Technical Papers
Oct 27, 2023

Effect of Seepage Differential Pressure on Permeability Evolution of Tunnel Lining Fracture under Hydraulic–Mechanical Coupling Process

Publication: Journal of Engineering Mechanics
Volume 150, Issue 1

Abstract

The permeability evolution of lining fracture is of great significance for the safety evaluation of tunnel engineering in service. To date, there are few reports on the evolution in concrete fracture permeability when arbitrary seepage differential pressures are applied under the coupled hydraulic–mechanical processes. In this work, long-term water flow-through experiments on concrete single fractures are conducted to examine the permeability evolution during simulating the fractured lining concrete in service. Five seepage differential pressures from 0 to 350 kPa were experimentally designed, and it was found that the permeability of the fracture slightly increases by 13% at 0 kPa and decreases by 31%–77% at 70–350 kPa. The mineral dissolution of fracture surfaces during the flow-through experiments was analyzed using X-ray diffraction, X-ray fluorescence, scanning electron microscopy with energy-dispersive spectroscopy, and inductively coupled plasma mass spectrometry. Additionally, the distribution of water flow pressure within the fractures was investigated using computational fluid dynamics, and the potential occurrence of hydrodynamic impact was proposed. These studies reveal the evolution mechanism of the permeability of concrete fractures under the coupled processes, which provides an important help to the long-term safety evaluation of tunnel engineering.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The data used to support the findings of this study are included within the published article.

Acknowledgments

The research was funded by the National Natural Science Foundation of China (U2240210 and 52179100).

References

Akhavan, A., and F. Rajabipour. 2012. “Quantifying the effects of crack width, tortuosity, and roughness on water permeability of cracked mortars.” Cem. Concr. Res. 42 (2): 313–320. https://doi.org/10.1016/j.cemconres.2011.10.002.
Akhavan, A., and F. Rajabipour. 2017. “Quantifying permeability, electrical conductivity, and diffusion coefficient of rough parallel plates simulating cracks in concrete.” J. Mater. Civ. Eng. 29 (9): 04017119. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001964.
Aldea, C. M., S. P. Shah, and A. Karr. 1999. “Permeability of cracked concrete.” Mater. Struct. 32 (5): 370–376. https://doi.org/10.1007/BF02479629.
Anwar, I., M. Hatambeigi, K. Chojnicki, M. R. Taha, and J. C. Stormont. 2021. “Alteration in micro-mechanical characteristics of wellbore cement fracture surfaces due to fluid exposure.” J. Pet. Sci. Eng. 205 (Oct): 108935. https://doi.org/10.1016/j.petrol.2021.108935.
Barton, N. 1973. “Review of a new shear-strength criterion for rock joints.” Eng. Geol. 7 (4): 287–332. https://doi.org/10.1016/0013-7952(73)90013-6.
Belem, T., F. Homand-Etienne, and M. Souley. 2000. “Quantitative parameters for rock joint surface roughness.” Rock Mech. Rock Eng. 33 (4): 217–242. https://doi.org/10.1007/s006030070001.
Boer, R. 1977. “Pressure solution: Theory and experiments.” Tectonophysics 39 (1–3): 287–301. https://doi.org/10.1016/0040-1951(77)90101-9.
Boutt, D. F., G. Grasselli, J. T. Fredrich, B. K. Cook, and J. R. Williams. 2006. “Trapping zones: The effect of fracture roughness on the directional anisotropy of fluid flow and colloid transport in a single fracture.” Geophys. Res. Lett. 33 (21): L21402. https://doi.org/10.1029/2006GL027275.
Brace, W. F., J. B. Walsh, and W. T. Frangos. 1968. “Permeability of granite under high pressure.” J. Geophys. Res. 73 (6): 2225–2236. https://doi.org/10.1029/JB073i006p02225.
Brown, S. R. 1987. “Fluid flow through rock joints: The effect of surface roughness.” J. Geophys. Res. Solid Earth 92 (B2): 1337–1347. https://doi.org/10.1029/JB092iB02p01337.
Cardenas, M. B., D. T. Slottke, R. A. Ketcham, and J. M. Sharp. 2007. “Navier-Stokes flow and transport simulations using real fractures shows heavy tailing due to eddies.” Geophys. Res. Lett. 34 (14): 176–192. https://doi.org/10.1029/2007GL030545.
Cardenas, M. B., D. T. Slottke, R. A. Ketcham, and J. M. Sharp. 2009. “Effects of inertia and directionality on flow and transport in a rough asymmetric fracture.” J. Geophys. Res. Solid Earth 114 (Jun): 1–11. https://doi.org/10.1029/2009jb006336.
Charron, J.-P., E. Denarié, and E. Brühwiler. 2008. “Transport properties of water and glycol in an ultra high performance fiber reinforced concrete (UHPFRC) under high tensile deformation.” Cem. Concr. Res. 38 (5): 689–698. https://doi.org/10.1016/j.cemconres.2007.12.006.
Chen, Y., W. Liang, H. Lian, J. Yang, and V. P. Nguyen. 2017. “Experimental study on the effect of fracture geometric characteristics on the permeability in deformable rough-walled fractures.” Int. J. Rock Mech. Min. Sci. 98 (Oct): 121–140. https://doi.org/10.1016/j.ijrmms.2017.07.003.
Cheng, C., and H. Milsch. 2020. “Evolution of fracture aperture in quartz sandstone under hydrothermal conditions: Mechanical and chemical effects.” Minerals 10 (8): 657. https://doi.org/10.3390/min10080657.
Choinska, M., A. Khelidj, G. Chatzigeorgiou, and G. Pijaudier-Cabot. 2007. “Effects and interactions of temperature and stress-level related damage on permeability of concrete.” Cem. Concr. Res. 37 (1): 79–88. https://doi.org/10.1016/j.cemconres.2006.09.015.
Chunsheng, Z., Z. Chuiyi, and L. Ning. 2017. “Key technologies for extremely large deep buried headrace tunnel: A case study of Jinping II Hydropower Station.” Tunnel Constr. 37 (11): 1492–1501. https://doi.org/10.3973/j.issn.2096-4498.2017.11.021.
Crandall, D., G. Bromhal, and Z. T. Karpyn. 2010. “Numerical simulations examining the relationship between wall-roughness and fluid flow in rock fractures.” Int. J. Rock Mech. Min. Sci. 47 (5): 784–796. https://doi.org/10.1016/j.ijrmms.2010.03.015.
Duan, L., H. Deng, Y. Qi, G. Li, and M. Peng. 2020. “Study on the evolution of seepage characteristics of single-fractured limestone under water-rock interaction.” Rock Soil Mech. 41 (11): 3671–3679. https://doi.org/10.16285/j.rsm.2020.0171.
Elliott, D., and E. H. Rutter. 1976. “The kinetics of rock deformation by pressure solution.” Phil. Trans. R. Soc. A 283 (1312): 218–219. https://doi.org/10.1098/rsta.1976.0079.
Elsworth, D., and H. Yasuhara. 2010. “Mechanical and transport constitutive models for fractures subject to dissolution and precipitation.” Int. J. Numer. Anal. Methods Geomech. 34 (5): 533–549. https://doi.org/10.1002/nag.831.
Erpeng, L., L. Yongshui, J. Qingjia, C. Wei, L. Xiaobin, and W. Weiguo. 2022. “Numerical investigation of laminar flow past a rotating cylinder.” J. Ship Mech. 26 (12): 1749–1761. https://doi.org/10.3969/j.issn.1007-7294.2022.12.002.
Fu, Q., M. X. Bu, Z. R. Zhang, J. Q. He, D. Li, W. R. Xu, and D. T. Niu. 2021. “Chloride ion transport performance of lining concrete under coupling the action of flowing groundwater and loading.” Cem. Concr. Compos. 123 (Oct): 104166. https://doi.org/10.1016/j.cemconcomp.2021.104166.
Garboczi, E. J. 1990. “Permeability, diffusivity, and microstructural parameters: A critical review.” Cem. Concr. Res. 20 (4): 591–601. https://doi.org/10.1016/0008-8846(90)90101-3.
Gérard, B., D. Breysse, A. Ammouche, O. Houdusse, and O. Didry. 1996. “Cracking and permeability of concrete under tension.” Mater. Struct. 29 (3): 141–151. https://doi.org/10.1007/BF02486159.
Hafidz, A., N. Kinoshita, and H. Yasuhara. 2022. “Effect of permeants on fracture permeability in granite under hydrothermal conditions.” Rock Mech. Bull. 1 (1): 100007. https://doi.org/10.1016/j.rockmb.2022.100007.
Hoseini, M., V. Bindiganavile, and N. Banthia. 2009. “The effect of mechanical stress on permeability of concrete: A review.” Cem. Concr. Compos. 31 (4): 213–220. https://doi.org/10.1016/j.cemconcomp.2009.02.003.
Im, K., D. Elsworth, and C. Wang. 2019. “Cyclic permeability evolution during repose then reactivation of fractures and faults.” J. Geophys. Res. Solid Earth 124 (5): 4492–4506. https://doi.org/10.1029/2019JB017309.
Javadi, M., M. Sharifzadeh, and K. Shahriar. 2010. “A new geometrical model for non-linear fluid flow through rough fractures.” J. Hydrol. 389 (1–2): 18–30. https://doi.org/10.1016/j.jhydrol.2010.05.010.
Ji, G. M., T. Kanstad, and O. Bjntegaard. 2018. “Crack risk evaluation of submerged concrete tunnel during hardening phase.” Adv. Civ. Eng. 2018 (3): 1–14.
Jinyu, L. I., J. Cao, L. Lin, J. Tian, A. Wang, and X. Peng. 2001. “New development of the study on hydraulic concrete durability.” Water Power 1 (4): 44–67.
Kairong, H. 2017. “Development and prospects of tunnels and underground works in China in recent two years.” Tunnel Constr. 37 (2): 123–134.
Kishida, K., Y. Kawaguchi, S. Nakashima, and H. Yasuhara. 2011. “Estimation of shear strength recovery and permeability of single rock fractures in shear-hold-shear type direct shear tests.” Int. J. Rock Mech. Min. 48 (5): 782–793. https://doi.org/10.1016/j.ijrmms.2011.04.002.
Koyama, T., I. Neretnieks, and L. Jing. 2008. “A numerical study on differences in using Navier–Stokes and Reynolds equations for modeling the fluid flow and particle transport in single rock fractures with shear.” Int. J. Rock Mech. Min. Sci. 45 (7): 1082–1101. https://doi.org/10.1016/j.ijrmms.2007.11.006.
Lasaga, A. C. 1984. “Chemical kinetics of water-rock interactions.” J. Geophys. Res. Solid Earth 89 (B6): 4009–4025. https://doi.org/10.1029/JB089iB06p04009.
Lee, S. H., I. W. Yeo, K. K. Lee, and R. L. Detwiler. 2015. “Tail shortening with developing eddies in a rough-walled rock fracture.” Geophys. Res. Lett. 42 (15): 6340–6347. https://doi.org/10.1002/2015GL065116.
Li, J. Y., and J. G. Cao. 2004. Research and application of durability in hydraulic engineering concrete. Beijing: Electric Power Press of China.
Li, K., and L. Li. 2019. “Crack-altered durability properties and performance of structural concretes.” Cem. Concr. Res. 124 (Oct): 105811. https://doi.org/10.1016/j.cemconres.2019.105811.
Li, K., M. Ma, and X. Wang. 2011. “Experimental study of water flow behaviour in narrow fractures of cementitious materials.” Cem. Concr. Compos. 33 (10): 1009–1013. https://doi.org/10.1016/j.cemconcomp.2011.08.005.
Li, L., and K. Li. 2018. “Experimental investigation on transport properties of cement-based materials incorporating 2D crack networks.” Transp. Porous Media 122 (3): 647–671. https://doi.org/10.1007/s11242-018-1019-0.
Li, X., D. Li, and Y. Xu. 2019. “Modeling the effects of microcracks on water permeability of concrete using 3D discrete crack network.” Compos. Struct. 210 (Feb): 262–273. https://doi.org/10.1016/j.compstruct.2018.11.034.
Litorowicz, A. 2006. “Identification and quantification of cracks in concrete by optical fluorescent microscopy.” Cem. Concr. Res. 36 (8): 1508–1515. https://doi.org/10.1016/j.cemconres.2006.05.011.
Liu, J., J. Sheng, A. Polak, D. Elsworth, H. Yasuhara, and A. Grader. 2006. “A fully-coupled hydrological–mechanical–chemical model for fracture sealing and preferential opening.” Int. J. Rock Mech. Min. 43 (1): 23–36. https://doi.org/10.1016/j.ijrmms.2005.04.012.
Liu, R., B. Li, and Y. Jiang. 2016. “Critical hydraulic gradient for nonlinear flow through rock fracture networks: The roles of aperture, surface roughness, and number of intersections.” Adv. Water Resour. 88 (Feb): 53–65. https://doi.org/10.1016/j.advwatres.2015.12.002.
Lomize, G. M. 1951. “Flow in fractured rocks.” Gosenergoizdat 127 (Mar): 635.
Louis, C. 1974. Rock hydraulics rock mechanics. Edited by L. Müller. New York: Springer.
Louis, C. A. 1969. “Study of groundwater flow in jointed rock and its influence on the stability of rock masses.” Imperial Coll. Rock Mech. Res. 10: 1–90.
Lu, R., C. Cheng, T. Nagel, H. Milsch, H. Yasuhara, O. Kolditz, and H. Shao. 2021. “What process causes the slowdown of pressure solution creep.” Geomech. Geophys. Geo-Energy Geo-Resour. 7 (3): 57. https://doi.org/10.1007/s40948-021-00247-4.
Mcnamara, H. J., and R. I. J. Fisch. 1964. “Strength, deformation and conductivity coupling of rock joints.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 22 (5): 571–578. https://doi.org/10.2466/pms.1964.19.2.571.
Ogata, S., H. Yasuhara, N. Kinoshita, D.-S. Cheon, and K. Kishida. 2018. “Modeling of coupled thermal-hydraulic-mechanical-chemical processes for predicting the evolution in permeability and reactive transport behavior within single rock fractures.” Int. J. Rock Mech. Min. 107 (Mar): 271–281. https://doi.org/10.1016/j.ijrmms.2018.04.015.
Ogata, S., H. Yasuhara, N. Kinoshita, and K. Kishida. 2020. “Coupled thermal–hydraulic–mechanical–chemical modeling for permeability evolution of rocks through fracture generation and subsequent sealing.” Comput. Geosci. 24 (5): 1845–1864. https://doi.org/10.1007/s10596-020-09948-3.
Park, S.-S., S.-J. Kwon, S. H. Jung, and S.-W. Lee. 2012. “Modeling of water permeability in early aged concrete with cracks based on micro pore structure.” Constr. Build. Mater. 27 (1): 597–604. https://doi.org/10.1016/j.conbuildmat.2011.07.002.
Phung, Q. T., N. Maes, D. Jacques, G. De Schutter, and G. Ye. 2016. “Investigation of the changes in microstructure and transport properties of leached cement pastes accounting for mix composition.” Cem. Concr. Res. 79 (Jan): 217–234. https://doi.org/10.1016/j.cemconres.2015.09.017.
Picandet, V., A. Khelidj, and H. Bellegou. 2009. “Crack effects on gas and water permeability of concretes.” Cem. Concr. Res. 39 (6): 537–547. https://doi.org/10.1016/j.cemconres.2009.03.009.
Polak, A., D. Elsworth, J. Liu, and A. S. Grader. 2004. “Spontaneous switching of permeability changes in a limestone fracture with net dissolution.” Water Resour. Res. 40 (3): 1–10. https://doi.org/10.1029/2003WR002717.
Polak, A., D. Elsworth, H. Yasuhara, A. S. Grader, and P. M. Halleck. 2003. “Permeability reduction of a natural fracture under net dissolution by hydrothermal fluids.” Geophys. Res. Lett. 30 (20): 53. https://doi.org/10.1029/2003GL017575.
Reis, E. E. 1965. Causes and control of cracking in concrete reinforced with high-strength steel bars: A review of research. Champaign, IL: Univ. of Illinois.
Revil, A. 2001. “Pervasive pressure solution transfer in a quartz sand.” J. Geophys. Res. Solid Earth 106 (B5): 8665–8686. https://doi.org/10.1029/2000JB900465.
Romm, E. S. 1966. Flow characteristics of fractured rocks, 283. Moscow: Nedra.
Savija, B., M. Lukovic, and E. Schlangen. 2016. “Influence of cracking on moisture uptake in strain-hardening cementitious composites.” J. Nanomech. Micromech. 7 (1): 04016010. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000114.
Shi, L., H. Zhou, Y. Gao, J. Lu, and Q. Li. 2020. “Experimental study on the acoustic emission response and permeability evolution of tunnel lining concrete during deformation and failure.” Eur. J. Environ. Civ. Eng. 26 (8): 3398–3417. https://doi.org/10.1080/19648189.2020.1799245.
Shiyong, W. U., R. E. N. Xuhua, C. Xiangrong, and Z. Jixun. 2005. “Stability analysis and supporting design of surrounding rocks of diversion tunnel for Jinping Hydropower Station.” Chin. J. Rock Mech. Eng. 24 (20): 3777–3782.
Shu, B., R. Zhu, D. Elsworth, J. Dick, S. Liu, J. Tan, and S. Zhang. 2020. “Effect of temperature and confining pressure on the evolution of hydraulic and heat transfer properties of geothermal fracture in granite.” Appl. Energy 272 (Aug): 115290. https://doi.org/10.1016/j.apenergy.2020.115290.
Snow, D. T. 1969. “Anisotropie permeability of fractured media.” Water Resour. Res. 5 (6): 1273–1289. https://doi.org/10.1029/WR005i006p01273.
Song, C., S. Nakashima, R. Kido, H. Yasuhara, and K. Kishida. 2021. “Short- and long-term observations of fracture permeability in granite by flow-through tests and comparative observation by X-ray CT.” Int. J. Geomech. 21 (9): 04021151. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002114.
Su, B. Y. 1995. “Study on fracture seepage in the imitative nature Roke.” Chin. J. Geotech. Eng. 17 (5): 19–24.
Tsang, Y. W. 1984. “The effect of tortuosity on fluid flow through a single fracture.” Water Resour. Res. 20 (9): 1209–1215. https://doi.org/10.1029/WR020i009p01209.
Viswanathan, H. S., et al. 2022. “From fluid flow to coupled processes in fractured rock: Recent advances and new frontiers.” Rev. Geophys. 60 (1): e2021RG000744. https://doi.org/10.1029/2021RG000744.
Walsh, J. B. 1981. “Effect of pore pressure and confining pressure on fracture permeability.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 18 (5): 429–435.
Wang, K., D. C. Jansen, S. P. Shah, and A. F. Karr. 1997. “Permeability study of cracked concrete.” Cem. Concr. Res. 27 (3): 381–393. https://doi.org/10.1016/S0008-8846(97)00031-8.
Wang, L., L. Mu, and K. Zou. 2021. “Review of research progress on water transport mechanism of cracks within concrete.” J. Hydraul. Eng. 52 (6): 647.
Wang, X., and K. Li. 2011. “Leaching behavior of fracture surfaces of cement-based materials.” J. Chin. Silic. Soc. 39 (3): 525–530. https://doi.org/10.1088/1674-1137/35/2/019.
Wang, Y., and B. Y. Su. 2002. “Research on the behavior of fluid flow in a single fracture and its equivalent hydraulic aperture.” Shuikexue Jinzhan 13 (1): 61–68. https://doi.org/10.1002/mop.10502.
Wang, Y., M. M. Tao, D. Feng, Y. Jiao, Y. L. Niu, and Z. K. Wang. 2022. “Effect of leaching behavior on the geometric and hydraulic characteristics of concrete fracture.” Materials 15 (13): 24. https://doi.org/10.3390/ma15134584.
Weimin, X., X. Caichu, and W. Wei. 2011. “Study of a new equation for fluid flow through a single rough joint considering tortuosity effect.” Chin. J. Rock Mech. Eng. 30 (12): 2416–2425.
Weyl, P. K. 2012. “Pressure solution and the force of crystallization: A phenomenological theory.” J. Geophys. Res. 64 (11): 2001–2025. https://doi.org/10.1029/JZ064i011p02001.
Whitaker, S. 1986. “Flow in porous media I: A theoretical derivation of Darcy’s law.” Transp. Porous Media 1 (Mar): 3–25. https://doi.org/10.1007/BF01036523.
Xiaomei, W. 2010. “Mass transfer and exchange processes on the fracture surfaces of cement-based materials.” [In Chinese.] Master thesis, Dept. of Civil Engineering, Tsinghua Univ.
Xie, H., F. Gao, and Y. Ju. 2015. “Research and development of rock mechanics in deep ground engineering.” Chin. J. Rock Mech. Eng. 34 (11): 2161–2178. https://doi.org/10.13722/j.cnki.jrme.2015.1369.
Yasuhara, H. 2003. “A mechanistic model for compaction of granular aggregates moderated by pressure solution.” J. Geophys. Res. 108 (B11): 2530. https://doi.org/10.1029/2003JB002536.
Yasuhara, H. 2004. “Evolution of permeability in a natural fracture: Significant role of pressure solution.” J. Geophys. Res. 109 (B3): 1–11. https://doi.org/10.1029/2003JB002663.
Yasuhara, H., N. Kinoshita, H. Ohfuji, D. S. Lee, S. Nakashima, and K. Kishida. 2011. “Temporal alteration of fracture permeability in granite under hydrothermal conditions and its interpretation by coupled chemo-mechanical model.” Appl. Geochem. 26 (12): 2074–2088. https://doi.org/10.1016/j.apgeochem.2011.07.005.
Yasuhara, H., N. Kinoshita, H. Ohfuji, M. Takahashi, K. Ito, and K. Kishida. 2015. “Long-term observation of permeability in sedimentary rocks under high-temperature and stress conditions and its interpretation mediated by microstructural investigations.” Water Resour. Res. 51 (7): 5425–5449. https://doi.org/10.1002/2014WR016427.
Yasuhara, H., A. Polak, Y. Mitani, A. S. Grader, P. M. Halleck, and D. Elsworth. 2006. “Evolution of fracture permeability through fluid-rock reaction under hydrothermal conditions.” Earth Planet. Sci. Lett. 244 (1–2): 186–200. https://doi.org/10.1016/j.epsl.2006.01.046.
Zhang, Y., and J. Chai. 2020. “Effect of surface morphology on fluid flow in rough fractures: A review.” J. Nat. Gas Sci. Eng. 79 (Jul): 103343. https://doi.org/10.1016/j.jngse.2020.103343.
Zhang, Z., and J. Nemcik. 2013. “Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures.” J. Hydrol. 477: 139–151. https://doi.org/10.1016/j.jhydrol.2012.11.024.
Zoorabadi, M., S. Saydam, W. Timms, and B. Hebblewhite. 2013. “Semi-analytical procedure for considering roughness effect on hydraulic properties of standard JRC profile.” In Proc., 47th US Rock Mechanics/Geomechanics Symp. San Francisco: Curran Associates.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 150Issue 1January 2024

History

Received: Dec 26, 2022
Accepted: Aug 1, 2023
Published online: Oct 27, 2023
Published in print: Jan 1, 2024
Discussion open until: Mar 27, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, Dept. of Civil and Transportation Engineering, Hohai Univ., Nanjing 210098, China. ORCID: https://orcid.org/0000-0003-2010-5283. Email: [email protected]
Professor, Dept. of Water Conservancy and Hydropower Engineering, Hohai Univ., Nanjing 210098, China (corresponding author). Email: [email protected]
Director, Yalong River Hydropower Development Co., Ltd., No. 288 Shuanglin Rd., Chenghua District, Chengdu 610051, China. Email: [email protected]
Associate Professor, Dept. of Civil and Transportation Engineering, Hohai Univ., Nanjing 210098, China. Email: [email protected]
Lecturer, School of Economics and Management, Nanjing Institute of Technology, Nanjing 210098, China. Email: [email protected]
Zhikui Wang, Ph.D. [email protected]
Dept. of Civil and Transportation Engineering, Hohai Univ., Nanjing 210098, China. Email: [email protected]
Lecturer, Dept. of Water Conservancy and Hydropower Engineering, Hohai Univ., Nanjing 210098, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share