Technical Papers
Mar 24, 2023

A Revised Porous Media Model of Microbially Induced Carbonate Precipitation for Loess Solidification

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 149, Issue 6

Abstract

Similar to sand solidification with microbially induced carbonate precipitation (MICP), the MICP technique can also be used to bond loess particles and improve the collapsibility of loess. However, existing theoretical models related to MICP sand solidification cannot be used to guide the application of loess solidification. Based on the properties of loess, the present study revised the transport model of biomass. The revised biomass transport model enabled the calculation of the biomass distribution. Moreover, considering the effects of nutrients in the cementation solution and the ions of inorganic salts contained in loess on urea hydrolysis, a new urea hydrolysis equation for MICP loess solidification was obtained. A revised theoretical model for loess solidification is proposed. In addition to the biomass distribution, the contents and distribution of calcium carbonate, and the porosity of solidified loess were calculated using the proposed model. The results are consistent with the results measured during loess solidification tests, demonstrating the feasibility and practicability of the proposed model. This revised theoretical model lays a solid foundation for the solidification of loess and preventing loess from collapsing.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors thank the valuable comments from the reviewers. This study was funded by National Natural Science Foundation of China (Grant No. 51578147), Fundamental Research Funds for the Central Universities (Grant No. 2242020R20025), Science and Technology Department of Ningxia (Grant No. 2020BFG02014), and Transportation Department of Ningxia (Grant No. 202000173).

References

Al-Kharusi, A. S., and M. J. Blunt. 2007. “Network extraction from sandstone and carbonate pore space images.” J. Pet. Sci. Technol. 56 (4): 219–231. https://doi.org/10.1016/j.petrol.2006.09.003.
Beckers, E., E. Plougonven, C. Roisin, S. Hapca, A. Léonard, and A. Degré. 2014. “X-ray microtomography: A porosity-based thresholding method to improve soil pore network characterization?” Geoderma 219–220 (May): 145–154. https://doi.org/10.1016/j.geoderma.2014.01.004.
Booster, J. L., G. A. M. van Meurs, J. P. Pruiksma, L. A. van Paassen, M. Harkes, and V. S. Whiffin. 2008. “1D-modelling of microbially induced calcite precipitation for geotechnical applications.” In Proc., Int. Conf. on BioGeoCivil Engineering. Delft, Netherlands: Academic.
Chambless, J. D., and P. S. Steward. 2007. “A three-dimensional computer model analysis of three hypothetical biofilm detachment mechanisms.” Biotechnol. Bioeng. 97 (6): 1573–1584. https://doi.org/10.1002/bit.21363.
Chou, L., R. M. Garrels, and R. Wollast. 1989. “Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals.” Chem. Geol. 78 (3–4): 269–282. https://doi.org/10.1016/0009-2541(89)90063-6.
Copetti, M. I. M., J. R. Fernández, M. C. Muniz, and C. Núnz. 2015. “Numerical analysis of an adsorption dynamic model at the air–water interface.” J. Comput. Appl. Math. 281 (Jun): 82–93. https://doi.org/10.1016/j.cam.2014.11.063.
Cunningham, J. A., and I. Mendoza-Sanchez. 2006. “Equivalence of two models for biodegradation during contaminant transport in groundwater.” Water Resour. Res. 42 (2): W02416. https://doi.org/10.1029/2005WR004205.
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36 (2): 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
De Muynck, W., N. De Belie, and W. Verstraete. 2010. “Microbial carbonate precipitation in construction materials: A review.” Ecol. Eng. 36 (2): 118–136. https://doi.org/10.1016/j.ecoleng.2009.02.006.
Derbyshire, E. 2001. “Geological hazards in loess terrain, with particular reference to the loess regions of China.” Earth-Sci. Rev. 54 (1–3): 231–260. https://doi.org/10.1016/S0012-8252(01)00050-2.
Derbyshire, E., X. M. Meng, and T. Dijkstra. 2000. Landslides in the thick loess terrain of North-West China. London: Wiley.
Dick, J., W. De Windt, B. De Graef, H. Saveyn, P. Van der Meeren, N. De Belie, and W. Verstraete. 2006. “Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species.” Biodegradation 17 (4): 357–367. https://doi.org/10.1007/s10532-005-9006-x.
Ebigbo, A., R. Helmig, A. B. Cunningham, H. Class, and R. Gerlach. 2010. “Modelling biofilm growth in the presence of carbon dioxide and water flow in the subsurface.” Adv. Water Resour. 33 (7): 762–781. https://doi.org/10.1016/j.advwatres.2010.04.004.
Ebigbo, A., A. Phillips, R. Gerlach, R. Helmig, and L. H. Spangler. 2012. “Darcy-scale modeling of microbially induced carbonate mineral precipitation in sand columns.” Water Resour. Res. 48 (7): W07519. https://doi.org/10.1029/2011WR011714.
Echeverria, J. C., M. T. Morera, C. Mazkiarán, and J. J. Garrido. 1999. “Characterization of the porous structure of soils: Adsorption of nitrogen (77 K) and carbon dioxide (273 K), and mercury porosimetry.” Eur. J. Soil Sci. 50 (3): 497–503. https://doi.org/10.1046/j.1365-2389.1999.00261.x.
Feng, X. X. 2012. “Comparison of several collapsible loess foundation treatment methods in Jingyuan mining area.” Coal Eng. 1 (10): 36–37.
Fredrickson, J. K., and M. Fletcher. 2001. Subsurface microbiology and biogeochemistry. New York: Wiley.
Fukue, M., S. Ono, and Y. Sato. 2011. “Cementation of sands due to microbiologically-induced carbonate precipitation.” Soils Found. 51 (1): 83–93. https://doi.org/10.3208/sandf.51.83.
Gal, J.-Y., J.-C. Bollinger, H. Tolosa, and N. Gache. 1996. “Calcium carbonate solubility: A reappraisal of scale formation and inhibition.” Talanta 43 (9): 1497–1509. https://doi.org/10.1016/0039-9140(96)01925-X.
Ganguly, P. B., and S. Krishnamurti. 1928. “An application of the Donnan theory to the adsorption of ions by colloidal silicic acid.” Trans. Faraday Soc. 24: 401. https://doi.org/10.1039/tf9282400401.
Goldberg, R. N., N. Kishore, and R. M. Lennen. 2002. “Thermodynamic quantities for the ionization reactions of buffers.” J. Phys. Chem. Ref. Data 31 (2): 231–370. https://doi.org/10.1063/1.1416902.
Golfier, F., B. D. Wood, L. Orgogozo, M. Quintard, and M. Buès. 2009. “Biofilms in porous media: Development of macroscopic transport equations via volume averaging with closure for local mass equilibrium conditions.” Adv. Water Resour. 32 (3): 463–485. https://doi.org/10.1016/j.advwatres.2008.11.012.
Gomez, M. G., C. M. R. Graddy, J. T. Dejong, and D. Nelson. 2019. “Biogeochemical changes during bio-cementation mediated by stimulated and augmented ureolytic microorganisms.” Sci. Rep. 9 (1): 11517. https://doi.org/10.1038/s41598-019-47973-0.
Han, Z., J. Li, Y. Hua, and S. Liu. 2016. “Study on transport mechanisms and influencing factors of microorganisms in porous media.” J. Anhui Agric. 44 (2): 127–130.
Hommel, J., E. Lauchnor, R. Gerlach, A. Cunningham, A. Ebigbo, R. Helmig, and H. Class. 2016. “Investigating the influence of the initial biomass distribution and injection strategies on biofilm-mediated calcite precipitation in porous media.” Transp. Porous Media 114 (2): 557–579. https://doi.org/10.1007/s11242-015-0617-3.
Hommel, J., E. Lauchnor, A. J. Phillips, R. Gerlach, A. B. Cunningham, and R. Helmig. 2015. “A revised model for microbially induced calcite precipitation: Improvements and new insights based on recent experiments.” Water Resour. Res. 51 (5): 3695–3715. https://doi.org/10.1002/2014WR016503.
Jiang, Z., M. I. J. van Dijke, K. Wu, G. D. Couples, K. S. Sorbie, and J. Ma. 2012. “Stochastic pore network generation from 3D rock images.” Transp. Porous Media 94: 571–593. https://doi.org/10.1007/s11242-011-9792-z.
Juang, C. H., T. Dijkstra, J. Wasowski, and X. Meng. 2019. “Loess geohazards research in China: Advances and challenges for mega engineering projects.” Eng. Geol. 251 (Mar): 1–10. https://doi.org/10.1016/j.enggeo.2019.01.019.
Kim, D., N. Mahabadi, J. Jang, and L. Paassen. 2020. “Assessing the kinetics and pore-scale characteristics of biological calcium carbonate precipitation in porous media using a microfluidic chip experiment.” Water Resour. Res. 56 (2): e2019WR025420. https://doi.org/10.1029/2019WR025420.
Kralj, D., L. Brecevic, and J. Kontrec. 1997. “Vaterite growth and dissolution in aqueous solution III. Kinetics of transformation.” J. Cryst. Growth 177 (3–4): 248–257. https://doi.org/10.1016/S0022-0248(96)01128-1.
Lauchnor, E. G., D. M. Topp, A. E. Parker, and R. Gerlach. 2015. “Whole cell kinetics of ureolysis by Sporosarcina pasteurii.” J. Appl. Microbiol. 118 (6): 1321–1332. https://doi.org/10.1111/jam.12804.
Liu, L., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019. “Strength, stiffness, and microstructure characteristics of biocemented calcareous sand.” Can. Geotech. J. 56 (10): 1502–1513. https://doi.org/10.1139/cgj-2018-0007.
Liu, Z., F. Liu, F. Ma, M. Wang, X. Bai, Y. Zheng, H. Yin, and G. Zhang. 2016. “Collapsibility, composition, and microstructure of loess in China.” Can. Geotech. J. 53 (4): 673–686. https://doi.org/10.1139/cgj-2015-0285.
Manceau, A., C. Tommaseo, S. Rihs, N. Geoffroy, D. Chateigner, M. Schlegel, D. Tisserand, M. Marcus, N. Tamura, and Z. S. Chen. 2005. “Natural speciation of Mn, Ni, and Zn at the micrometer scale in a clayey paddy soil using X-ray fluorescence, absorption, and diffraction.” Geochim. Cosmochim. Acta 69 (16): 4007–4034. https://doi.org/10.1016/j.gca.2005.03.018.
Martinez, B. C., J. T. DeJong, and T. R. Ginn. 2014. “Bio-geochemical reactive transport modeling of microbial induced calcite precipitation to predict the treatment of sand in one-dimensional flow.” Comput. Geotech. 58 (May): 1–13. https://doi.org/10.1016/j.compgeo.2014.01.013.
Minto, J. M., R. J. Lunn, and G. El Mountassir. 2019. “Development of a reactive transport model for field-scale simulation of microbially induced carbonate precipitation.” Water Resour. Res. 55 (8): 7229–7245. https://doi.org/10.1029/2019WR025153.
Minto, J. M., Q. Tan, R. J. Lunn, G. El Mountassir, H. Guo, and X. Cheng. 2018. “‘Microbial mortar’-restoration of degraded marble structures with microbially induced carbonate precipitation.” Constr. Build. Mater. 180 (Aug): 44–54. https://doi.org/10.1016/j.conbuildmat.2018.05.200.
Morse, J. 1983. “The kinetics of calcium carbonate dissolution and precipitation.” Vol. 11 of Carbonates: Mineralogy and chemistry, reviews in mineralogy, 227–264. Berlin: De Gruyter.
Nancollas, G. H., and M. M. Reddy. 1971. “The crystallization of calcium carbonate. II. Calcite growth mechanism.” J. Colloid Interface Sci. 37 (4): 824–830. https://doi.org/10.1016/0021-9797(71)90363-8.
Parkhurst, D. L. 1995. User’s guide to PHREEQC: A computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. Reston, VA: USGS Water-Resources Investigations.
Perdikouri, C., S. Piazolo, A. Kasioptas, B. Schmidt, and A. Putnis. 2013. “Hydrothermal replacement of aragonite by calcite: Interplay between replacement, fracturing and growth.” Eur. J. Mineral. 25 (2): 123–136. https://doi.org/10.1127/0935-1221/2013/0025-2261.
Peszynska, M., A. Trykozko, G. Iltis, S. Schlueter, and D. Wildenschild. 2016. “Biofilm growth in porous media: Experiments, computational modeling at the porescale, and upscaling.” Adv. Water Resour. 95 (Sep): 288–301. https://doi.org/10.1016/j.advwatres.2015.07.008.
Phillips, A. J., J. Eldring, R. Hiebert, E. Lauchnor, A. C. Mitchell, and A. Cunningham. 2015. “Design of a meso-scale high pressure vessel for the laboratory examination of biogeochemical subsurface processes.” J. Pet. Sci. Eng. 126 (Feb): 55–62. https://doi.org/10.1016/j.petrol.2014.12.008.
Plummer, L. N., and E. Busenberg. 1982. “The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O.” Geochim. Cosmochim. Acta 46 (6): 1011. https://doi.org/10.1016/0016-7037(82)90056-4.
Qin, C., and S. Hassanizadeh. 2015. “Pore-network modeling of solute transport and biofilm growth in porous media.” Transp. Porous Media 110 (3): 345–367. https://doi.org/10.1007/s11242-015-0546-1.
Qin, C., S. Hassanizadeh, and A. Ebigbo. 2016. “Pore-scale network modeling of microbially induced calcium carbonate precipitation: Insight into scale dependence of biogeochemical reaction rates.” Water Resour. Res. 52 (11): 8794–8810. https://doi.org/10.1002/2016WR019128.
Raoof, A., and S. Hassanizadeh. 2010. “A new method for generating pore-network models of porous media.” Transp. Porous Media 81: 391–407. https://doi.org/10.1007/s11242-009-9412-3.
Sand, K. K., J. D. Rodriguezblanco, E. Makovicky, L. G. Benning, and S. L. S. Stipp. 2012. “Crystallization of CaCO3 in water–alcohol mixtures: Spherulitic growth, polymorph stabilization, and morphology change.” Cryst. Growth Des. 12 (2): 842–853. https://doi.org/10.1021/cg2012342.
Smalley, I. 1995. “Making the material: The formation of silt sized primary mineral particles for loess deposits.” Quat. Sci. Rev. 14 (7–8): 645–651. https://doi.org/10.1016/0277-3791(95)00046-1.
Sohnel, O., and J. W. Mullin. 1982. “Precipitation of calcium carbonate.” J. Cryst. Growth 60 (2): 239. https://doi.org/10.1016/0022-0248(82)90095-1.
Stewart, T. L., and D. S. Kim. 2004. “Modeling of biomass-plug development and propagation in porous media.” Biochem. Eng. J. 17 (2): 107–119. https://doi.org/10.1016/S1369-703X(03)00146-3.
Sun, X., L. Miao, and R. Chen. 2019a. “Adding aluminum oxide to improve the repairing effect of cracks based on bio-remediation.” J. Adv. Concr. Technol. 17 (4): 177–187. https://doi.org/10.3151/jact.17.177.
Sun, X., L. Miao, T. Tong, and C. Wang. 2018a. “Improvement of microbial-induced calcium carbonate precipitation technology for sand solidification.” J. Mater. Civ. Eng. 30 (11): 04018301. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002507.
Sun, X., L. Miao, T. Tong, and C. Wang. 2018b. “Study of the effect of temperature on microbially induced carbonate precipitation.” Acta Geotech. 14 (3): 627–638. https://doi.org/10.1007/s11440-018-0758-y.
Sun, X., L. Miao, and C. Wang. 2019b. “Glucose addition improves the bio-remediation efficiency for crack repair.” Mater. Struct. 52 (6): 111. https://doi.org/10.1617/s11527-019-1410-5.
Sun, X., L. Miao, H. Wang, W. Yin, and L. Wu. 2021a. “Mineralization crust field experiment for desert sand solidification based on enzymatic calcification.” J. Environ. Manage. 287 (Jun): 112315. https://doi.org/10.1016/j.jenvman.2021.112315.
Sun, X., L. Miao, and L. Wu. 2020a. “Applicability and theoretical calculation of enzymatic calcium carbonate precipitation for sand improvement.” Geomicrobiol. J. 37 (4): 389–399. https://doi.org/10.1080/01490451.2019.1710625.
Sun, X., L. Miao, L. Wu, and R. Chen. 2019c. “The improvement of bio-cementation at low temperature based on Bacillus megaterium.” Appl. Microbiol. Biotechnol. 103 (17): 7191–7202. https://doi.org/10.1007/s00253-019-09986-7.
Sun, X., L. Miao, L. Wu, and H. Wang. 2021b. “Theoretical quantification for cracks repair based on microbially induced carbonate precipitation (MICP) method.” Cem. Concr. Compos. 118 (Apr): 103950. https://doi.org/10.1016/j.cemconcomp.2021.103950.
Sun, X., L. Miao, J. Yuan, H. Wang, and L. Wu. 2020b. “Application of enzymatic calcification for dust control and rainfall erosion resistance improvement.” Sci. Total Environ. 759 (Mar): 143468. https://doi.org/10.1016/j.scitotenv.2020.143468.
Teng, H. H., P. M. Dove, and J. J. De Yoreo. 2000. “Kinetics of calcite growth: Surface processes and relationships to macroscopic rate laws.” Geochim. Cosmochim. Acta 64 (13): 2255–2266. https://doi.org/10.1016/S0016-7037(00)00341-0.
Torkzaban, S., S. S. Tazehkand, S. L. Walker, and S. A. Bradford. 2008. “Transport and fate of bacteria in porous media: Coupled effects of chemical conditions and pore space geometry.” Water Resour. Res. 44 (4): 12. https://doi.org/10.1029/2007WR006541.
Trofimov, V. T., S. D. Balykova, T. V. Andreeva, and A. V. Ershova. 2015. “Subsidence of buried soils in cyclic loess sequences of the northern Eurasia.” In Vol. 5 of Engineering geology for society and territory, 439–442. Cham, Switzerland: Springer.
Umar, M., K. A. Kassim, and K. Chiet. 2016. “Biological process of soil improvement in civil engineering: A review.” J. Rock Mech. Geotech. Eng. 8 (5): 767–774. https://doi.org/10.1016/j.jrmge.2016.02.004.
Van Paassen, L. 2009. Biogrout, ground improvement by microbial induced carbonate precipitation. Delft, Netherlands: Delft Univ. of Technology.
van Wijngaarden, W. K., F. J. Vermolen, G. A. M. van Meurs, and C. Vuik. 2011. “Modelling biogrout: A new ground improvement method based on microbial-induced carbonate precipitation.” Transp. Porous Media 87 (2): 397–420. https://doi.org/10.1007/s11242-010-9691-8.
Wang, J. Y., H. Soens, and W. Verstraete. 2014. “Self-healing concrete by use of microencapsulated bacterial spores.” Cem. Concr. Res. 56 (2): 139–152. https://doi.org/10.1016/j.cemconres.2013.11.009.
Wang, Y., K. Soga, J. T. Dejong, and A. J. Kabla. 2019. “A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP).” Géotechnique 69 (12): 1086–1094. https://doi.org/10.1680/jgeot.18.P.031.
Whiffin, V. S. 2004. “Microbial CaCO3 precipitation for the production of biocement.” Ph.D. thesis, School of Biological Sciences and Biotechnology, Murdoch Univ.
Xu, L., F. C. Dai, X. B. Tu, L. G. Tham, Y. F. Zhou, and J. Iqbal. 2014. “Landslides in a loess platform, North-West China.” Landslides 11 (6): 993–1005. https://doi.org/10.1007/s10346-013-0445-x.
Xu, S., Z. Wu, W. Zhao, and T. Zhao. 2017. “Study of the microscopic pores of structured loess based on MATLAB and IPP.” China Earthquake Eng. J. 39 (1): 80–87.
Yao, S., X. Yuan, X. Yang, and S. Deng. 2016. “Effect of particle size and pore water velocity on transport of Escherichia coli in saturated porous media.” J. Agro-Environ. Sci. 35 (2): 353–357.
Yasuhara, H., D. Neupane, K. Hayashi, and M. Okamura. 2012. “Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation.” Soils Found. 52 (3): 539–549. https://doi.org/10.1016/j.sandf.2012.05.011.
Zhao, J. Y., P. Wang, and Z. W. Li. 2011. “Subsoil disposal of expressway in damp loess area.” Road Mach. Constr. Mechanization 28 (9): 43–45.
Zheng, C., and G. D. Bennett. 1995. Applied contaminant transport modeling, 3–79. New York: Van Nostrand Reinhold.
Zhou, G. T., Q. Z. Yao, S. Q. Fu, and Y. B. Guan. 2010. “Controlled crystallization of unstable vaterite with distinct morphologies and their polymorphic transition to stable calcite.” Eur. J. Mineral. 22 (2): 259–269. https://doi.org/10.1127/0935-1221/2009/0022-2008.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 149Issue 6June 2023

History

Received: Aug 7, 2021
Accepted: Jan 17, 2023
Published online: Mar 24, 2023
Published in print: Jun 1, 2023
Discussion open until: Aug 24, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Xiaohao Sun, Ph.D., S.M.ASCE [email protected]
Research Assistant Professor, Dept. of Civil and Environmental Engineering, Hong Kong Polytechnic Univ., Hung Hom, Kowloon, Hong Kong SAR 999077, China. Email: [email protected]
Linchang Miao, Ph.D. [email protected]
Professor, Institute of Geotechnical Engineering, Southeast Univ., Nanjing, Jiangsu 210096, China (corresponding author). Email: [email protected]
Master’s Student, Beijing Urban Construction Group Co., Ltd., Beijing 210096, China. Email: [email protected]
Hengxing Wang [email protected]
Ph.D. Student, Institute of Geotechnical Engineering, Southeast Univ., Nanjing, Jiangsu 210096, China. Email: [email protected]
Ph.D. Student, Institute of Geotechnical Engineering, Southeast Univ., Nanjing, Jiangsu 210096, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share