Technical Papers
Jun 11, 2024

Dynamics of Sand–Water Coaxial Jets in Stagnant Water

Publication: Journal of Engineering Mechanics
Volume 150, Issue 8

Abstract

A series of laboratory experiments was conducted to study the dynamics of sand–water coaxial jets in stagnant water. The effects of the velocity ratio of the annular to the core jets on the sand concentration, velocity, mixing properties, and energy distribution of sand–water coaxial jets were studied. In comparison to sand jets, the existence of carrier fluid in sand–water coaxial jets decreased the concentration fluctuations of sand particles. Proper orthogonal decomposition (POD) and spectral proper orthogonal decomposition (SPOD) techniques were utilized to study the low-rank dynamic behavior on flow entrainment and particle oscillations. It was indicated that the first two POD modes have the most coherent and energetic quantitative flow features during the entrainment process. The energy contribution of the first five POD modes was reduced by 50% in sand–water coaxial jets with relatively low velocity ratios of Ru<0.35. The SPOD analysis revealed that particle oscillations can be characterized by the Kelvin–Helmholtz type wave instabilities, and sand–water coaxial jets with small velocity ratios (i.e., Ru<1.24) had weaker vortex shedding and particle velocity fluctuations. The SPOD analysis indicated that most of the turbulence kinetic energy was concentrated in the low-frequency modes and coaxial jets with high-velocity ratios. The power spectral density (PSD) of concentration signals demonstrated that the dominant frequency of vortex shedding increased by increasing the radial distance from the jet axis. The PSD analysis of sand concentration for Ru=0.62 and 0.74 was consistent with the Kolmogorov scaling law at dominant frequencies ranging between 30 and 40 Hz.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author by request; this includes surge heights and velocity data.

Acknowledgments

The work presented here was supported by NSERC Discovery Grant No. 421785.

References

Abramovich, G. N. 1963. The theory of turbulent jets, 671. Cambridge, UK: MIT Press.
Arienti, M., and M. C. Soteriou. 2009. “Time-resolved proper orthogonal decomposition of liquid jet dynamics.” Phys. Fluids 21 (Mar): 112104. https://doi.org/10.1063/1.3263165.
Arote, A., M. Bade, and J. Banerjee. 2020. “On coherent structures of spatially oscillating planar liquid jet developing in a quiescent atmosphere.” Phys. Fluids 32 (May): 082111. https://doi.org/10.1063/5.0016480.
Azimi, A. H. 2019. “Experimental investigation on the motion of particle cloud in viscous fluids.” J. Fluids. Eng. 141 (3): 031202. https://doi.org/10.1115/1.4041121.
Azimi, A. H., D. Z. Zhu, and N. Rajaratnam. 2011. “Effect of particle size on the characteristics of sand jet in water.” J. Eng. Mech. 137 (12): 822–834. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000283.
Azimi, A. H., D. Z. Zhu, and N. Rajaratnam. 2012a. “Computational investigation of vertical slurry jets in water.” Int. J. Multiphase Flow 47 (Mar): 94–114. https://doi.org/10.1016/j.ijmultiphaseflow.2012.07.002.
Azimi, A. H., D. Z. Zhu, and N. Rajaratnam. 2012b. “Experimental study of sand jet front in water.” Int. J. Multiphase Flow 40 (Apr): 19–37. https://doi.org/10.1016/j.ijmultiphaseflow.2011.11.008.
Azimi, A. H., D. Z. Zhu, and N. Rajaratnam. 2015. “An experimental study of circular sand–water wall jets.” Int. J. Multiphase Flow 74 (Jun): 34–44. https://doi.org/10.1016/j.ijmultiphaseflow.2015.04.003.
Balachandar, S., and J. K. Eaton. 2010. “Turbulent dispersed multiphase flow.” Annu. Rev. Fluid Mech. 42 (Apr): 111–133. https://doi.org/10.1146/annurev.fluid.010908.165243.
Balarac, G., and O. Métais. 2005. “The near field of coaxial jets: A numerical study.” Phys. Fluids 17 (Apr): 065102. https://doi.org/10.1063/1.1900786.
Balarac, G., O. Métais, and M. Lesieur. 2007. “Mixing enhancement in coaxial jets through inflow forcing: A numerical study.” Phys. Fluids 19 (Mar): 075102. https://doi.org/10.1063/1.2747680.
Barve, A. V., S. Sahu, and K. Anupindia. 2020. “Effect of co-flow velocity ratio on evolution of poly-disperse particles in coaxial turbulent jets: A large-eddy simulation study.” Phys. Fluids 32 (Mar): 093303. https://doi.org/10.1063/5.0017663.
Becker, H. A., and T. A. Massaro. 1968. “Vortex evolution in a round jet.” J. Fluids Mech. 31 (Jun): 435–448. https://doi.org/10.1017/S0022112068000248.
Berkooz, G., P. Holmes, and J. L. Lumley. 1993. “The proper orthogonal decomposition in the analysis of turbulent flows.” Annu. Rev. Fluid Mech. 25 (1): 539–575. https://doi.org/10.1146/annurev.fl.25.010193.002543.
Broumand, M., A. Asgarian, M. Bussmann, K. Chattopadhyay, and M. Thomson. 2021. “Spatio-temporal dynamics and disintegration of a fan liquid sheet.” Phys. Fluids 33 (11): 112109. https://doi.org/10.1063/5.0063049.
Brush, L. M. J. 1962. “Exploratory study of sediment diffusion.” J. Geophys. Res. 67 (Mar): 1427–1433. https://doi.org/10.1029/JZ067i004p01427.
Buresti, G., P. Petagna, and A. Talamelli. 1998. “Experimental investigation on the turbulent near-field of coaxial jets.” Exp. Therm. Fluid Sci. 17 (Mar): 18–26. https://doi.org/10.1016/S0894-1777(97)10045-0.
Butcher, D., and A. Spencer. 2019. “Cross-correlation of POD spatial modes for the separation of stochastic turbulence and coherent structures.” Fluids 4 (Jun): 134. https://doi.org/10.3390/fluids4030134.
Canton, J., F. Auteri, and M. Carini. 2017. “Linear global stability of two incompressible coaxial jets.” J. Fluid Mech. 824 (Feb): 886–911. https://doi.org/10.1017/jfm.2017.290.
Casciola, C., P. Gualtieri, F. Picano, G. Sardina, and G. Troiani. 2010. “Dynamics of inertial particles in free jets.” Phys. Scr. 2010 (T142): 014001. https://doi.org/10.1088/0031-8949/2010/T142/014001.
Champagne, F. H., and I. J. Wygnanski. 1971. “An experimental investigation of coaxial turbulent jets.” Int. J. Heat Mass Transfer 14 (9): 1445–1464. https://doi.org/10.1016/0017-9310(71)90191-8.
Charalampous, G., C. Hadjiyiannis, and Y. Hardalupas. 2019. “Proper orthogonal decomposition of primary breakup and spray in coaxial air blast atomizers.” Phys. Fluids 31 (Jun): 043304. https://doi.org/10.1063/1.5085416.
Charalampous, G., and Y. Hardalupas. 2014. “Application of proper orthogonal decomposition to the morphological analysis of confined co-axial jets of immiscible liquids with comparable densities.” Phys. Fluids 26 (Mar): 113301. https://doi.org/10.1063/1.4900944.
Crow, S. C., and F. H. Champagne. 1971. “Orderly structure in jet turbulence.” J. Fluid Mech. 48 (Jun): 547–591. https://doi.org/10.1017/S0022112071001745.
Crowe, C. T., R. A. Gore, and T. R. Troutt. 1985. “Particle dispersion by coherent structures in free shear flows.” Part. Sci. Technol. 3 (3–4): 149–158.
Dahm, W. J. A., E. F. Clifford, and G. Tryggvanson. 1992. “Vortex structure and dynamics in the near field of a coaxial jet.” J. Fluid Mech. 241 (Jun): 371–402. https://doi.org/10.1017/S0022112092002088.
Fan, J., L. Zhang, H. Zhao, and K. Cen. 1990. “Particle concentration and particle size measurements in a particle-laden turbulent free jet.” J. Exp. Fluids 9 (Mar): 320–322. https://doi.org/10.1007/BF00188760.
Fan, J., H. Zhao, and J. Jin. 1996. “Two-phase velocity measurement in particle-laden coaxial jets.” Chem. Eng. J. 63 (Jun): 11–17.
Farge, M., and G. Rabreau. 1988. “Transformee en ondelettes pour detecter et analyser les structures coherentes dans les ecoulements turbulents bidimensionnels.” CR Acad. Sci. Paris 307 (Aug): 1479.
Fischer, H. B., E. J. List, R. C. Y. Koh, J. Imberger, and N. H. Brooks. 1979. Mixing in inland and coastal waters, 483. San Diego: Academic Press.
Fischer, P., and C. H. Bruneau. 2009. “Wavelet-based analysis of enstrophy transfers in two-dimensional turbulence.” Phys. Fluids 21 (Mar): 065109. https://doi.org/10.1063/1.3153910.
Gai, G., A. Hadjadj, S. Kudriakov, and O. Thomine. 2020. “Particles-induced turbulence: A critical review of physical concepts, numerical modelings and experimental investigations.” Theor. Appl. Mech. Lett. 10 (Jun): 241–248. https://doi.org/10.1016/j.taml.2020.01.026.
Gore, R. A., and C. T. Crowe. 1989. “Effect of particle size on modulating turbulent intensity.” Int. J. Multiphase Flow 15 (Jun): 279–285. https://doi.org/10.1016/0301-9322(89)90076-1.
Grinstein, F. F., and C. R. DeVore. 1996. “Dynamics of coherent structures and transition to turbulence in free square jets.” Phys. Fluids 8 (Mar): 1237–1251. https://doi.org/10.1063/1.868895.
Hall, N., M. Elenany, D. Z. Zhu, and N. Rajaratnam. 2010. “Experimental study of sand and slurry jets in water.” J. Hydraul. Eng. 136 (Mar): 727–738. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000235.
He, X., Z. Fang, G. Rigas, and M. Vahdati. 2021. “Spectral proper orthogonal decomposition of compressor tip leakage flow.” Phys. Fluids 33 (10): 105105. https://doi.org/10.1063/5.0065929.
Herrmann, M., M. Arienti, and M. Soteriou. 2011. “The impact of density ratio on the liquid core dynamics of a turbulent liquid jet injected into a crossflow.” J. Eng. Gas Turbines Power 133 (Jun): 061501. https://doi.org/10.1115/1.4002273.
Higham, J. E., W. Brevis, and C. J. Keylock. 2018. “Implications of the selection of a particular modal decomposition technique for the analysis of shallow flows.” J. Hydraul. Res. 56 (Mar): 796–805. https://doi.org/10.1080/00221686.2017.1419990.
Holmes, P., J. Lumley, and G. Berkooz. 1996. Turbulence coherent structures, dynamical systems, and symmetry. Cambridge, UK: Cambridge University Press.
Hua, J., G. Gunaratne, D. Talley, J. Gord, and S. Roy. 2016. “Dynamic-mode decomposition-based analysis of shear coaxial jets with and without transverse acoustic driving.” J. Fluid Mech. 790 (Mar): 5–32. https://doi.org/10.1017/jfm.2016.2.
Janati, M., and A. H. Azimi. 2021a. “Mixing of twin particle clouds in stagnant water.” J. Eng. Mech. 147 (5): 04021022. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001919.
Janati, M., and A. H. Azimi. 2021b. “On the motion of single and twin oblique particle clouds in stagnant water.” J. Fluids Eng. 143 (10): 101402. https://doi.org/10.1115/1.4051149.
Janati, M., M. Manzouri, and A. H. Azimi. 2022. “Effects of immiscible interface and particle channelization on particle dynamics of oblique oily sand jets.” Phys. Fluids 34 (5): 053315. https://doi.org/10.1063/5.0091511.
Kadu, A., Y. Sakai, Y. Ito, K. Iwano, M. Sugino, T. Katagiri, T. Hayase, and K. Nagata. 2020. “Application of spectral proper orthogonal decomposition to velocity and passive scalar fields in a swirling coaxial jet.” Phys. Fluids 32 (Mar): 015106. https://doi.org/10.1063/1.5131627.
Kannaiyan, K., and R. Sadr. 2013. “Numerical simulation of particle-laden coaxial turbulent jets.” Int. J. Comput. Methods Eng. Sci. Mech. 14 (Jan): 61–73. https://doi.org/10.1080/15502287.2012.690168.
Karhunen, K. 1946. “Zur spektral theorie stochastischer prozesse.” Ann. Acad. Sci. Fennicae A1 (Feb): 34.
Ko, N. W. M., and A. S. H. Kwan. 1976. “The initial region of subsonic coaxial turbulent jets.” J. Fluid Mech. 73 (2): 305–332. https://doi.org/10.1017/S0022112076001389.
Kumar, A., and S. Sahu. 2019. “Large scale instabilities in coaxial air-water jets with annular air swirl.” Phys. Fluids 31 (Mar): 124103. https://doi.org/10.1063/1.5122273.
Kumar, A., and S. Sahu. 2020. “Liquid jet disintegration memory effect on downstream spray fluctuations in a coaxial twin-fluid injector.” Phys. Fluids 32 (7): 073302. https://doi.org/10.1063/5.0009188.
Lau, T., and G. Nathan. 2014. “Influence of Stokes number on the velocity and concentration distributions in particle-laden jets.” J. Fluid Mech. 757 (Oct): 432–457. https://doi.org/10.1017/jfm.2014.496.
Lee, J. H. W., and V. H. Chu. 2003. Turbulent jets and plumes: A Lagrangian approach, 390. Dordrecht, Netherlands: Kluwer Academic Publishers Group.
Liang, Y., L. C. Johansen, and M. Linne. 2022. “Breakup of a laminar liquid jet by coaxial non-swirling and swirling air streams.” Phys. Fluids 34 (9): 093606. https://doi.org/10.1063/5.0100456.
Lim, H. D., J. Ding, S. Shi, and T. H. New. 2020. “Proper orthogonal decomposition analysis of near-field coherent structures associated with V-notched nozzle jets.” Int. J. Heat Mass Transfer 112 (Jun): 894–1777.
Manzouri, M., and A. H. Azimi. 2019. “Effects on oily sand jet evolution from impact momentum and channelization of particles through an immiscible interface.” Int. J. Multiphase Flow 121 (Dec): 103124. https://doi.org/10.1016/j.ijmultiphaseflow.2019.103124.
Martinelli, F., A. Olivani, and A. Coghe. 2007. “Experimental analysis of the precessing vortex core in a free swirling jet.” Exp. Fluids 42 (Mar): 827–839. https://doi.org/10.1007/s00348-006-0230-x.
Mazurek, K. A., K. Christison, and N. Rajaratnam. 2002. “Turbulent sand jet in water.” J. Hydraul. Res. 40 (4): 527–530. https://doi.org/10.1080/00221680209499894.
Moghadaripour, M., A. H. Azimi, and S. Elyasi. 2017a. “Experimental study of oblique particle clouds in water.” Int. J. Multiphase Flow 91 (Mar): 101–119. https://doi.org/10.1016/j.ijmultiphaseflow.2017.01.005.
Moghadaripour, M., A. H. Azimi, and S. Elyasi. 2017b. “Experimental study of particle clouds in stagnant water.” J. Eng. Mech. 143 (9): 04017082. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001301.
Mohammadidinani, N., A. H. Azimi, and S. Elyasi. 2017. “Experimental investigation of sand jets passing through immiscible fluids.” J. Fluids Eng. 139 (5): 051303. https://doi.org/10.1115/1.4035762.
Morel, T. 1975. “Comprehensive design of axisymmetric wind tunnel contractions.” J. Fluids Eng. Trans. 97 (Mar): 225–233.
Morel, T. 1977. “Design of two-dimensional wind tunnel contractions.” J. Fluids Eng. Trans. 99 (Mar): 371–377. https://doi.org/10.1115/1.3448764.
Mostafa, A. A., H. C. Mongia, V. G. Mcdonell, and G. S. Samuelsen. 1990. “An experimental and numerical study of particle-laden coaxial jet flows.” Int. J. Heat Fluid Flow 11 (12): 90–97. https://doi.org/10.1016/0142-727X(90)90001-R.
Nekkanti, A., and O. T. Schmidt. 2021. “Frequency–time analysis, low-rank reconstruction and denoising of turbulent flows using SPOD.” J. Fluid Mech. 926 (Nov): A26. https://doi.org/10.1017/jfm.2021.681.
Nidhan, S., K. Chongsiripinyo, O. Schmidt, and S. Sarkar. 2020. “Spectral POD analysis of the turbulent wake of a disk at Re = 50, 000.” Phys. Rev. Fluids 5 (12): 124606. https://doi.org/10.1103/PhysRevFluids.5.124606.
Pakzad, L., and A. H. Azimi. 2017. “Investigations on the dynamics of particle clouds in stagnant water using response surface methodology.” Can. J. Civ. Eng. 44 (Mar): 117–128. https://doi.org/10.1139/cjce-2016-0379.
Park, C. J., and L. D. Chen. 1989. “Experimental investigation of confined turbulent jets, Part I: Single-phase data.” AIAA J. 27 (11): 1506–1510. https://doi.org/10.2514/3.10295.
Pedel, J., J. N. Thornock, S. T. Smith, and P. J. Smith. 2014. “Large eddy simulation of polydisperse particles in turbulent coaxial jets using the direct quadrature method of moments.” Int. J. Multiphase Flow 63 (Mar): 23–38. https://doi.org/10.1016/j.ijmultiphaseflow.2014.03.002.
Rajaratnam, N. 1976. Turbulent jets, 304. Amsterdam, Netherlands: Elsevier.
Ranga-Dinesh, K. K. J., A. M. Savill, K. W. Jenkins, and M. P. Kirkpatrick. 2010. “A study of mixing and intermittency in a coaxial turbulent jet.” Fluid Dyn. Res. 42 (2): 025507.
Rehab, H., E. Villermaux, and E. Hopfinger. 1997. “Flow regimes of large-velocity-ratio coaxial jets.” J. Fluid Mech. 345 (Mar): 357–381. https://doi.org/10.1017/S002211209700637X.
Sadr, R., and J. C. Klewicki. 2003. “An experimental investigation of the near-field flow development in coaxial jets.” Phys. Fluids 15 (Jun): 1233–1246. https://doi.org/10.1063/1.1566755.
Sadr, R., and J. C. Klewicki. 2005. “Flow field characteristics in the near field region of particle-laden coaxial jets.” Exp. Fluids 39 (Mar): 885–894. https://doi.org/10.1007/s00348-005-0024-6.
Safer, D., and A. Beghidja. 2019. “Mixing in turbulent coaxial jet.” J. Mech. Eng. Res. Dev. 42 (Jun): 110–119.
Saha, P., G. Biswas, A. C. Mandal, and S. Sarkar. 2017. “Investigation of coherent structures in a turbulent channel with built-in longitudinal vortex generators.” Int. J. Heat Mass Transfer 104 (Mar): 178–198. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.105.
Schmidt, O., and T. Colonius. 2020. “Guide to spectral proper orthogonal decomposition.” AIAA J. 58 (Mar): 1–11.
Schmidt, O., A. Towne, T. Colonius, A. Cavalieri, P. Jordan, and G. Brès. 2017. “Wavepackets and trapped acoustic modes in a turbulent jet: Coherent structure education and global stability.” J. Fluid Mech. 825 (Jun): 1153–1181. https://doi.org/10.1017/jfm.2017.407.
Schmidt, O., A. Towne, G. Rigas, T. Colonius, and G. Brès. 2018. “Spectral analysis of jet turbulence.” J. Fluid Mech. 855 (May): 953–982. https://doi.org/10.1017/jfm.2018.675.
Sharif, F., and A. H. Azimi. 2020. “Particle cloud dynamics in stagnant water.” Int. J. Multiphase Flow 125 (Apr): 103197. https://doi.org/10.1016/j.ijmultiphaseflow.2019.103197.
Sharif, F., and A. H. Azimi. 2021. “Effects of velocity ratio on dynamics of sand-water coaxial jets.” Int. J. Multiphase Flow 140 (Jun): 103643. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103643.
Sharif, F., and A. H. Azimi. 2022. “Experimental study of sand-water swirling jets in stagnant water.” J. Exp. Fluids 63 (Jun): 26. https://doi.org/10.1007/s00348-021-03379-1.
Shojaeizadeh, A., M. Safaei, A. Alrashed, M. Ghodsian, M. Geza, and M. Abbassi. 2018. “Bed roughness effects on characteristics of turbulent confined wall jets.” Measurement 122 (May): 325–338. https://doi.org/10.1016/j.measurement.2018.02.033.
Sieber, M., C. Paschereit, and K. Oberleithner. 2016. “Spectral proper orthogonal decomposition.” J. Fluid Mech. 792 (Apr): 798–828. https://doi.org/10.1017/jfm.2016.103.
Siegel, S., K. Cohen, J. Seigel, and T. McLaughlin. 2006. “Proper orthogonal decomposition snapshot selection for state estimation of feedback-controlled flows.” In Proc., AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA: American Institute of Aeronautics and Astronautics.
Sirovich, L. 1987. “Turbulence and the dynamics of coherent structures. I. Coherent structures.” Q. Appl. Math. 45 (Jun): 561–571. https://doi.org/10.1090/qam/910462.
Tamburello, D., and M. Amitay. 2008. “Active manipulation of a particle-laden jet.” Int. J. Multiphase Flow 34 (9): 829–851. https://doi.org/10.1016/j.ijmultiphaseflow.2008.02.006.
Taofeeq, H., S. Aradhya, J. Shao, and M. Al-Dahhan. 2018. “Advance optical fiber probe for simultaneous measurements of solids holdup and particles velocity using simple calibration methods for gas-solid fluidization systems.” Flow Meas. Instrum. 63 (Oct): 18–32. https://doi.org/10.1016/j.flowmeasinst.2018.07.001.
Teshome, S. 2012. “Droplet combustion and non-reactive shear-coaxial jets with transverse acoustic excitation department of mechanical and aerospace engineering.” Ph.D. thesis, Dept. of Mechanical Engineering, Univ. of California Los Angeles.
Villermaux, E., and H. Rehab. 2000. “Mixing in coaxial jets.” J. Fluid Mech. 425 (Jun): 161–185. https://doi.org/10.1017/S002211200000210X.
Virdung, T., and A. Rasmuson. 2007. “Hydrodynamic properties of a turbulent confined solid-liquid jet evaluated using PIV and CFD.” Chem. Eng. Sci. 62 (Mar): 5963–5978. https://doi.org/10.1016/j.ces.2007.06.017.
Wang, Y., and V. Yang. 2018. “Central recirculation zones and instability waves in internal swirling flows with an annular entry.” Phys. Fluids 30 (Jun): 013602. https://doi.org/10.1063/1.5000967.
Warda, H. A., S. Z. Kassab, K. A. Elshorbagy, and E. A. Elsaadawy. 1999. “An experimental investigation of the near-field region of free turbulent coaxial jet using LDA.” Flow Meas. Instrum. 10 (Jun): 15–26. https://doi.org/10.1016/S0955-5986(98)00041-7.
Wegener, J. L. 2014. “Multi-phase combustion and transport processes under the influence of acoustic excitation.” Ph.D. thesis, Dept. of Mechanical Engineering, UCLA Univ.
Welch, P. D. 1967. “The use of fast Fourier transform for the estimation of power spectra; A method based on time averaging over short, modified periodograms.” IEEE Trans. Audio Electroacoust. 15 (Jun): 70–73. https://doi.org/10.1109/TAU.1967.1161901.
Wicker, R. B., and J. K. Eaton. 1994. “Near field of a coaxial jet with and without axial excitation.” AIAA J. 32 (Jun): 542–546. https://doi.org/10.2514/3.12019.
Zang, B., and T. H. New. 2015. “On the wake-like vortical arrangement and behaviour associated with twin jets in close proximity.” Exp. Therm. Fluid Sci. 69 (Dec): 127–140. https://doi.org/10.1016/j.expthermflusci.2015.08.004.
Zhang, X., K. Wang, X. Wen, CH. He, Y. Liu, and W. Zhou. 2022. “Experimental study of time-resolved simultaneous velocity and concentration fields of an inclined jet in crossflow.” Int. J. Heat Mass Transfer 188 (Jun): 122622. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122622.
Zhang, Y., and M. Vanierschot. 2021. “Determination of single and double helical structures in a swirling jet by spectral proper orthogonal decomposition.” Phys. Fluids 33 (1): 015115. https://doi.org/10.1063/5.0032985.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 150Issue 8August 2024

History

Received: Sep 27, 2023
Accepted: Mar 25, 2024
Published online: Jun 11, 2024
Published in print: Aug 1, 2024
Discussion open until: Nov 11, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Fardin Sharif [email protected]
Postdoctoral Fellow, Dept. of Civil Engineering, Lakehead Univ., Thunder Bay, ON, Canada P7B 5E1. Email: [email protected]
Professor, Dept. of Civil Engineering, Lakehead Univ., Thunder Bay, ON, Canada P7B 5E1 (corresponding author). ORCID: https://orcid.org/0000-0003-0166-8830. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share