McKenzie. 2012. “Stabilisation of soil against wind erosion by six saprotrophic fungi.” Soil Biol. Biochem. 50 (Jul): 134–141. https://doi.org/10.1016/j.soilbio.2012.02.035.
Trinci, A. P. J. 1974. “A study of the kinetics of hyphal extension and branch initiation of fungal mycelia.” J. Gen. Microbiol. 81 (1): 225–236. https://doi.org/10.1099/00221287-81-1-225.
van Genuchten, M. T. 1980. “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. J. 44 (5): 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
Vassilev, N., M. Vassileva, A. Lopez, V. Martos, A. Reyes, I. Maksimovic, B. Eichler-Löbermann, and E. Malusà. 2015. “Unexploited potential of some biotechnological techniques for biofertilizer production and formulation.” Appl. Microbiol. Biotechnol. 99 (Jun): 4983–4996. https://doi.org/10.1007/s00253-015-6656-4.
Wendland, J. 2001. “Comparison of morphogenetic networks of filamentous fungi and yeast.” Fungal Genet. Biol. 34 (2): 63–82. https://doi.org/10.1006/fgbi.2001.1290.
Wessels, J. G. H. 1996. “Hydrophobins: Proteins that change the nature of the fungal surface.” Adv. Microb. Physiol. 38 (Jan): 1–45. https://doi.org/10.1016/S0065-2911(08)60154-X.
Wessels, J. G. H. 2000. “Hydrophobins, unique fungal proteins.” Mycologist 14 (4): 153–159. https://doi.org/10.1016/S0269-915X(00)80030-0.
White, N. A., P. D. Hallett, D. Feeney, J. W. Palfreyman, and K. Ritz. 2000. “Changes to water repellence of soil caused by the growth of white-rot fungi: Studies using a novel microcosm system.” FEMS Microbiol. Lett. 184 (1): 73–77. https://doi.org/10.1111/j.1574-6968.2000.tb08993.x.
Wösten, H. A., F. H. Schuren, and J. G. Wessels. 1994. “Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces.” EMBO J. 13 (24): 5848. https://doi.org/10.1002/j.1460-2075.1994.tb06929.x.
Wösten, H. A. B., and M. L. de Vocht. 2000. “Hydrophobins, the fungal coat unravelled.” Biochim. Biophys. Acta Rev. Biomembr. 1469 (2): 79–86. https://doi.org/10.1016/S0304-4157(00)00002-2.
Wösten, H. A. B., O. M. H. de Vries, and J. G. H. Wessels. 1993. “Interfacial self-assembly of a fungal hydrophobin into a hydrophobic rodlet layer.” Plant Cell 5 (11): 1567–1574. https://doi.org/10.1105/tpc.5.11.1567.
Wösten, H. A. B., M.-A. van Wetter, L. G. Lugones, H. C. van der Mei, H. J. Busscher, and J. G. H. Wessels. 1999. “How a fungus escapes the water to grow into the air.” Curr. Biol. 9 (2): 85–88. https://doi.org/10.1016/S0960-9822(99)80019-0.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 149Issue 11November 2023

History

Received: Jun 19, 2022
Accepted: Jun 23, 2023
Published online: Aug 23, 2023
Published in print: Nov 1, 2023
Discussion open until: Jan 23, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Graduate Student, Dept. of Civil and Environmental Engineering, Louisiana State Univ., 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803. ORCID: https://orcid.org/0000-0003-3845-5767. Email: [email protected]
Assistant Professor, Dept. of Civil and Environmental Engineering, Louisiana State Univ., 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803. (corresponding author). ORCID: https://orcid.org/0000-0002-1641-4588. Email: [email protected]
William M. Moe, M.ASCE [email protected]
Professor, Dept. of Civil and Environmental Engineering, Louisiana State Univ., 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803. Email: [email protected]
Postdoctoral Fellow, School of Sustainable Engineering and the Built Environment, Arizona State Univ., 660 S College Ave., Tempe, AZ 85287-3005. ORCID: https://orcid.org/0000-0002-4058-4173. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share