Technical Papers
Apr 8, 2023

Large-Deformation Finite-Element Simulation of Deformation and Strain Fields Resulting from Closed-End Displacement Pile Installation in Sand

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 149, Issue 6

Abstract

Displacement piles are driven to support a wide range of structures. However, analysis of the stress and strain fields developed during their installation remains one of the most challenging problems in geotechnical engineering. Advances in design methods, particularly for sand sites, have had to rely on an imperfect analogy between pile and cone penetration test (CPT), rather than modeling pile installation itself. Recent physical model experiments have provided benchmark data sets that describe the stress and deformation patterns developed around displacement piles penetrating sand masses. Following from large-deformation finite-element analyses that captured the stresses measured in the Grenoble 3S-R calibration chamber NE34 sand experiments, this paper presents simulations of the displacements measured in equivalent high-quality experiments conducted at Purdue University with dense, angular #2Q-ROK silica sand. A modified Mohr-Coulomb model with state-dependent parameters was calibrated to match element tests conducted by the authors, and an arbitrary Lagrangian-Eulerian scheme was applied in the simulations. The evolution and distribution of the deformations induced by pile penetration are compared with the experiments. Predictions for the deformation and strain fields applying during and after pile installation are presented, showing broad agreement between the simulations and experiments. The predicted and measured pile capacities are also compared and contrasted. Points of divergence between the simulations and tests are highlighted and their implications for numerical modeling are discussed.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This research was supported by Natural Science Foundation of China (51761130078) and Advanced Newton Fellowship (NA160438) that were jointly awarded by Royal Society of the UK and NSFC, and Major International Joint Research Project of NSFC (52020105003). Gratitude is also extended to Professor Rodrigo Salgado and his former student Dr. Mazhar Arshad for their patience in answering many questions regarding their DIC experiments.

References

Andò, E., S. A. Hall, G. Viggiani, J. Desrues, and P. Bésuelle. 2012. “Grain-scale experimental investigation of localised deformation in sand: A discrete particle tracking approach.” Acta Geotech. 7 (1): 1–13. https://doi.org/10.1007/s11440-011-0151-6.
API (American Petroleum Institute). 2014. ANSI/API recommended practice 2GEO. 1st ed. Washington, DC: API.
Arroyo, M., J. Butlanska, A. Gens, F. Calvetti, and M. Jamiolkowski. 2011. “Cone penetration tests in a virtual calibration chamber.” Géotechnique 61 (6): 525–531. https://doi.org/10.1680/geot.9.P.067.
Arshad, M. I. 2014. “Experimental study of the displacements caused by cone penetration in sand.” Ph.D. thesis, Dept. of Civil Engineering, Purdue Univ.
Arshad, M. I., F. S. Tehrani, M. Prezzi, and R. Salgado. 2014. “Experimental study of cone penetration in silica sand using digital image correlation.” Géotechnique 64 (7): 551–569. https://doi.org/10.1680/geot.13.P.179.
Bardenhagen, S. G., J. U. Brackbill, and D. Sulsky. 2000. “The material-point method for granular materials.” Comput. Methods Appl. Mech. Eng. 187 (3–4): 529–541. https://doi.org/10.1016/S0045-7825(99)00338-2.
Bardenhagen, S. G., J. E. Guilkey, K. M. Roessig, J. U. Brackbill, W. M. Witzel, and J. C. Foster. 2001. “An improved contact algorithm for the material point method and application to stress propagation in granular materials.” Comput. Model. Eng. Sci. 2 (4): 509–522. https://doi.org/10.3970/cmes.2001.002.509.
Been, K., and M. G. Jefferies. 1985. “A state parameter for sands.” Géotechnique 35 (2): 99–112. https://doi.org/10.1680/geot.1985.35.2.99.
Butlanska, J., M. Arroyo, A. Gens, and C. O’Sullivan. 2014. “Multi-scale analysis of cone penetration test (CPT) in a virtual calibration chamber.” Can. Geotech. J. 51 (1): 51–66. https://doi.org/10.1139/cgj-2012-0476.
Carroll, R., P. Carotenuto, C. Dano, I. Salama, M. Silva, K. Gavin, and R. J. Jardine. 2020. “Field experiments at three sites to investigate the effects of age on steel piles driven in sand.” Géotechnique 70 (6): 469–489. https://doi.org/10.1680/jgeot.17.P.185.
Ceccato, F., L. Beuth, P. A. Vermeer, and P. Simoninia. 2016. “Two-phase material point method applied to the study of cone penetration.” Comput. Geotech. 80 (5): 440–452. https://doi.org/10.1016/j.compgeo.2016.03.003.
Chow, F. C. 1997. “Investigations into displacement pile behaviour for offshore foundations.” Ph.D. thesis, Dept. of Civil Engineering, Imperial College.
Ciantia, M., C. O’Sullivan, and R. J. Jardine. 2019. “Pile penetration in crushable soils: Insights from micromechanical modelling.” In Proc., 17th European Conf. on soil Mechanics and Geotechnical Engineering (ECSMGE 2019), 1–20. London: International Society for Soil Mechanics and Geotechnical Engineering.
Coombs, W. M., T. J. Charlton, M. Cortis, and C. E. Augarde. 2018. “Overcoming volumetric locking in material point methods.” Comput. Methods Appl. Mech. Eng. 333 (1): 1–21. https://doi.org/10.1016/j.cma.2018.01.010.
Dassault Systèmes Simulia. 2016. ABAQUS 2016 analysis user’s manual. Providence, RI: Simulia.
Doreau-Malioche, J., G. Combe, G. Viggiani, and J. B. Toni. 2018. “Shaft friction changes for cyclically loaded displacement piles: An X-ray investigation.” Géotechnique Lett. 8 (1): 66–72. https://doi.org/10.1680/jgele.17.00141.
El Kortbawi, M., D. M. Moug, K. Ziotopoulou, J. T. DeJong, and R. W. Boulanger. 2022. “Axisymmetric simulations of cone penetration in Biocemented sands.” J. Geotech. Geoenviron. Eng. 148 (11): 04022098. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002914.
Foray, P., L. Balachowski, and J. L. Colliat. 1998. “Bearing capacity of model piles driven into dense over-consolidated sands.” Can. Geotech. J. 35 (2): 374–385. https://doi.org/10.1139/t97-082.
Foray, P., J. L. Colliat, and J. F. Nauroy. 1993. “Bearing capacity of driven model piles in dense sands from calibration chamber tests.” In Proc., 25th Offshore Technology Conf. Houston: Offshore Technology Conference.
Gao, L., N. Guo, Z. X. Yang, and R. J. Jardine. 2022. “MPM modeling of pile installation in sand: Contact improvement and quantitative analysis.” Comput. Geotech. 151 (5): 104943. https://doi.org/10.1016/j.compgeo.2022.104943.
Gavin, K. G., and B. M. Lehane. 2003. “The shaft capacity of pipe piles in sand.” Can. Geotech. J. 40 (1): 36–45. https://doi.org/10.1139/t02-093.
Ghionna, V. N., and M. Jamiolkowski. 1991. “A critical appraisal of calibration chamber testing of sands.” In Proc., 1st Int. Conf. on Calibration Chamber Testing, 13–37. Amsterdam, Netherlands: Elsevier.
Hardin, B. O., and V. P. Drnevich. 1972. “Shear modulus and damping in soil: Design equations and curves.” J. Soil Mech. Found. Div. 98 (7): 667–692. https://doi.org/10.1061/JSFEAQ.0001760.
Henke, S. 2008. “Herstellungseinflüsse aus Pfahlrammung im Kaimauerbau.” Ph.D. thesis, Dept. of Civil Engineering, Veröfentlichungen des Instituts für Geotechnikund Baubetrieb der TU.
Henke, S. 2010. “Influence of pile installation on adjacent structures.” Int. J. Numer. Anal. Methods Geomech. 34 (11): 1191–1210. https://doi.org/10.1002/nag.859.
Henke, S., G. Qiu, and J. Grabe. 2010. “A coupled Eulerian-Lagrangian approach to solve geotechnical problems involving large deformations.” In Proc., 7th European Conf. on Numerical Methods in Geotechnical Engineering (NUMGE), 233–238. Boca Raton, FL: CRC Press.
Iskander, M. G., S. Sadek, and J. Liu. 2002. “Optical measurement of deformation using transparent silica gel to model sand.” Int. J. Phys. Model. Geotech. 2 (4): 13–26. https://doi.org/10.1680/ijpmg.2002.020402.
Jardine, R. J. 2014. “Advanced laboratory testing in research and practice: The 2nd Bishop Lecture.” Geotech. Res. 1 (1): 2–31. https://doi.org/10.1680/geores.14.00003.
Jardine, R. J. 2020. “Geotechnics, energy and climate change: The 56th Rankine Lecture.” Géotechnique 70 (1): 3–59. https://doi.org/10.1680/jgeot.18.RL.001.
Jardine, R. J., F. C. Chow, R. Overy, and J. R. Standing. 2005. ICP design methods for driven piles in sands and clays. London: Thomas Telford.
Jardine, R. J., J. R. Standing, and F. C. Chow. 2006. “Some observations of the effects of time on the capacity of piles driven in sand.” Géotechnique 56 (4): 227–244. https://doi.org/10.1680/geot.2006.56.4.227.
Jardine, R. J., and Z. X. Yang. 2018. “Joint research into the behaviour of driven piles.” In Proc., China-Europe Conf. on Geotechnical Engineering, 961–972. Cham, Switzerland: Springer.
Jardine, R. J., B. T. Zhu, P. Foray, and Z. X. Yang. 2013a. “Interpretation of stress measurements made around closed-ended displacement piles in sand.” Géotechnique 63 (8): 613–627. https://doi.org/10.1680/geot.9.P.138.
Jardine, R. J., B. T. Zhu, P. Foray, and Z. X. Yang. 2013b. “Measurement of stresses around closed-ended displacement piles in sand.” Géotechnique 63 (1): 1–17. https://doi.org/10.1680/geot.9.P.137.
Kishida, H., and M. Uesugi. 1987. “Tests of the interface between sand and steel in the simple shear apparatus.” Géotechnique 37 (1): 45–52. https://doi.org/10.1680/geot.1987.37.1.45.
Ko, J., S. Jeong, and J. K. Lee. 2016. “Large deformation FE analysis of driven steel pipe piles with soil plugging.” Comput. Geotech. 71 (8): 82–97. https://doi.org/10.1016/j.compgeo.2015.08.005.
Kobayashi, T., and R. Fukagawa. 2003. “Characterization of deformation process of CPT using X-ray TV imaging technique.” In Proc., 3rd Int. Conf. on Deformation Characteristics of Geomaterials, 43–47. Lisse, Netherlands: Balkema.
Kuwano, R., and R. J. Jardine. 2007. “A triaxial investigation of kinematic yielding in sand.” Géotechnique 57 (7): 563–579. https://doi.org/10.1680/geot.2007.57.7.563.
Lehane, B. M., and D. R. Gill. 2004. “Displacement fields induced by penetrometer installation in an artificial soil.” Int. J. Phys. Model. Geotech. 4 (1): 25–36. https://doi.org/10.1680/ijpmg.2004.040103.
Lehane, B. M., R. J. Jardine, A. J. Bond, and R. Frank. 1993. “Mechanisms of shaft friction in sand from instrumented pile tests.” J. Geotech. Eng. 119 (1): 19–35. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(19).
Lehane, B. M., J. K. Lim, P. Carotenuto, F. Nadim, S. Lacasse, R. J. Jardine, and B. F. J. van Dijk. 2017. “Characteristics of unified databases for driven piles.” In Proc., 8th Int. Conf., Offshore Site Investigation and Geotechnics: Smart Solutions for Future Offshore Developments, 162–191. London: Society for Underwater Technology.
Lehane, B. M., J. A Schneider, and X. Xu. 2005. “The UWA-05 method for prediction of axial capacity of driven piles in sand.” In Proc., 1st Int. Symposium on Frontiers in Offshore Geotechnics, 683–689. Perth, Australia: Univ. of Western Australia.
Lemiale, V., J. Nairn, and A. Hurmane. 2010. “Material point method simulation of equal channel angular pressing involving large plastic strain and contact through sharp corners.” Comput. Model. Eng. Sci. 70 (1): 41–66. https://doi.org/10.3970/cmes.2010.070.041.
Li, X. S., and Y. Wang. 1998. “Linear representation of steady-state line for sand.” J. Geotech. Geoenviron. Eng. 124 (12): 1215–1217. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1215).
Liu, J. 2003. “Visualization of three-dimensional deformations using transparent soil models.” Ph.D. thesis, Dept. of Civil Engineering, Polytechnic Institute of New York Univ.
Liu, S., and J. Wang. 2016. “Depth-independent cone penetration mechanism by a discrete element method (DEM)-based stress normalization approach.” Can. Geotech. J. 53 (5): 871–883. https://doi.org/10.1139/cgj-2015-0188.
Liu, W. 2010. “Axisymmetric centrifuge modelling of deep penetration in sand.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Nottingham.
Lorenzo, R., R. P. da Cunha, M. P. C. Neto, and J. A. Nairn. 2018. “Numerical simulation of installation of jacked piles in sand using material point method.” Can. Geotech. J. 55 (1): 131–146. https://doi.org/10.1139/cgj-2016-0455.
Mahutka, K. P., F. König, and J. Grabe. 2006. “Numerical modelling of pile jacking, driving and vibratory driving.” In Proc., Int. Conf. on Numerical Simulation of Construction Processes in Geotechnical Engineering for Urban Environment (NSC06), 235–246. Boca Raton, FL: CRC Press.
Mo, P. Q. 2014. “Centrifuge modelling and analytical solutions for the cone penetration test in layered soils.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Nottingham.
Mo, P. Q., A. M. Marshall, and H. S. Yu. 2015. “Centrifuge modelling of cone penetration tests in layered soils.” Géotechnique 65 (6): 468–481. https://doi.org/10.1680/geot.14.P.176.
Ngan-Tillard, D. J. M., X. H. Cheng, J. van Nes, and P. L. J. Zitha. 2005. “Application of x-ray computed tomography to cone penetration tests in sands.” In Proc., GSP 138 Site Characterization and Modeling, 1–12. Reston, VA: ASCE.
Ni, Q. C. C. I., C. C. Hird, and I. Guymer. 2010. “Physical modelling of pile penetration in clay using transparent soil and particle image velocimetry.” Géotechnique 60 (2): 121. https://doi.org/10.1680/geot.8.P.052.
Otani, J., T. Mukunoki, and K. Sugawara. 2005. “Evaluation of particle crushing in soils using X-ray CT data.” Soil Found. 45 (1): 99–108. https://doi.org/10.3208/sandf.45.1_99.
Paik, K., J. Lee, and D. Kim. 2011. “Axial response and bearing capacity of tapered piles in sandy soil.” Geotech. Test. J. 34 (2): 122–130. https://doi.org/10.1520/GTJ102761.
Paik, K., and R. Salgado. 2003. “Determination of bearing capacity of open-ended piles in sand.” J. Geotech. Geoenviron. Eng. 129 (1): 46–57. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:1(46).
Paniagua, P., E. Andó, M. Silva, A. Emdal, S. Nordal, and G. Viggiani. 2013. “Soil deformation around a penetrating cone in silt.” Géotechnique Lett. 3 (4): 185–191. https://doi.org/10.1680/geolett.13.00067.
Phuong, N. T. V., A. F. van Tol, A. S. K. Elkadi, and A. Rohe. 2016. “Numerical investigation of pile installation effects in sand using material point method.” Comput. Geotech. 73 (1): 58–71. https://doi.org/10.1016/j.compgeo.2015.11.012.
Qiu, G., S. Henke, and J. Grabe. 2011. “Application of a Coupled Eulerian–Lagrangian approach on geomechanical problems involving large deformations.” Comput. Geotech. 38 (1): 30–39. https://doi.org/10.1016/j.compgeo.2010.09.002.
Rimoy, S., M. Silva, R. J. Jardine, Z. X. Yang, B. T. Zhu, and C. H. C. Tsuha. 2015. “Field and model investigations into the influence of age on axial capacity of displacement piles in silica sands.” Géotechnique 65 (7): 576–589. https://doi.org/10.1680/geot.14.P.112.
Robinsky, E. I., and C. F. Morrison. 1964. “Sand displacement and compaction around model friction piles.” Can. Geotech. J. 1 (2): 81–93. https://doi.org/10.1139/t64-002.
Salgado, R., J. K. Mitchell, and M. Jamiolkowski. 1998. “Calibration chamber size effects on penetration resistance in sand.” J. Geotech. Geoenviron. Eng. 124 (9): 878–888. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(878).
Salgado, R., and M. Prezzi. 2007. “Computation of cavity expansion pressure and penetration resistance in sands.” Int. J. Geomech. 7 (4): 251–265. https://doi.org/10.1061/(ASCE)1532-3641(2007)7:4(251).
Seed, H. B., and I. M. Idriss. 1970. Soil moduli and damping factors for dynamic response analysis. Berkeley, CA: Univ. of California.
Sheng, D., K. D. Eigenbrod, and P. Wriggers. 2004. “Finite element analysis of pile installation using large-slip frictional contact.” Comput. Geotech. 32 (1): 17–26. https://doi.org/10.1016/j.compgeo.2004.10.004.
Sulsky, D., Z. Chen, and H. L. Schreyer. 1994. “A particle method for history-dependent materials.” Comput. Methods Appl. Mech. Eng. 118 (1–2): 179–196. https://doi.org/10.1016/0045-7825(94)90112-0.
Taborda, D. M. G., et al. 2020. “Finite-element modelling of laterally loaded piles in a dense marine sand at Dunkirk.” Géotechnique 70 (11): 1014–1029. https://doi.org/10.1680/jgeot.18.PISA.006.
Tehrani, F. S., M. I. Arshad, M. Prezzi, and R. Salgado. 2018. “Physical modeling of cone penetration in layered sand.” J. Geotech. Geoenviron. Eng. 144 (1): 04017101. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001809.
Tehrani, F. S., P. Nguyen, R. B. J. Brinkgreve, and A. F. van Tol. 2016. “Comparison of press-replace method and material point method for analysis of jacked piles.” Comput. Geotech. 78 (5): 38–53. https://doi.org/10.1016/j.compgeo.2016.04.017.
Tovar-Valencia, R. D., A. Galvis-Castro, R. Salgado, and M. Prezzi. 2018. “Effect of surface roughness on the shaft resistance of displacement model piles in sand.” J. Geotech. Geoenviron. Eng. 144 (3): 04017120. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001828.
Tran, Q. A., and W. Sołowski. 2019. “Temporal and null-space filter for the material point method.” J. Numer. Methods Eng. 120 (3): 328–360. https://doi.org/10.1002/nme.6138.
Tsuha, C. H. C., P. Y. Foray, R. J. Jardine, Z. X. Yang, M. Silva, and S. Rimoy. 2012. “Behaviour of displacement piles in sand under cyclic axial loading.” Soil Found. 52 (3): 393–410. https://doi.org/10.1016/j.sandf.2012.05.002.
Wang, D., B. Bienen, M. Nazem, Y. H. Tian, J. B. Zheng, T. Pucker, and M. F. Randolph. 2015. “Large deformation finite element analyses in geotechnical engineering.” Comput. Geotech. 65 (Dec): 104–114. https://doi.org/10.1016/j.compgeo.2014.12.005.
Wang, J., and B. Zhao. 2014. “Discrete-continuum analysis of monotonic pile penetration in crushable sands.” Can. Geotech. J. 51 (10): 1095–1110. https://doi.org/10.1139/cgj-2013-0263.
White, D. J. 2002. “An investigation into the behavior of pressed-in piles.” Ph.D. thesis, Dept. of Engineering, Cambridge Univ.
White, D. J., and M. D. Bolton. 2004. “Displacement and strain paths during plane-strain model pile installation in sand.” Géotechnique 54 (6): 375–397. https://doi.org/10.1680/geot.2004.54.6.375.
White, D. J., and B. M. Lehane. 2004. “Friction fatigue on displacement piles in sand.” Géotechnique 54 (10): 645–658. https://doi.org/10.1680/geot.2004.54.10.645.
Wichtmann, T., and T. Triantafyllidis. 2010. “On the influence of the grain size distribution curve on P-wave velocity, constrained elastic modulus Mmax and Poisson’s ratio of quartz sands.” Soil Dyn. Earthquake Eng. 30 (8): 757–766. https://doi.org/10.1016/j.soildyn.2010.03.006.
Yang, Z. X., Y. Y. Gao, R. J. Jardine, W. B. Guo, and D. Wang. 2020. “Large deformation finite element simulation of displacement pile installation experiments in sand.” J. Geotech. Geoenviron. Eng. 146 (6): 04020044. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002271.
Yang, Z. X., W. B. Guo, R. J. Jardine, and F. Chow. 2017. “Design method reliability assessment from an extended database of axial load tests on piles driven in sand.” Can. Geotech. J. 54 (1): 59–74. https://doi.org/10.1139/cgj-2015-0518.
Yang, Z. X., W. B. Guo, F. S. Zha, R. J. Jardine, C. J. Xu, and Y. Q. Cai. 2015a. “Field behavior of driven pre-stressed high-strength concrete piles in sandy soils.” J. Geotech. Geoenviron. Eng. 141 (6): 04015020. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001303.
Yang, Z. X., R. J. Jardine, W. B. Guo, and F. Chow. 2015b. A comprehensive database of tests on axially loaded piles driven in sand. Amsterdam, Netherlands: Elsevier.
Yang, Z. X., R. J. Jardine, W. B. Guo, and F. Chow. 2015c. “A new and openly accessible database of tests on piles driven in sands.” Géotechnique Lett. 5 (1): 12–20. https://doi.org/10.1680/geolett.14.00075.
Yang, Z. X., R. J. Jardine, B. T. Zhu, P. Foray, and C. H. C. Tsuha. 2010. “Sand grain crushing and interface shearing during displacement pile installation in sand.” Géotechnique 60 (6): 469–482. https://doi.org/10.1680/geot.2010.60.6.469.
Yang, Z. X., and K. Pan. 2017. “Flow deformation and cyclic resistance of saturated loose sand considering initial static shear effect.” Soil Dyn. Earthquake Eng. 92 (Sep): 68–78. https://doi.org/10.1016/j.soildyn.2016.09.002.
Yang, Z. X., Y. X. Wen, and K. Pan. 2019. “Previbration signature on dynamic properties of dry sand.” J. Test. Eval. 47 (3): 20180037. https://doi.org/10.1520/JTE20180037.
Yimsiri, S., K. Soga, K. Yoshizaki, G. R. Desari, and T. D. O’Rourke. 2004. “Lateral and upward soil-pipeline interactions in sand for deep embedment conditions.” J. Geotech. Geoenviron. Eng. 130 (8): 830–842. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(830).
Zhang, C., G. D. Nguyen, and I. Einav. 2013. “The end-bearing capacity of piles penetrating into crushable soils.” Géotechnique 63 (5): 341–354. https://doi.org/10.1680/geot.11.P.117.
Zhang, C., Z. X. Yang, G. D. Nguyen, R. J. Jardine, and I. Einav. 2014. “Theoretical breakage mechanics and experimental assessment of stresses surrounding piles penetrating into dense silica sand.” Géotechnique Lett. 4 (1): 11–16. https://doi.org/10.1680/geolett.13.00075.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 149Issue 6June 2023

History

Received: Oct 18, 2021
Accepted: Nov 29, 2022
Published online: Apr 8, 2023
Published in print: Jun 1, 2023
Discussion open until: Sep 8, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Postgraduate Student, Dept. of Civil Engineering, Zhejiang Univ., 866 Yuhangtang, Hangzhou 310058, China. Email: [email protected]
Professor, Dept. of Civil Engineering, Zhejiang Univ., 866 Yuhangtang, Hangzhou 310058, China (corresponding author). ORCID: https://orcid.org/0000-0003-4632-1355. Email: [email protected]
R. J. Jardine [email protected]
Professor, Dept. of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK. Email: [email protected]
Professor, Dept. of Civil Engineering, Zhejiang Univ., 866 Yuhangtang, Hangzhou 310058, China. ORCID: https://orcid.org/0000-0002-5515-9911. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share